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Abstract: As one of the main driving forces for the change in surface energy balance, land use and
cover change affects the ecological climate through different levels of biogeochemical and physical
processes. However, many studies on the surface energy balance are conducted from the perspective
of biogeochemistry, ignoring biogeochemical processes. By using core methods such as the surface
energy balance algorithm and Mann-Kendall trend test, we analyzed the surface energy balance
mechanism and ecological climate effects of five land use types in the Huang-Huai-Hai Basin in
China. The results showed that: (1) the net radiation and latent heat flux in the five land use types
increased significantly, and their highest values were located in cropland areas and urban expansion
areas, respectively. (2) The influence of net radiation on surface energy absorption was greater than
latent heat flux. This relationship was more obvious in land use types that were greatly influenced by
human activities. (3) The net surface energy intake in the Huang-Huai-Hai River Basin showed a
decreasing trend and decreased with the increase in human influence intensity, indicating that human
activities weakened the positive trend in net surface energy intake and increased the warming effect.
This study reveals the difference in energy budgets of different land use types under the influence of
human activities. It is helpful for understanding how to formulate sustainable land management
strategies, and it also provides a theoretical basis for judging the climate change trends and urban
heat island effects in the Huang-Huai-Hai River Basin from a biogeophysical perspective.

Keywords: Huang-Huai-Hai River Basin; land use; surface albedo; human activities

1. Introduction

The concentration of surface energy exchange reflects the energy link function of the
coupling process between the earth and the atmosphere, which is a link in the land surface
process. It is a process of surface heat balance and radiation balance, which is closely
related to solar radiation, ecological changes and human activities [1,2]. These natural or
man-made factors affect the energy exchange between land and atmosphere, which are
reflected in the radiation process between soil, vegetation and atmosphere [2]. Surface
albedo and latent heat flux both represented the radiative forcing process in the interaction
between earth and air and the change of surface radiant energy [3]. They have an influence
on the surface radiant energy balance [4,5]. In each component of the radiation balance,
the net radiation is the key part of the surface energy balance. It is also the physical and
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ecological parameters that affect the process of land-atmosphere energy exchange and
redistribution [6,7].

Owing to the complexity of surface energy mechanisms, other influence factors are
required to reflect the effects of surface albedo and latent heat flux (LH) [8,9] when esti-
mating surface energy revenue and expenditure processes under various land-use types
or conditions, such as land use and cover changes (LUCC) and surface temperature (LST).
Therefore, studying the effects of LUCC on energy balance is important for understand-
ing the effects of human activities on climate [10,11]. In addition, LST is considered a
key variable in many applications such as agriculture, hydrology, and meteorology, and
is also an important parameter in the study of surface energy balance and water cycle
processes [12–15].

The study of radiation balance of various types of surface cover is the basis and
premise of surface energy research. The integration of remote sensing and GIS have been
frequently used by many types of research, and have been identified as an indispensable
tool and method for evaluating LUCC changes [7,14,16]. At present, many studies on
surface energy balance have been conducted from the perspective of biogeochemistry,
which ignores the biogeochemical processes [3,5,17,18]. Therefore, appropriate research
into dynamic change of land use and surface energy balance can have a positive effect
on the ecological climate research and formulate relevant policies [19]. By reflecting the
influence of LUCC induced land-air interface process change on climate warming, it also
provides an important scientific basis for human society to slow down climate warming by
regulating its own land use behavior [20].

