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Abstract: Precise and timely classification of land cover types plays an important role in land
resources planning and management. In this paper, nine kinds of land cover types in the acquired
hyperspectral scene are classified based on the kernel collaborative representation method. To reduce
the spectral shift caused by adjacency effect when mining the spatial-spectral features, a correlation
coefficient-weighted spatial filtering operation is proposed in this paper. Additionally, by introducing
this operation into the kernel collaborative representation method with Tikhonov regularization
(KCRT) and discriminative KCRT (DKCRT) method, respectively, the weighted spatial-spectral
KCRT (WSSKCRT) and weighted spatial-spectral DKCRT (WSSDKCRT) methods are constructed
for land cover classification. Furthermore, aiming at the problem of difficulty of pixel labeling in
hyperspectral images, this paper attempts to establish an effective land cover classification model
in the case of small-size labeled samples. The proposed WSSKCRT and WSSDKCRT methods are
compared with four methods, i.e., KCRT, DKCRT, KCRT with composite kernel (KCRT-CK), and joint
DKCRT (JDKCRT). The experimental results show that the proposed WSSKCRT method achieves the
best classification performance, and WSSKCRT and WSSDKCRT outperform KCRT-CK and JDKCRT,
respectively, obtaining the OA over 94% with only 540 labeled training samples, which indicates that
the proposed weighted spatial filtering operation can effectively alleviate the spectral shift caused
by adjacency effect, and it can effectively classify land cover types under the situation of small-size
labeled samples.

Keywords: land cover classification; hyperspectral images; kernel collaborative representation;
weighted spatial-spectral features

1. Introduction

The accurate classification of land cover types is the key and important foundation
for land cover mapping. Precisely and timely updating land cover mapping information
can provide important theoretical basis for decision-making of land resource planning and
management, environmental protection, precision agriculture, landscape pattern analysis,
and so on [1–3]. Although the traditional land cover information collection method based
on field survey can provide accurate land cover details, it costs a lot of manpower and
time, and it cannot be carried out under some environmental conditions [1]. With the
rapid development of sensor technology, various remote sensing detection technologies are
emerging. Additionally, remote sensing technology has become one of the most important
means of land cover mapping, because it can efficiently and contactlessly obtain ground
object information on a large scale [4,5]. In the past few years, researchers have utilized
various remote sensing data to classify and map land cover types and achieved satisfactory
results, such as satellite or airborne RGB images [6,7], multispectral images [8,9], hyper-
spectral images [10,11], synthetic aperture radar [12,13] and multi-source remote sensing
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images composed of the above data sources [14,15]. Among these remote sensing technolo-
gies, hyperspectral images can provide abundant spectral and spatial information for land
cover objects, due to containing hundreds of narrow and continuous spectral bands [16,17].
Therefore, it has attracted extensive attention from scholars in the research of land cover
classification and mapping.

Land cover classification using hyperspectral images is essentially to assign predefined
label information to each pixel in hyperspectral images. In recent years, collaborative repre-
sentation classification (CRC) model has been widely used in hyperspectral images for land
cover classification and mapping, which was first developed for face recognition [18]. On
the one hand, CRC utilizes a dictionary composed of all labeled training samples to linearly
represent each test sample without considering any prior distribution of samples [19].
On the other hand, CRC employs an `2-norm minimization-derived closed-form solution
to solve the dictionary representation coefficient for each test sample, which possesses
higher operation efficiency and better classification performance than that of the sparse
representation classification (SRC) model [20].

To improve the classification performance of the collaborative representation (CR)-
based model in hyperspectral images, Li et al. introduced a distance-weighted Tikhonov reg-
ularization into the original nearest-subspace classification (NSC, also called pre-partitioning
CR model) and CRC (also called post-partitioning CR model), defined as NRS [21] and
CRT [22], respectively. However, in the real hyperspectral images, the sample data are often
presented in nonlinear structure, and the linear representation of CR models cannot fully
represent the nonlinear structure of samples [19]. To solve this problem, many researchers
utilize the kernel trick to project the sample data into a nonlinear high-dimensional feature
space, where the separability of samples is improved [19,22–24]. For example, Li et al.
incorporated the Gaussian radial basis function (RBF) kernel into the CRT method, which
was denoted as KCRT and effectively improved the separability of land cover types in
hyperspectral images [22]. Based on this work, Ma et al. proposed a discriminative kernel
collaborative representation method with Tikhonov regularization (DKCRT) for land cover
classification, which was able to make the kernel collaborative representation of different
land cover types to be more discriminative in hyperspectral images [23].

