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Abstract: In 2019, South Korea’s Framework Act on The Management of Disasters and Safety was 

revised to include respirable particulate matter as a social disaster. Urban air pollution, especially 

particulate matter pollution, has been a serious threat to socioeconomic development and public 

health. In order to address this problem, strong climate crisis response strategies and policies to 

improve urban air quality are necessary. Therefore, it is of great importance to assess the frequency 

of urban air pollution occurrence and its influencing factors. The objective of this study is to develop 

consistent methodologies for the construction of an index system and for assessing the influencing 

factors of urban particulate matter pollution based on population, social welfare, land use, environ-

mental, transportation, and economic governance considerations. We applied the local indicators of 

spatial association and geographical detector methods, and 35 influencing factors were selected to 

assess their influence on urban air pollution occurrence in 229 cities and counties in South Korea. 

The results indicated the spatial pattern of the particulate matter concentration in these locations 

showed strong spatial correlation, and it was confirmed that there was a difference in distribution 

according to the season. As a result of the analysis of influencing factors, it was found that environ-

ment and land use characteristics were the main influencing factors for PM10 and PM2.5. The explan-

atory power between the two influencing factors of particulate matter was greater than that of a 

single influencing factor. In addition, most influencing factors resulted in both positive and negative 

effects on urban fine particulate matter pollution. The interaction relationship of all factors showed 

a strong action effect in the case of both PM10 and PM2.5, so it was confirmed that all influencing 

factors were interdependent. In particular, the findings proved that combining the two factors 

would have a more pronounced effect on particulate matter than when they were independent. We 

confirmed the significant results for the factors affecting particulate matter. This study offers sug-

gestions on reducing urban air pollution occurrence that can be used to provide a basis and refer-

ence for the government to form policies on urban air pollution control in cities and counties. 

Keywords: coarse particulate matter (PM10); fine particulate matter (PM2.5); spatial analysis;  

geographical detector; climate change; urban planning 

 

1. Introduction 

Particulate matter is an air pollutant that is very harmful to humans and has been 

designated as a class 1 carcinogen by the International Institute for Cancer Research under 

the World Health Organization (WHO). The problem of inhalable particulate matter has 

increased sharply over the last decade; it has become an issue for all seasons and is no 

longer purely a simple environmental issue but also a policy matter that should be re-

solved by governments. 

The South Korean government revised the Basic Act on Disaster and Safety Manage-

ment in March 2019 and began to define particulate matter as a social problem. Since Feb-

ruary 2019, emergency reduction measures to deal with high concentrations of particulate 

matter have been officially implemented under the Special Act on Particulate matter 
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Reduction and Management [1], while the Comprehensive Countermeasures for Particu-

late matter Management are currently being developed and promoted. From a macro per-

spective, this policy response aims to reduce the annual average concentration of particu-

late matter based on a nationwide target. Since it has been suggested that a limitation of 

this relatively uniform policy is that it is unable to take into account regional characteris-

tics, it can be said that spatial characteristics should be discussed. 

In addition, the focus is on managing emission sources through the regulation of au-

tomobile exhaust gases and the Indoor Air Quality Control Act. However, the concentra-

tion of particulate matter in the atmosphere is affected by a number of characteristics, such 

as weather, land use, and topography, in addition to pollutant [2–4], and its distribution 

depends on several other factors. Since it is difficult to achieve the particulate matter con-

centration target only by reducing emissions within the scope of existing policies, the leg-

islation suggests that factors such as land use, urban environment, and human activities 

should be considered [5]. In addition, it is not always possible to conclude that all influ-

encing factors act independently, but they are inevitably interdependent; therefore, it is 

necessary to consider the effects that they can cause when they interact. 

This study analyzes the spatial and temporal distribution characteristics of particu-

late matter in Korea and captures them by region and season. Secondly, the factors influ-

encing the dust are derived, the interactions between the factors are considered, and the 

differences in the degree of influence are compared and analyzed. Finally, the results of 

the study are synthesized and policy implications for dust reduction are proposed. 