The ecological climate effect could be considered as a way that the climate influences
a variety of ecological processes. These effects operate through local weather parameters
such as temperature, wind, etc., as well as interactions among these. Since ecosystems
may influence climate change in a variety of ways, various ecological factors may have
climatic effects, such as changes in land use types and changes in surface energy [21]. In
this paper, the Huang-Huai-Hai River Basin in China was taken as the study area. Based
on the surface energy balance algorithm, the changes in the land energy budget caused by
land use changes in various regions were quantified and the radiation factors (longwave
radiation, shortwave radiation, and net radiation), latent heat flux (LH), and other related
variables affecting the surface energy balance were calculated [22,23]. This study used a
variety of spatial analysis methods such as spatial statistical analysis, region extraction
and superposition analysis and other methods to explore the changes in the surface energy
budget under various land use types in the Huang-Huai-Hai River Basin. Classical linear
regression, regression tests, and Mann-Kendall trend tests were used to analyze the changes
in different energy factors of different land use types from 2000 to 2015, which provided
a new perspective for exploring the eco-climatic effects of land use change. The research
results can be used as a guide for the study of urban temperature change and also help to
understand the energy balance effects of climate change and land cover types [24,25].

2. Materials and Methods
2.1. Study Area

The Huang-Huai-Hai River Basin is located in the eastern coastal area of China
(111◦9′ N–122◦7′ N, 30◦9′ E–40◦4′ E). As shown in Figure 1, the Huang-Huai-Hai River
Basin flows through seven provinces, including Liaoning, Hebei, Shandong, Henan, Jiangsu,
Anhui and Hubei, as well as Beijing and Tianjin municipalities directly under the Central
Government. The Huang-Huai-Hai River Basin consists of Haihe River, Huaihe River,
the lower reaches of the Yellow River and their tributaries, and it is also an important
grain producing area in China. The Huang-Huai-Hai River Basin covers an area of about
5.6 × 105 km2, with arable land accounting for about 70% of the total area, of which dry
land accounts for about 65% and water field for about 4%. Construction land is the second
largest type of land use in this area, accounting for about 14% of the total area, and it is
increasing continuously [26,27].
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Figure 1. Location map of the Huang-Huai-Hai River Basin.

2.2. Data Resource

Land cover data were from the European Space Agency (http://www.esa-landcover-
cci.org, accessed on 20 May 2021) and have a spatial resolution of 300 m. Temperature
interpolation data were selected from the grid data of the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn, accessed on
20 May 2021). The water vapor pressure data were from the European Centre for Medium-
Range Weather Forecasts (https://climate.copernicus.eu/, accessed on 20 May 2021), with
a horizontal resolution of 0.1◦ × 0.1◦. We obtained solar radiation data downloaded
from the Laboratory of Environmental Ecology, Seoul National University (Seoul, Korea;
http://environment.snu.ac.kr, accessed on 20 May 2021). Remote sensing factor data that
affect the energy balance of the surface come from NASA’s Medium Resolution Imaging
Spectrometer (MODIS) data products (https://modis.gsfc.nasa.gov, accessed on 20 May
2021). The MODIS data information is shown in Table 1. At the end of this study, all data
were converted to 1 km spatial resolution for processing analysis.

Table 1. Moderate Resolution Imaging Spectroradiometer (MODIS) data items and descriptions.

Data Items Time Resolution Spatial Resolution Data Resource

Albedo daily 500 m MCD43A3
Temperature (LST) daily 1 Km MOD11A1

Latent heat flux (LH) 8 daily 500 m MOD16A2
Emissivity daily 1 Km MOD11A1

2.3. Research Methodology
2.3.1. Land Use Reclassification

We reclassified the types of land cover as follows. Areas that had been a city during
2000–2015 were classified as old urban areas (OU). The portion of the city extension was
classified as urban expansion areas (UE). Natural and seminatural pixel areas were classified
as mixed pixel areas (MP) where cropland was transformed into each other. The natural
and seminatural pixel areas and cropland areas that did not change from 2000 to 2015
were divided into (PP) and (CP). Overall, the area of land use change was 3.6 × 104 km2,
accounting for 6.33% of the total area (Table 2). The order of the proportion of the five land

http://www.esa-landcover-cci.org
http://www.esa-landcover-cci.org
http://www.resdc.cn
https://climate.copernicus.eu/
http://environment.snu.ac.kr
https://modis.gsfc.nasa.gov
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use types from high to low was CP > PP > UE > OU > MP. As shown in Figure 2, most of
the land in the Huang-Huai-Hai River Basin was CP and PP, which covered 3.6 × 105 km2

and 1.6 × 105 km2, respectively, followed by UE and OU. The smallest area was MP, which
covered 700.83 Km2.