Furthermore, many studies have shown that the combination of spatial and spectral
features can effectively improve the performance of CR models for land cover classification
in hyperspectral images [22–27]. Among them, a spatial filtering operation is a frequently
used method to mine spatial-spectral features by directly averaging all the pixels (central
pixels) and its corresponding spatial neighborhood pixels in hyperspectral images, such
as KCRT with composite kernel (KCRT-CK) [22] and joint DKCRT (JDKCRT) [23]. In
hyperspectral images, although each central pixel and its corresponding adjacent pixels
belong to the same class in a high probability, it usually includes some pixels of different
classes from the central pixel in its adjacent pixels. Moreover, when acquiring the spectral
information of ground objects in the same scene, the hyperspectral sensor collects the direct
reflection power from the central pixel and the indirect diffuse reflection powers from its
adjacent pixels at the same time. Therefore, the spectral curve of the central pixel produces
spectral shift affected by these adjacent pixels, which is called adjacency effect [28]. If the
spatial adjacent pixels are averaged directly, the reconstructed central pixel (i.e., spatial-
spectral features) will contain a large amount of noise caused by spectral shift, which affects
the performance of CR models for land cover classification. For each central pixel in the
hyperspectral images, the pixels of different classes in the adjacent pixels increase the
spectral shift of the central pixel, while the pixels of the same class in the adjacent pixels
help to reduce the spectral shift of the central pixel [29]. Inspired by reference [29], this
paper proposes a weighted spatial-spectral kernel-collaborative representation method
with Tikhonov regularization to mine spatial-spectral features for land cover classification,
instead of directly averaging all the pixels (central pixels) and its corresponding spatial
neighborhood pixels.
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In addition, machine learning algorithms, especially deep learning, usually need
sufficient labeled training samples to establish hyperspectral land cover classification
models, so as to enhance the robustness of classification models. However, in practical
hyperspectral applications, it is very difficult to label pixels, which usually consumes a lot
of manpower and time [30]. Therefore, the lack of labeled samples is a great challenge in
hyperspectral image classification [31]. To solve this problem, this paper attempts to use
the proposed method to establish an effective land cover classification model in the case of
small-size labeled samples.

The main contributions of this paper are as follows:

(1) A correlation coefficient-weighted spatial filtering operation is proposed to mine
spatial-spectral features, which effectively reduces the spectral shift of the recon-
structed central pixel.

(2) By introducing a weighted spatial filtering operation into the KCRT and DKCRT meth-
ods, weighted spatial-spectral KCRT (WSSKCRT) and weighted spatial-spectral DKCRT
(WSSDKCRT) methods, respectively, are proposed for land cover classification.

(3) By optimizing parameters, the proposed method can effectively classify land cover
types using hyperspectral images in the case of small-size labeled samples.

2. Materials and Methods
2.1. Data Collection

The hyperspectral scene in the experiment was collected by a Reflective Optics Spec-
trographic Imaging System (ROSIS) sensor mounted on a flight platform over the Pavia
University in northern Italy. The spatial size of this scene is 610 × 340 pixels, with a
high spatial resolution of 1.3 m. Additionally, this scene consists of 115 spectral bands.
By removing 12 bands with high noises and water absorption, the remaining 103 bands,
ranging from 0.43 to 0.86 µm, are used for the establishment and analysis of land cover
classification models. In addition, there are nine land cover types with 42,776 labeled pixels
in this hyperspectral scene, including Asphalt, Meadows, Gravel, Trees, Paintedmetal sheets,
Bare Soil, Bitumen, Self-Blocking Bricks, and Shadows. The false-color image and ground truth
of the acquired hyperspectral scene are shown in Figure 3a,b, respectively.

In hyperspectral scenes, each pixel represents a sample of one class. To satisfy the
situation of small-size labeled samples, 60 labeled pixels in each class are randomly selected
as training samples and the remaining pixels are as test samples. The specific division of
samples is shown in Table 1.

Table 1. Land cover classes and division of samples in the hyperspectral scene.