2. Literature Review 

2.1. Main Causes of Respirable Particulate Matter 

Air pollution and climate change are already critical environmental issues world-

wide. The WHO has used satellite and atmospheric transport models to observe atmos-

pheric conditions in more than 100 countries and more than 3000 urban and rural areas 

around the world [6]. It has been estimated that the number of deaths due to air pollution 

has reached 4.2 million per year, based on 2016 data, and among the air pollutants, par-

ticulate matter has been reported to have a significant effect on the human body [7]. Par-

ticulate matter consists of solid and liquid particles suspended in the atmosphere and is 

mainly classified by particle size. It is divided into coarse particles of 2.5 μm or more gen-

erated by mechanical processes on the surface of the earth (PM10) and fine particles of 2.5 

μm or less generated by physical and chemical processes such as condensation or agglom-

eration (PM2.5) [8]. There, it has been judged necessary to look at the two pollutants (PM10 

and PM2.5) separately because their physical properties and chemical composition differ 

depending on their origin. 

Some studies have mentioned particulate matter generated in cities, and research has 

pointed out that weather and topographical conditions and emission sources are the main 

causes of it [2–4,9]. The interesting points are also meaningfully related to natural factors 

such as topography and meteorological conditions, which can have a large impact on the 

process of diffusion and removal of atmospheric pollutants, and thus may be related to 

the causes of differences in the distribution of particulate matter in different seasons or 

regions [10,11]. Due to southeastern winds and high rainfall in August in South Korea, 

atmospheric pollutants are washed away, and their concentration is lower than in winter, 

but in winter the northwesterly winds blow from China and Russia due to the influence 

of high pressure over Siberia. Thus, based on this meteorological characteristic, it is pos-

sible to speculate on the reasons for the differences in temporal and spatial distribution 

depending on the wind direction [12]. 

Although the causes of particulate matter have been debated, there is still no clear 

consensus on the urban characteristics or distribution dispersion pathways [13]. If the 

problem of particulate matter can be resolved by one-sided emission sources alone, it 

should not be difficult to find a corresponding solution. It cannot be concluded that 
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particulate matter is influenced only by directly occurring sources. Therefore, it is neces-

sary to consider the factors that may influence particulate matter from the perspective of 

urban planning. For example, while it may be influenced by overall factors that come into 

focus at the national level, it may also be influenced not only by a variety of factors related 

to by regional characteristics but also by indirect policy decisions and socioeconomic fac-

tors that may become relevant to the distribution of particulate matter. 

2.2. Influencing Factors of Particulate Matter Distribution 

To analyze the factors influencing the distribution of particulate matter, it is essential 

to review the previous studies on the subject. It has been shown that it is necessary to look 

at the urban planning perspective, so this study considers factors related to (1) demo-

graphic characteristics, (2) human social activity, (3) economic governance, (4) land use, 

(5) the environment, and (6) transportation. 

In attempts to illustrate demographic characteristics, methods such as evaluation of 

city size or population structure have mainly been used. With demographic changes, hu-

man activities such as increased energy consumption and the rising number of private 

cars are necessary stages that lead to the deterioration of air quality in the short term [14–

16]. Thus, there is continuing discussion about urbanization, industrialization, and high 

population density being the main causes of deteriorating air quality [17–19]. It is neces-

sary to analyze the significance of demographic structure on social issues, mainly by stud-

ying population numbers and dependency payments, and to confirm that these indicators 

also have an impact on environmental issues [20]. 

In discussing the relationship between urban characteristics and micro-dust, most 

studies observing social welfare characteristics have aimed to measure the welfare of hu-

mans within cities. Regarding social welfare characteristics, variables such as number of 

hospital beds, number of doctors, and ratio of health and social welfare enterprises have 

been utilized [21]. This is related to the adaptive capacity of cities. Previous studies have 

discussed the relationship between adaptive capacity and the reduction of dust in a way 

that implies that the degree of adaptive capacity affects the distribution of dust. For the 

same reason, a study of economic governance–related considerations consisting of factors 

that can account for the adaptive capacity of the economy and the size of the city economy 

was conducted. For this, the rate of change of GDP (Gross Domestic Product), GDP per 

capita, industrial structure, and business structure were considered [22,23]. 

To examine air pollution’s relationship with land use, many studies have analyzed 

the effects of urban landscape structure and urban morphology on air pollution, confirm-

ing the existence of meaningful relationships [24–26]. At the microscopic level, the most 

representative factors are the type and intensity of land use, which directly affect the emis-

sion of air pollutants. At the macroscopic level, the most representative factor is the urban 

spatial structure, which also affects the spatial distribution and occurrence of pollutants. 