Table 2. Statistics on the proportion of land type change.

Land Use Change from 2000 to 2015 Unchanged Land Types from 2000 to 2015

Categories Percentage Categories Percentage

cropland to urban areas 2.73% urban areas 2.23%
natural and seminatural areas to urban areas 3.47% cropland 63.74%
natural and seminatural areas to cropland 0.06% natural and seminatural areas 27.70%
cropland to natural and seminatural areas 0.07%
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2.3.2. Calculation of Surface Energy Balance and Research Framework

Because different land use patterns have different effects on the surface energy balance,
we use the surface energy balance algorithm to calculate the change in surface energy
under different land types. As shown in Figure 3, the differences and relationships between
energy intake and consumption parameters under the five land use types (CP, MP, UE, PP,
OU) were analyzed.

The surface energy balance equations for each influencing factor are as follows:

NR = Swr + Lwr (1)

Swr = Swr(d) − Swr(u) = (1− λ)Swr(d) (2)

Lwr = Lwr(d) − Lwr(u) = ElLwr(d)(Ta, Ea)− Lwr(u)(Ts, El) = ElδEaTa
4 − δElTs

4 (3)

Ea = 1.24(VAP/Ts)
1
7 (4)

where NR is the net radiation; Swr is net shortwave radiation; Lwr is net longwave radiation;
Swr(d) is the decreasing shortwave radiation; Swr(u) is the upward shortwave radiation;
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Lwr(d) is decreasing longwave radiation; Lwr(u) is upward longwave radiation, and its
unit of radiation is W/m2; and λ is the surface albedo. El is the surface emissivity; δ is
the Boltzmann constant, which is 5.67 × 10−8 W/m2/K4; Ta is the air temperature; and
Ts is the land surface temperature and its unit is K; Ea is the emissivity of air; VAP is the
saturated water vapor pressure and its unit is hpa.
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Figure 3. Research framework of energy budget feedback of land use change.

In this study, –NR was used to represent factors such as energy uptake forcing caused
by biogeophysical factors, and a negative sign indicates that NR decreases with the in-
crease of albedo. Meanwhile, LH represents the forcing of NR consumption on energy
consumption and LH–NR represents the final result of the forced balance of energy intake
and expenditure caused by LUCC [28]. In terms of forced balance, the larger LH–NR value
reduces the energy of sensible heat flux and soil heat flux. If less energy was used to
heat the atmosphere and surface temperature, corresponding to a cooling feedback or a
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weak warming feedback. In contrast, a lower LH–NR value means a stronger temperature
rise feedback.

2.3.3. Nonparametric Mann-Kendall Trend Test

Classical linear regression and the nonparametric Mann-Kendall trend test (M-K test
for short) [29–33], as well as other statistical methods, were used to examine changes in
various energy factors of different land use types over time from 2000 to 2015. The trend
test principle of different energy factors are as follows:

(1) Suppose the time series X1, X2, . . . , Xn, Sk represents the cumulative number of the
ith sample Xi > Xj (1 ≤ j ≤ i), define the statistics:

Sk= ∑k
i=1 Ri , Ri =

{
1, Xi > Xj
0, Xi ≤ Xj

, (k = 2, 3, . . . , n) (5)

(2) The mean and variance of Sk is:

E(Sk) = n(n + 1)/4 (6)

Var(Sk) = n(n− 1)(2n + 5)/72 (7)

(3) Standardize Sk:

UFk =
Sk − E(Sk)√

Var(Sk)
(k = 1, 2, . . . , n) (8)

Including UF1 = 0, given the significance level ∝, if |UFi|> U∝ , indicating that time
series X has an obvious change trend. Invert the X-Series samples to obtain a new time
series, namely Xn, Xn−1, . . . , X1, perform the same operation on the new time series and
there is a new order column UBk = −UFk, where UB1 = 0, k = n, n − 1, . . . , 1.