No. Class Total Samples Training Samples Test Samples

1 Asphalt 6631 60 6571

2 Meadows 18,649 60 18,589

3 Gravel 2099 60 2039

4 Trees 3064 60 3004

5 Painted metal sheets 1345 60 1285

6 Bare Soil 5029 60 4969

7 Bitumen 1330 60 1270

8 Self-Blocking Bricks 3682 60 3622

9 Shadows 947 60 887

All classes 42,776 540 42,236
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2.2. Classification Methods
2.2.1. Principle of the Original KCRT Method

Suppose a hyperspectral scene contains C classes with N labeled training samples,
and the training samples can be expressed as X = [x1, x2, · · · , xN ] ∈ Rd×N , where d is the
dimension of hyperspectral data (i.e., the number of hyperspectral bands). Additionally, the
training set of the lth class (l = 1, 2, . . . , C) is denoted as Xl = [xl,1, xl,2, · · · , xl,Nl

] ∈ Rd×Nl ,
where Nl represents the number of the training samples in the lth class, i.e., ∑C

l=1 Nl = N.
The essential idea of KCRT is to map each sample to a kernel-induced high-dimensional

feature space through a nonlinear mapping function Φ, enhancing the class separability.
Then, each mapped test samples Φ(y) are linearly represented using the dictionary con-
structed by the mapped training samples Φ(X), where Φ(y) ∈ RD×1 and
Φ(X) = [Φ(x1), Φ(x2), · · · , Φ(xN)] ∈ RD×N (D >> d is the dimension of high dimensional
feature space). According to the definition of kernel function [22,23], the inner product
of any two samples mapped by nonlinear mapping function can be expressed as kernel
function, and the kernel function must satisfy Mercer’s conditions. The kernel function
used in KCRT is the Gaussian radial basis function (RBF). Therefore, the above statements
can be expressed as follows:

k(xi, xj) = Φ(xi)
TΦ(xj) = exp(−γ‖xi − xj‖2

2) (1)

where γ (γ > 0) is a parameter controlling the width of RBF. For KCRT, γ is set as the
median value of 1/(‖xi − x‖2

2) (i = 1, 2, . . . , N), where x is the mean value of all available
training samples, i.e., x = ((∑N

i=1 xi)/N).
The representation coefficient vector α in the kernel feature space is solved by `2-norm

regularization, i.e.,

α = arg min
α∗
‖Φ(y)−Φ(X)α∗ ‖2

2 + λ‖ΓΦ(y)α
∗‖2

2
(2)

where λ is a global regularization parameter which is used to balance the minimization
between the residual part and the regularization term, and the Tikhonov regularization
term ΓΦ(y) in the kernel feature space can be expressed as

ΓΦ(y) =

 ‖Φ(y)−Φ(x1)‖2 · · · 0
...

. . .
...

0 · · · ‖Φ(y)−Φ(xN)‖2

 (3)

where ‖Φ(y)−Φ(xi)‖2 = [k(y, y) + k(xi, xi)− 2k(y, xi)]
1/2, and i = 1, 2, . . . , N. Then, the

representation coefficient vector α can be calculated with a closed-form solution as follows:

α = (K + λΓT
Φ(y)ΓΦ(y)

−1
k(X, y) (4)

where K = Φ(X)TΦ(X) ∈ RN×N denotes the Gram matrix composed of Ki,j = k(xi, xj)

(i, j = 1, 2, . . . , N), and k(X, y) = [k(x1, y), k(x2, y), · · · , k(xN , y)]T ∈ RN×1. Finally, the
obtained representation coefficient vector α ∈ RN×1 is divided into C class-specific
representation coefficient vectors according to the label information in the training set,
i.e.,α = [αT

1 ,αT
2 , · · · ,αT

C]
T . The mapped class-specific training samples Φ(Xl) and the

corresponding representation coefficient vector αl are used to reconstruct the test sample y,
and the class with the minimal reconstruction error is attributed to y, whichis

class( y ) = arg min
l=1,··· ,C

‖Φ(Xl)αl −Φ(y)‖2

= arg min
l=1,··· ,C

√
k(y, y) +αT

l Klαl − 2αT
l k(Xl , y)

(5)



Land 2022, 11, 263 5 of 12

where Φ(Xl) = [Φ(xl,1), Φ(xl,2), · · · , Φ(xl,Nl
)] represents kernel sub-dictionary constructed by the

training samples in the lth class, Kl = Φ(Xl)
TΦ(Xl) ∈ RNl×Nl denotes the Gram matrix composed

of the training samples in the lth class, and k(Xl,y) = [k(xl,1,y), k(xl,2,y), · · · , k(xl,Nl
,y)]T ∈ RNl×1.