[25]. As variables to analyze the effect of land use on particulate matter, the most repre-

sentative ones are the ratio of green space and commercial, industrial, residential, and 

river areas. Using variables that can account for the degree of mixing and diversity level 

of land use, the compact spatial structure of population growth rate compared with the 

rate of increase of municipalized area has been calculated as a variable [27–29]. 

Compared with other influencing factors, environment characteristics can be more 

intuitively appreciated and therefore considered as variables that directly affect the occur-

rence of particulate matter. It has been reported that industrial emissions from human 

activities and dust from construction have already had a direct impact on air quality [30]. 

The analysis of air pollutant emissions from urban activities and production activities 

from point, surface, and mobile sources can be done visually, such as from industrial ac-

tivities and waste emissions. In South Korea, quantitative emissions statistics from various 

sectors are currently provided by the Atmospheric Policy Support System (CAPSS) of the 

Ministry of Environment. Furthermore, as studies proposing the problem of micro-dust 

generation due to incineration are gradually being discussed, open burning performed in 
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agricultural activities or the incineration ratio among domestic waste disposal methods, 

for example, can be used as variables [31]. 

Analyzing the relationship between particulate matter and automobile traffic, which 

is often named as a source of pollution in existing studies, is an essential process. The 

number of vehicle registrations, road area ratio, and total annual vehicle distance traveled 

are generally considered [32–35]. The study by Song and Nam (2009) concluded that the 

higher the proximity ratio between workplace and residence, calculated in terms of inter-

nal traffic volume compared with total traffic volume, the lower the traffic energy con-

sumption; therefore, the direct residence proximity fee was used as a variable of the rele-

vant factor [27]. 

From previous studies, it is possible to understand that particulate matter is influ-

enced by a variety of factors in cities. Most of the research has discussed the degree of 

influence when capturing the relationship between dust and the influencing factors so 

that not only positive or negative influence but the strength of the influence can be iden-

tified. The factors identified from prior research are not independent effects, but rather 

the characteristics of a city that cannot but coexist. This implies that when the factors are 

combined, they have other influences on micro-dust. Therefore, it is necessary to analyze 

what kind of positive and negative effects occur when factors interact with each other, 

rather than consider independent effects. 

2.3. Summary 

This study seeks to identify if there are differences in the spatial and temporal distri-

bution patterns of particulate matter and outline the factors that affect the particulate mat-

ter concentration and the interactions between them. The previous study confirmed the 

existence of spatial and temporal distribution differences due to various factors. The me-

teorological characteristics of Korea imply that there are differences in concentrations be-

tween seasons, and it is assumed that the areas with high concentrations are located in the 

capital region due to a combination of influencing factors. In addition, to identify specific 

factors influencing the distribution of particulate matter, this study focuses on the charac-

teristics of population, social welfare, land use, environment, transportation, and eco-

nomic governance based on the basic correlations proposed by many studies. In addition, 

a hypothesis is proposed that the relationships are different when they are independent 

and when they interact with each other. In this study, the following research questions 

and hypotheses have formulated based on previous studies and theoretical investigations: 

Q1. Is there a difference in the temporal and spatial distribution pattern of particulate matter? 

H1. There will be spatial differences between seasons and regions. 

Q2. What specific factors affect the distribution of particulate matter, and is there an interaction 

relationship between the factors? 

H2-1. Specific factors affecting the distribution of particulate matter are related to characteristics 

of population, social welfare, land use, environment, transportation, and economic governance. 

H2-2. Because the factors have an interdependent relationship, the effect will be greater when they 

interact than when they are independent. 

In this study, the influencing factors of particulate matter have been considered based 

on six characteristics—demographics, social welfare, land use, the environment, transpor-

tation, and economic management—using the Geodetector analysis method. The im-

portance of each influencing factor on dust has been calculated, and the degree of influ-

ence observed, to confirm whether the relevant factors are positive or negative for partic-

ulate matter. Finally, the differences in the degree of influence on dust when the 
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influencing factors are independent and when they interact with each other have been 

compared and analyzed, and policy implications have been drawn as the final goal of this 

study. 