3. Results
3.1. Changes of Surface Energy Intake
3.1.1. Net Shortwave and Longwave Radiation

Spatial changes in net short wave (Swr) and net long wave radiation (Lwr) during the
study period was calculated on the basis of difference in surface energy intake data from
2000 to 2015. As shown in Figure 4, the Swr and Lwr variation values in most of the study
area were positive, the multi-year trend values of Swr and Lwr were −0.245 W/(m2·year)
and 0.1916 W/(m2·year), and multi-year averages of Swr and Lwr were 119.43 W/(m2·year)
and 1693.74 W/(m2·year), respectively.
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In terms of spatial distribution, Lwr had increased significantly in Henan, Anhui,
Jiangsu and Hubei provinces, mainly in CP region. Regional negative differences were
mainly concentrated in the eastern and northern regions (Shandong, Hebei, Tianjin, Beijing
and Liaoning), mainly distributed in PP and CP regions. In contrast, the increment of
Swr was generally small, with individual regions larger (Shandong province). The region
with the largest increase in Swr was mainly the PP region, while the smallest area was the
CP region.

According to Figure 5, the highest values of Lwr were mainly located in the MP, CP and
UE areas, where the multi-year average maximum value was 1828.17 W/m2, the lower Lwr
value was located in the PP and OU regions, they were 1576.96 W/m2 and 1577.98 W/m2,
respectively. The results of Swr showed that the multi-year average in the CP region was
125.27 W/m2, followed by the OU, PP, UE and MP, which were 122.75 W/m2, 119.84 W/m2,
119.62 W/m2, 118.34 W/m2, respectively.
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3.1.2. Changes of Net Radiation

Net radiation is an important index of regional energy absorption and an important
physical and ecological parameter that can affect the geo-gas energy exchange and redistri-
bution process [7]. The change in NR was obtained by using Swr and Lwr data. The average
surface radiation in the Huang-Huai-Hai River Basin from 2000 to 2015 was 1812.16 W/m2,
with a multi-year trend value of−0.22 W/(m2·year). Figure 6a showed an increasing trend
in the south and a decrease in the north in NR. In addition, the value of NR in 2015 was
higher than 2000 and generally showed an upward trend, but the changes over the years
were small.

The variation trend of NR of different land use types showed that there were significant
differences among the five land use types (Figure 7). The multi-year averages of CP and MP
regions of NR were 1946.2 W/m2 and 1919.4 W/m2, respectively, much higher than UE,
PP and OU. The multi-year average value of PP was the lowest (1694.7 W/m2). Combining
with the Figure 8, the UF > 0 of the five land-use types indicated an upward trend in NR.
Although mutations began to decline in 2009, there was a marked sudden increase in 2013,
with the overall upward trend in NR in line with the global warming climate context.
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3.2. Analysis of Surface Energy Balance
3.2.1. Changes in Surface Energy Consumption

It can be seen from Figure 9b, the change values of LH in the Huang-Huai-Hai Basin
from 2000 to 2015 was positive. From the spatial distribution point of view, the overall
LH distribution was different, the LH values corresponding to land use types ranged
from 27.8 W/m2~72.2 W/m2 in a large area. In the five land-use types, the largest multi-
year mean was found in MP region, with 181.2 W/m2, PP, CP, UE and OU, followed by
70.1 W/m2, 41.4 W/m2, 27.7 W/m2, 10.3 W/m2.
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The trend of LH in various land use types in Huang-Huai-Hai River Basin from 2000
to 2015 as shown in Figure 10, with a multi-year average of LH was 66.2 W/m2 and a
multi-year LH trend of 0.18 W/(m2·year). The LH trend of OU and UE were smaller than
0.1 W/(m2·year), while the LH trend of CP, PP and MP were greater than 0.1 W/(m2·year).
An overall upward trend in the UF curve over a 16-year period as shown in Figure 11,
and the UF and UB of MP intersected in 2005 outside the confidence line u0.05 = ±1.96,
indicating that significant mutations began in 2005, and the LH value of the MP region had
been increasing continuously since then. The UE mutation trend characteristics differ from
the annual average LH, with the mutation appearing in 2009 and showing a decreasing
trend, which was related to the increase in impermeable area. In general, the LH values
of OU and UE, which were more affected by human intervention, were always smaller
than that of other land use types, and the LH values decreases with the increase of human
activities influence on the surface, indicating that human activity has a negative impact on
the value and trend of LH.
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Figure 10. Latent heat flux (LH) trend of different land use types in the Huang-Huai-Hai River Basin
from 2000 to 2015.