2.2.2. Principle of the Original DKCRT Method

On the basis of the KCRT method, the DKCRT method adds a discriminative regu-
larization term to consider the correlation among different classes, so as to enhance the
class separability. The optimization problem of the representation coefficient vector α in
the kernel feature space can be mathematically reduced to the following form

α = arg min
α∗
‖Φ(y)−Φ(X)α∗ ‖2

2 + λ‖ΓΦ(y)α
∗‖2

2
+ β∑C

i=1 ∑C
j=1 (Φ(Xi)α

∗
i )

T
(Φ(Xj)α

∗
j ) (6)

where β is a positive regularization parameter controlling the contribution of the discrimi-
native regularization term. The closed-form solution of the representation coefficient vector
α can be expressed as

α = [(1 + β)K + λΓT
Φ(y)ΓΦ(y + βQ]

−1
k(X, y) (7)

where Q is expressed in the following form:

Q =

 K1 · · · 0
...

. . .
...

0 · · · KC

 (8)

As with the KCRT method, the test sample y is classified using formula (5).

2.2.3. Principle of the Original KCRT-CK and JDKCRT Method

KCRT and DKCRT only use spectral features in hyperspectral images to classify land
cover types, while KCRT-CK and JDKCRT combine spatial and spectral features to improve
the classification accuracy for land cover types. Both KCRT-CK and JDKCRT mine spatial-
spectral features using a spatial filtering operation that directly averages all the pixels
(central pixels) and its corresponding spatial neighborhood pixels in hyperspectral images.
The specific mathematical expression is as follows:

Suppose that Ψ = {x0,0, x0,1, . . . , x0,n×n−1} is the spatial neighborhood pixel set corre-
sponding to the central pixel x0,0 under the window of n × n. Note that Ψ contains the
central pixel x0,0 itself. The mean value of all samples in Ψ can be calculated as follows:

x̂0 =
1

n× n∑n×n−1
i=0 x0,i (9)

where x̂0 is the reconstructed central pixel (i.e., spatial-spectral features of x0,0). In this
way, all pixels in the hyperspectral scene are traversed. After that, the KCRT and DKCRT
methods are used to classify the land cover types in hyperspectral scene.

2.2.4. Principle of the Proposed WSSKCRT and WSSDKCRT Method

It has been introduced in the Introduction part that it usually includes some pixels
of different classes from the central pixel in its spatial adjacent pixels, and the pixels of
different classes in the spatial adjacent pixels increase the spectral shift of the central
pixel. Therefore, the reconstructed central pixel (i.e., spatial-spectral features) by directly
averaging adjacent pixels contains a large amount of noise caused by spectral shift. To solve
this problem, a correlation coefficient-weighted spatial filtering operation is proposed in
this paper, and the proposed spatial filtering operation is introduced into KCRT and DKCRT
methods, denoted as WSSKCRT and WSSDKCRT, respectively. The specific formulas are
expressed as follows:
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Similarly, suppose the spatial neighborhood pixel set of a central pixel x0,0 under
the window of n × n is Ψ = {x0,0, x0,1, . . . , x0,n×n−1}. Firstly, the correlation coefficient
between each pixel in the spatial neighborhood pixel set Ψ and the central pixel is calcu-
lated, respectively. The results can be expressed as R = {r0,0, r0,1, . . . , r0,n×n−1}, where r0,0
represents the correlation coefficient of the central pixel itself (i.e., 1), and r0,i represents
the correlation coefficient between the central pixel x0,0 and the spatial neighborhood pixel
x0,i (i = 1,2, . . . , n× n−1). The larger the absolute value of correlation coefficient is between
the spatial neighborhood pixel x0,i and the central pixel x0,0, the higher the probability is
that it belongs to the same class as the central pixel, so the corresponding spatial neighbor-
hood pixel x0,i should be assigned a larger weight. To prevent the influence of negative
correlation value on the weight, the absolute value of the obtained correlation coefficient
is normalized to 0–1, which is used as the weight value of the corresponding spatial
neighborhood pixel, i.e.,

w0,i =
|r0,i|

∑n×n−1
i=0 |r0,i|

(10)

The reconstructed central pixel x̂0 can be calculated as follows:

x̂0 = ∑n×n−1
i=0 w0,ix0,i (11)

All the pixels in the hyperspectral scene are traversed using this weighted spatial fil-
tering operation to mine spatial-spectral features. Finally, land cover types in hyperspectral
scene are classified by the KCRT and DKCRT methods.