3. Materials and Methods 

3.1. Research Implementation Process 

In this study, the temporal and spatial distribution characteristics of particulate mat-

ter and the influencing factors were analyzed in cities, counties, and districts across South 

Korea. The research flowchart of this study is shown in Figure 1. First, the indicators re-

quired for the analysis were selected, and the spatial clustering pattern of dust distribution 

by season was captured by using the Local Indicators of Spatial Association (LISA) anal-

ysis of the GeoDa program. Finally, the q statistics were calculated by implementing the 

Geodetector analysis. This is used to derive the factors influencing the dust and to grasp 

the interactions between the factors. 

 

Figure 1. Study flowchart. 

3.2. Study Area and Materials 

The units of analysis for this study were set as administrative area cities, counties, 

and districts, and a total of 229 cities, counties, and districts, including 226 basic self-gov-

erning bodies, Sejong Special Self-Governing City, and Jeju City and Seogwipo City in Jeju 

Special Self-Governing Province, were used with the base year set at 2019. This study 

mainly used the 2019 data, but the Job-housing balance ratio and GRDP data of 2019 were 

not updated and difficult to obtain, so the data of Job-housing balance ratio and GRDP 

(Gross Regional Domestic Product) was used for 2016 and 2017, respectively. 

According to the purpose of this study, the dependent variables used for the annual 

average and seasonal average concentrations of PM2.5 and PM10 for 2019 were taken by the 

Ministry of Environment and AirKorea. The information collected for this period was site-

specific concentration information based on points, so it was difficult to appreciate the 

current status of unmeasured areas. In addition, since the location and number of 
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measurement stations were not categorized by area, it was difficult to select specific con-

centration information that would be representative of a local self-governing group. 

Therefore, the information collected was spatial data centered on having location infor-

mation, and therefore a spatial interpolation method of ArcGIS was used to supplement 

the concentration values with a spatial resolution of 1 km × 1 km [36,37]. 

Based on the research hypotheses, the factors influencing the dependent variables 

were selected based on prior studies and constituted the indicators for analysis. In general, 

the analysis was divided into six sectors, namely demographic, social welfare, land use, 

environmental, transportation, and economic governance characteristics, and detailed in-

dicators were selected (Table 1). For the environmental budget indicators in the economic 

governance characteristic, only the information on the atmosphere, environmental pro-

tection, and nature budget, which are considered to be related to dust, were extracted and 

used. 

Table 1. Variables. 

Large Category Detail Variable Reference 

Dependent Variable 
PM10 seasonal, annual average concentration Air Korea 

PM2.5 seasonal, annual average concentration Air Korea 

Population 

(6) 

Population density Statistics Korea 

Dependency ratio Statistics Korea 

Medical expenses for patients with malignant neoplasms 

of the bronchi and lung 
Statistics Korea 

Primary industry worker ratio Statistics Korea 

Secondary industry worker ratio Statistics Korea 

Tertiary industry worker ratio Statistics Korea 

Social and Welfare 

(4) 

Percentage of health and social service businesses Statistics Korea 

Number of hospital beds per thousand population Statistics Korea 

Number of hospital doctors per thousand population Statistics Korea 

Percentage of the population within the living area park 

area 

National Geographic Information In-

stitute 

Land Use 

(8) 

Land use compression 
National Geographic Information In-

stitute 

Land use complexity 
National Geographic Information In-

stitute 

Compact space structure * Statistics Korea 

Green ratio Ministry of Environment 

River ratio 
National Geographic Information In-

stitute 

Commercial area ratio Statistics Korea 

Industrial area ratio Statistics Korea 

Residential area ratio Statistics Korea 

Environment 

(7) 

Incineration rate of domestic waste treatment methods Ministry of Environment 

Number of workplaces that emit air pollutants * Ministry of the Interior and Safety 

Emissions from agricultural activities CAPSS 

Emissions from industrial activities CAPSS 

Emissions from waste CAPSS 

Emissions from vehicles CAPSS 

NDVI (Normalized Difference Vegetation Index) Landsat8 

Transportation 

(5) 

Number of vehicle registrations Statistics Korea 

Road ratio Statistics Korea 
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Job-housing balance ratio * Korea Transport Database 

Pedestrian road ratio Statistics Korea 

Total vehicle mileage per year Statistics Korea 

Economic Govern-

ance 

(5) 

Environmental budget per capita * Ministry of the Interior and Safety 

Ratio of social welfare budget in general account Statistics Korea 

GRDP Statistics Korea 

Financial independence of local government Statistics Korea 

Number of businesses Statistics Korea 

Note: * Author’s edit. 