3.2.2. Comparison of Net Radiation and Latent Heat Fluxes

LH–NR spatial distribution was different from LH, as can be seen from Figure 12 that
the LH–NR value was all negative. The high value area was mainly located in the north, the
multi-year average of LH–NR was−1755.5 W/m2, and the five land use types of multi-year
average from high to low order were: PP > OU > UE > MP > CP. As shown in Figure 13,
the LH–NR values of the five land-use types showed an upward trend in 2000–2015, with a
multi-year trend value of 0.26 W/(m2·year) for LH–NR in 2000–2015. Figure 14 showed
that the values of LH–NR in the CP region had been on a brief upward trend since the
mutation occurred in 2009, but the UF < 0 was on a decreasing trend, indicating that human
activities have a stronger effect on regional warming. Furthermore, the values of LH–NR
in CP and UE areas showed a decreasing trend, while under the influence of irrigation
impervious water surface in urban areas increased, indicating that the feedback effect of
land use change brought by human activities on regional warming was enhanced.
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Figure 12. (a) Spatial variation (LH–NR) and (b) statistical values for the five land use types in the
Huang-Huai-Hai River Basin from 2000 to 2015.
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Figure 14. Mann-Kendall test of net radiation (LH–NR) for different land use types in the Huang-
Huai-Hai River Basin from 2000 to 2015.

To further clarify the effect of LH or NR on LH–NR, we compared the relationships
between three energy factors. During the study period, the correlation between NR and
LH–NR in the five land use types was greater than that of LH and LH–NR (Figure 15).
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LH–NR and NR were consistent in MP, CP, UE, PP, and OU regions, while LH–NR and LH
were more relevant in OU and PP regions, followed by UE, MP, and CP regions.

Land 2022, 11, x FOR PEER REVIEW 12 of 17 
 

 

Figure 15. Correlation between and LH, NR and LH − NR under the five land types in the Huang-

Huai-Hai River Basin from 2000 to 2015 (blue dots and blue lines represent scatter plots with LH −

NR, with LH, orange dots and orange lines represent LH − NR scatter plots with NR). 

In terms of radiation balance, LH − NR under different land use types was more sen-

sitive to changes in NR and more obvious. Therefore, when considering the results of en-

ergy intake and expenditure forced balance caused by LUCC, the importance of factors 

such as energy absorption caused by biogeophysical factors to the cooling effect cannot 

be ignored. In other words, adjusting the net radiation factor may have a greater effect on 

changing the energy intake and expenditure forced balance in the Huang-Huai-Hai River 

Basin [3]. 

4. Discussion 

With rapid economic development, the land use patterns in the Huang-Huai-Hai 

River Basin have undergone tremendous changes. These natural processes were disturbed 

by land reclamation, which was determined by local geophysical processes and socio-eco-

nomic driving factors [34–36]. Besides natural and semi-natural land use, the most obvi-

ous change in land use in the study area was the transformation from agricultural land to 

urban land. Owing to the different vegetation growth conditions among different land 

use types, the differences between land use types are reflected in biophysical parameters 

such as albedo, thus resulting in different energy balance effects [37,38]. When discussing 

the climate effect of land use change from the perspective of radiation balance, we should 

consider not only the radiation force of albedo, but also the corresponding radiation force 

of ground and atmosphere [39]. The results show that changes in short-wave radiation 

associated with patterns of change in the five land use types are not obvious, but with the 

increase in human activity intensity and after the superposition of long-wave radiation, 

the NR of each land use type shows a clear pattern of change. 