3. Results and Discussion
3.1. Hyperspectral Data Preprocessing

In one hyperspectral scene, the spectral curves of the same ground object usually
produce amplitude shift due to different geometrical structure and smoothness, which
will degrade the performance of classification model [29]. To illustrate amplitude shift, the
pixels of three kinds of land cover types, i.e., Asphalt, Gravel, and Bare Soil, are selected in
the acquired hyperspectral scene, and 60 pixels are randomly selected in each kind of land
cover type. The spectral response curves are shown in Figure 1 a–c. It can be seen from
the figure that the shape and trend of spectral curves of the same ground object is basically
invariant, but the reflectance level (i.e., spectral amplitude) is obviously different, which
is the amplitude shift mentioned above. To alleviate the amplitude shift, the amplitude
normalization (AN) method proposed in reference [29] is used to preprocess the original
hyperspectral data in this paper. The principle of AN is as follows:

Assuming that xi is a pixel of one class in the hyperspectral scene, the amplitude of xi
is normalized by the following formula:

x̂i =
xi

∑d
b=1|xib|

(12)

where x̂i is the pixel preprocessed by AN, xib represents the reflectance of the bth band, and
d represents the number of bands. The amplitude of all ground object pixels in the acquired
hyperspectral scene is normalized using formula (12). It can be seen from Figure 1d–f that
the spectral curves of the same ground object become compact and concentrated after AN
pretreatment., which indicates the amplitude shift of spectral curves of the same ground
object is effectively alleviated. Therefore, the spectral data preprocessed by the AN method
is used for subsequent modeling analysis.
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Figure 1. Original spectral response of (a) Asphalt, (b) Gravel, and (c) Bare Soil, and pretreated spectral
response of (d) Asphalt, (e) Gravel, (f) Bare Soil with the AN method.

3.2. Parameter Optimization

To verify the effectiveness of the proposed WSSKCRT and WSSDKCRT methods
for land cover classification, the classification performance is compared with that of the
KCRT, DKCRT, KCRT-CK, and JDKCRT methods. In addition, to ensure the fairness
of the experiment, the classification performance of all methods is compared under the
corresponding optimal parameters.

There are three main parameters (i.e., λ, β, and spatial filtering window size T) that
produce a significant impact on the classification performance of the above-mentioned
methods, in which λ is a main parameter for KCRT, λ and β are main parameters for
DKCRT, λ and T are main parameters for KCRT-CK and WSSKCRT, λ, β and T are main
parameters for JDCRT and WSSDKCRT, and these parameters need to be optimized, re-
spectively. In this paper, the corresponding parameters of each method are optimized
using 540 labeled training samples randomly selected in the hyperspectral scene and a
five-fold cross-validation strategy. During the optimization process, λ and β are chosen
from the given intervals {10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1}, and window size T
is chosen from the given intervals {3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11}. The classification
performance for each method under different parameters is shown in Figure 2. For JDCRT
and WSSDKCRT, there are three parameters (i.e., λ, β and T) to be optimized at the same
time, thus using the surface of different colors to represent the corresponding window size
T, as shown in Figure 2c,e. In addition, an asterisk (*) is used to represent the position
of the optimal parameters for each method in the three-dimensional graph. The optimal
parameter settings for each method are shown in Table 2.
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Figure 2. Classification performance for (a) DKCRT, (b) KCRT, (c) JDKCRT, (d)KCRT-CK, (e) WSSD-
KCRT, and (f) WSSKCRT under different parameters.

Table 2. Optimal parameter settings for each method.

Parameters
Methods

DKCRT KCRT JDKCRT KCRT-CK WSSDKCRT WSSKCRT

λ 10−1 10−1 10−3 10−2 10−3 10−2

β 10−3 No application 10−4 No application 10−4 No application

T No application No application 5 × 5 5 × 5 7 × 7 9 × 9

3.3. Land Cover Classification

The above-mentioned methods classify the land cover types in the acquired hyper-
spectral scene under the corresponding optimal parameters. Additionally, individual class
accuracy, overall accuracy (OA), average accuracy (AA), and kappa statistic (Kappa) are
employed to evaluate the classification performance of each method. To avoid random
error and any bias, each method is conducted repeatedly for 10 runs. Additionally, in
each run, 60 pixels per class are randomly selected as training samples and the remaining
pixels are taken as test samples. The average value of the results of these 10 runs is taken
as the final classification accuracy. The classification results of land cover types by each
method are shown in Table 3 and Figure 3. The best classification results are presented in
highlighting font in Table 3.