3.3. Methods 

3.3.1. LISA Analysis 

Particulate matter is a substance in the air and cannot exist in complete isolation; 

therefore, it can only have the characteristic of interdependence. The closer the distance, 

the higher the correlation. This is called spatial autocorrelation, and it can be analyzed 

from both global and local perspectives. 

Global spatial autocorrelation refers to the presence of a specific pattern between a 

variable and a location, or the presence of a high value for a particular variable at that 

location, while the surrounding values also show high values. It refers to the similarity 

between these locations and variables. Moran’s I coefficient, which usually confirms this, 

has a positive spatial autocorrelation range of +1 and a negative spatial autocorrelation of 

−1. It has been seen to show a positive spatial autocorrelation with similar values [21]. It 

is closer to −1 because the adjacent regions are different, and it appears closer to 0 because 

autocorrelation is not present. 

However, because Moran’s I index displays relationships across study sites as a sin-

gle value, it cannot explain the local structure of spatial relationships for each target area 

analyzed when the target area is large [37]. Local spatial autocorrelation can be confirmed 

by LISA analysis, a technique used to explore spatial clustering patterns based on the nu-

merical similarity of attributed values between adjacent regions [38]. Four clusters have 

been derived. High–High (HH) and Low–Low (LL) indicate correlation between adjacent 

regions, while Low–High (LH) and High–Low (HL) indicate dissimilarity between adja-

cent regions. HH clusters are those where the corresponding region has high values and 

the surrounding region shows a tendency to be high; LL clusters are those where the sur-

rounding region has low values and the corresponding region has low values. LH clusters 

are those where the corresponding region has low values and the surrounding area shows 

a high trend. At this point, it can be confirmed that HH and LL clusters each have positive 

spatial correlation and LH and HL clusters each have negative correlation, so they can be 

seen as spatially isolated regions [39]. 

Therefore, this approach is a suitable tool for identifying specific regions of location-

based data and analyzing spatial distribution patterns. In this study, to analyze the spatial 

magnetic correlation of the dust distribution, LISA analysis was performed using GeoDa 

spatial analysis software 1.20. 

3.3.2. Geodetector 

Particulate matter is a spatially distributed pollutant, so for the study of its spatial 

and temporal distribution characteristics and influencing factors, econometric and spatial 

econometric models are mainly used. Spatial autocorrelation has been mentioned previ-

ously, and the models reflecting this situation include the spatial lag model (SLM), spatial 

error model (SEM), and general spatial autocorrelation model (GSAM), which are all spa-

tial analysis methods. However, in order to use spatial data, both spatial magnetic corre-

lation and spatial stratified heterogeneity should be considered [40]. Spatial heteroskedas-

ticity is a characteristic of spatial data and can be explained by the uneven distribution of 

relationships between characteristics, events, and regions [41,42]. The q statistic of the 
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Geodetector model, which reflects this situation, has been used in many recent studies. In 

addition, the existing traditional methods have some shortcomings in terms of quantify-

ing the interaction of influencing factors. The interaction of two factors can actually be 

combined in many forms, but in traditional regression methods, it is generally expressed 

as the product of two factors, although this does not have sufficient ability to account for 

spatially stratified heterogeneity [43]. Therefore, unlike prior studies that have used mul-

tiple linear methods, this study has concluded that the Geodetector model, which reflects 

the characteristics of spatial data, would be more appropriate, along with the nonlinear 

model. 

The Geodetector method has several advantages compared with other models. First, 

it can consider the space [40]. Second, the relationship between the dependent and inde-

pendent variables analyzed using the Geodetector method has the advantage of being 

more reliable than classical regression models [44]. Third, the problem of multicollinearity 

is excluded because no linearity assumption is made on the factors [45]. Fourth, the prior-

ity order of the influencing factors can be derived, and the change of the degree of influ-

ence over time can be analyzed [46]. With these advantages, the Geodetector method has 

been applied to many fields, including natural sciences and social sciences, and can be 

fully applied to the environmental field. 