According to the changes in land use types and land surface temperature in the 

Huang-Huai-Hai River Basin from 2000 to 2015, it can be concluded that the average LST 

in this area from high to low was: OU > UE > CP > PP > MP (Figure 16). Because of the 

high surface temperature in the urban conversion areas of the Huang-Huai-Hai River Ba-

sin, which are naturally affected by human activities, the temperature in cropland areas 

occupying a large area was low. From 2000 to 2015, with the feedback of the impact of 

land use change on regional climate warming, there were also large areas of low temper-

ature, such as the CP areas (Figure 17). 

Figure 15. Correlation between and LH, NR and LH–NR under the five land types in the Huang-
Huai-Hai River Basin from 2000 to 2015 (blue dots and blue lines represent scatter plots with LH–NR,
with LH, orange dots and orange lines represent LH–NR scatter plots with NR).

In terms of radiation balance, LH–NR under different land use types was more sensi-
tive to changes in NR and more obvious. Therefore, when considering the results of energy
intake and expenditure forced balance caused by LUCC, the importance of factors such as
energy absorption caused by biogeophysical factors to the cooling effect cannot be ignored.
In other words, adjusting the net radiation factor may have a greater effect on changing the
energy intake and expenditure forced balance in the Huang-Huai-Hai River Basin [3].

4. Discussion

With rapid economic development, the land use patterns in the Huang-Huai-Hai
River Basin have undergone tremendous changes. These natural processes were disturbed
by land reclamation, which was determined by local geophysical processes and socio-
economic driving factors [34–36]. Besides natural and semi-natural land use, the most
obvious change in land use in the study area was the transformation from agricultural land
to urban land. Owing to the different vegetation growth conditions among different land
use types, the differences between land use types are reflected in biophysical parameters
such as albedo, thus resulting in different energy balance effects [37,38]. When discussing
the climate effect of land use change from the perspective of radiation balance, we should
consider not only the radiation force of albedo, but also the corresponding radiation force
of ground and atmosphere [39]. The results show that changes in short-wave radiation
associated with patterns of change in the five land use types are not obvious, but with the
increase in human activity intensity and after the superposition of long-wave radiation, the
NR of each land use type shows a clear pattern of change.

According to the changes in land use types and land surface temperature in the
Huang-Huai-Hai River Basin from 2000 to 2015, it can be concluded that the average LST
in this area from high to low was: OU > UE > CP > PP > MP (Figure 16). Because of
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the high surface temperature in the urban conversion areas of the Huang-Huai-Hai River
Basin, which are naturally affected by human activities, the temperature in cropland areas
occupying a large area was low. From 2000 to 2015, with the feedback of the impact of land
use change on regional climate warming, there were also large areas of low temperature,
such as the CP areas (Figure 17).
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According to the abrupt change test result of land surface temperature (Figure 17),
we found that five land types have fewer years of mutation, and the UF of five land
use types was less than zero. Although CP, MP, UE, PP, and OU all showed an upward
trend to different degrees in 2010, the overall trend showed a decreasing trend. The large
area of Huang-Huai-Hai River Basin was cropland (Table 2), indicating that land use
change had a great feedback effect on regional climate warming, which was conducive to
controlling the rapid increase in surface temperature. Therefore, on the regional scale, it
should firstly promote ecological land protection, scientific use of land, rational planning of
vegetation land, and then promote the process of urbanization in an orderly manner. From
a biogeophysical perspective, it would be helpful for understanding how to formulate
sustainable land management strategies.