Land 2022, 11, 263 9 of 12

Table 3. Classification accuracy for land cover types.

Class DKCRT KCRT JDKCRT KCRT-CK WSSDKCRT WSSKCRT

Asphalt 74.47 71.71 92.34 92.22 91.54 91.56

Meadows 81.45 80.59 95.41 95.22 96.70 97.51

Gravel 85.85 77.78 94.77 90.32 95.70 91.48

Trees 94.00 94.41 96.32 96.43 96.81 96.66

Painted metal sheets 99.57 99.44 99.98 100.00 99.70 99.65

Bare Soil 80.56 78.03 94.01 94.07 96.27 97.13

Bitumen 92.61 90.86 98.38 96.83 99.35 97.50

Self-Blocking Bricks 61.65 77.03 69.80 88.21 73.34 90.92

Shadows 97.42 97.96 99.53 99.71 98.65 97.68

OA (%) 80.89 80.70 92.92 94.16 94.02 95.69

AA (%) 85.29 85.31 93.39 94.78 94.23 95.56

Kappa 0.7535 0.7512 0.9064 0.9228 0.9208 0.9429
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It can be seen from Table 3 that the proposed WSSKCRT method achieves the best
classification performance, in which OA, AA, and Kappa for land cover classification is
95.69%, 95.56%, and 0.9429, respectively. Additionally, there is the least classification noise
in the classification map obtained by WSSKCRT as shown in Figure 3h. Moreover, the
classification performance of WSSKCRT and WSSDKCRT is better than that of KCRT-CK
and JDKCRT, respectively, which indicates that the proposed weighted spatial filtering
operation can effectively alleviate the spectral shift caused by adjacency effect when mining
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the spatial-spectral features of hyperspectral images. Compared with other methods,
DKCRT and KCRT possess the worst classification performance, due to not considering
the spatial features of hyperspectral images, and there is more classification noise in the
classification maps obtained by DKCRT and KCRT as shown in Figure 3c,d. In addition,
all methods utilize only 540 labeled training samples (60 training samples per class) to
establish the land cover classification models and classify the remaining 42,236 ground
object samples. In this case, the proposed WSSKCRT and WSSDKCRT methods achieve
the promising classification performance with the OA over 94%, which indicates that the
proposed methods can effectively classify land cover types under the situation of small-size
labeled samples.

4. Conclusions

In this paper, land cover types are classified by using hyperspectral images and the
kernel collaborative representation method. The conclusions of this paper are summarized
as follows:

(1) The proposed WSSKCRT method achieves the best classification result, in which OA,
AA, and Kappa is 95.69%, 95.56%, and 0.9429, respectively.

(2) WSSKCRT and WSSDKCRT outperform KCRT-CK and JDKCRT, respectively, which
indicates that the proposed weighted spatial filtering operation can effectively alle-
viate the spectral shift caused by adjacency effect when mining the spatial-spectral
features of hyperspectral images.

(3) WSSKCRT and WSSDKCRT methods obtain the OA over 94% with only 540 labeled
training samples, which indicates that the proposed methods can effectively classify
land cover types under the situation of small-size labeled samples.

The experimental results show that the proposed WSSKCRT and WSSDKCRT methods
can effectively alleviate the spectral shift caused by adjacency effect, and can effectively
classify land cover types under the situation of small-size labeled samples. However, like
the traditional collaborative representation methods, the WSSKCRT and WSSDKCRT meth-
ods utilize the labeled training samples of all classes to construct a dictionary to represent
and classify each test sample, which may degrade the classification performance of collabo-
rative representation models to some extent, due to the irrelevant classes to test samples.
In the follow-up research, we will focus on exploring the appropriate nearest neighbor
collaborative representation mechanism, that is, using the classes nearest to each test sam-
ple to represent and classify a corresponding test sample, so as to eliminate irrelevant
classes and further improve the classification performance of collaborative representation
models. In addition, the proposed methods achieve effective classification of land types
in a hyperspectral scene, with the same spatial resolution and a relatively small size. The
classification performance of the proposed methods for hyperspectral scenes with different
spatial resolution and larger region needs to be further analyzed and studied.
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