Furthermore, the results showed that LH–NR was more sensitive to NR than LH in
the Huang-Huai-Hai River Basin, which means that energy regulation of NR was greater
than LH in this region. By comparing the correlation between LST and NR, LH, LH–NR,
the relationship between energy and temperature were discussed (Figure 18).
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Figure 18. Correlation between LST, NR and LH–NR in the Huang-Huai-Hai River Basin from 2000
to 2015 (blue dots and blue lines represent LST and NR scatter plots, red dots and red lines represent
LST and LH scatter plots, and green dots and green lines represent LST and LH–NR scatter plots).

As shown in Figure 18, LST and LH–NR were negatively correlated with NR in five
land types. In general, the relationship between LST and LH–NR was closer, followed by
NR and LH, but this relationship did not pass the significance test (p = 0.1). It is worth
noting that in the CP, OU and UE regions, the relationship between LST and NR was
more significant, indicating that in areas where human activities are dense, the regula-
tory effect on LST of NR was more pronounced, whereas in the area of natural cropland
interoperability, such as MP, the relationship was relatively weak.

Therefore, when analyzing the urban heat island effect, the influence of LH and
NR on LST or various land use patterns cannot be ignored. For different types of land
use, the spatial scale and scope of the study area may lead to different results. When
analyzing the spatial difference of urban thermal environment, the setting of boundary
range and land use type will not only affect the intensity of the heat island but also affect the
corresponding change in surface temperature of the heat island [14]. Some previous studies
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have confirmed that compared with climate change, the implementation of ecological
projects can promote better vegetation restoration and improve the regional ecological
environment [40–43]. Research shows that land use management is the main driving force
for greening the earth [44,45].

5. Summary

The Huang-Huai-Hai River Basin consists of the lower reaches of the Yellow River,
Haihe River, Huaihe River and their tributaries, and it is also an important grain producing
area in China. According to the different impacts of human activities, the land use types in
the Huang-Huai-Hai River Basin were divided into five categories: OU, CP, PP, UE and MP.
The differences of NR and LH corresponding to different land use types and changes from
2000 to 2015 were analyzed. Draw the following conclusions:

(1) From 2000 to 2015, the change trend of LH in five land use types was: MP > PP > CP >
UE > OU. The NR values of UE and OU areas, which were greatly affected by human
activities, were always lower than those of other land use types, and the NR values
of CP and MP areas were much higher than those of UE, OU and PP areas. The NR
values were generally on the rise, which was in line with the climate background of
global warming.

(2) The LH–NR in different land types of underlying surface showed a decreasing trend,
with the OU, PP and UE regions showing a smaller trend than the CP and MP regions.
The LH–NR values of the five land-use types decreased with the increase in intensity
of human activities, indicating that human activities weakened the positive trend
of LH–NR and increased the warming effect. The main energy regulation factors of
surface temperature of different land use types were also different. With the increase
in the intensity of human activities related to land use, the cooling effect of LH–NR
gradually increases.

(3) The change trend of LST in five land use types was: OU > UE > CP > PP > MP. The
values of LST in five land use types was higher in OU and UE, while the values
of LST was lower in MP. MP refers to the area of mutual transformation between
natural and seminatural pixel area and cropland, which is affected by certain human
activities, indicating that land use change had a strong feedback effect on regional
climate warming, which was conducive to controlling the rapid increase of land
surface temperature.

In this study, the surface energy balance mechanism and ecological climate effects
of five land use types in the Huang-Huai-Hai Basin in China were analyzed, by using
the core methods such as surface energy balance algorithm and Mann-Kendall trend test.
The difference in land surface temperature under different LUCC is explained from the
point of view of energy budget. And the research shows that there is an obvious difference
between energy revenue and expenditure under the influence of human activities. With the
increase in the intensity of human activities related to land use, the cooling effect of LH-NR
gradually increases. It has reference value for discussing the trend in climate change and
the urban heat island effect from the perspective of biogeography. At present, the data and
methods based on this study are all obtained on a large regional scale, so it is necessary
to quantitatively study its mechanism process on a finer regional scale, which has more
concrete practical value for future urban planning.
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