The Geodetector method is a statistical method that conducts analyses based on the 

hypothesis of similarity in the spatial distribution of dependent and independent varia-

bles when the independent variable has a significant influence on the dependent variable. 

In other words, if a particulate matter’s high concentration based on a certain characteris-

tic is induced in a city, this concentration will show spatial distribution similar to that 

characteristic, which can indicate the existence of a causal factor. In addition, if the present 

model is used, the concept of spatial dispersion can be used to observe the interactions 

between independent variables. In the former case, after analyzing the influence of emis-

sion factors of various industries on urban PM2.5 pollution concentrations, buildings and 

traffic were identified as the main influencing factors [47]. In addition, the results of a 

latter study, which used this model to analyze the influencing factors of lead (Pb) in par-

ticulate matter in residential areas, showed that automobile exhaust, human daily life ac-

tivities, and industrial emissions interacted to produce the effects [48]. 

The main framework of the Geodetector model is to first divide the study site into 

the dependent variable Y-strata (Y layer) and the influencing factor (independent varia-

ble) X-strata (Figure 2) [44]. 

 

Figure 2. The principle of the geographical detector (Source:[44] Wang & Xu, 2017). 

Next, the q statistic is used to explain the degree of influence of the influencing factor 

X on the dependent variable Y. The q statistic takes values in the range (0,1), which can be 

interpreted in such a way that the higher the q statistic, the greater the influence of the 
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influencing factor X on the dependent variable Y. The formula for calculating the q-statis-

tic is as follows: 

� = 1 − 
∑ ����

��
���

���
= 1 − 

���

���
 (1)

��� =  � ����
�,

�

���

��� = ���. (2)

Using the ArcGIS program, the study area was transformed into a grid of 10 km × 10 

km (Figure 3). Since the independent variable used in this model is a type variable, it 

should be graded [40,44]. Therefore, for data pre-processing, all data were divided into 5 

classes using ArcGIS’s Natural Breaks classification method and applied to the grid (Ap-

pendix A). 

 
 

(a) Study area (b) Sampling point 

Figure 3. Grid transformation method; (a) study area, (b) sampling point. 

The analysis results of the Geodetector method are divided into factor detector, risk 

detector and interaction detector, and the principles and concepts are the same as those in 

Table 2 [40,44]. First, factor detector is used to verify the spatial dispersion of each influ-

encing factor, and the main factors are selected by prioritizing them according to the q 

statistic. Risk detector analyzes the direction of influence of each factor on the dust and 

indicates whether it is positive or negative. Interaction detector evaluates whether the 

combination of two influencing factors diminishes or intensifies the influence on the de-

pendent variable (Y), and whether the influence is independent. 
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Table 2. Conceptual framework of the geographical detector method. 

Detector Illustration 

Factor Detector 

Uses the q value to assess the impact of demographic, socioeconomic, environmental, and land use 

factors on the spatial pattern of particulate matter (PM10/PM2.5) emissions. High q value means the 

influencing factor has a stronger contribution to the occurrence of particulate matter emissions. 

Risk Detector 

Compares the differences in average particulate matter (PM10/PM2.5) emission rates between subre-

gions generated by demographic, socioeconomic, environmental, and land use factors. It uses T-

test to identify whether the average PM10/PM2.5 emission rates among different subregions are sig-

nificantly different. Greater differences mean greater impact to particulate matter (PM10/PM2.5) 

emissions within the subregion. 

Interaction Detec-

tor 

Uses the q value to compare the combined contribution of individual influencing factors to particu-

late matter (PM10/PM2.5) emissions. It assesses whether the two influencing factors weaken or en-

hance each another, or whether they independently influence the development of the particulate 

matter (PM10/PM2.5). 

Source: [40,44] Wang et al., 2016; Wang & Xu, 2017. 

4. Results 

4.1. LISA Results 

Exploratory spatial analysis was performed to understand the spatial association pat-

tern of particulate matter. Prior to the analysis, the spatial autocorrelation of the index was 

confirmed through Moran’s I test, and then LISA analysis was performed to confirm the 

spatial clustering pattern of the temporal and spatial distribution of particulate matter at 

the local level. 

According to a previous study confirming spatial autocorrelation, it was judged that 

there was spatial autocorrelation when Moran’s I coefficient was 0.267 [49]. Choi et al. 

(2018) judged that a coefficient value of 0.2857 showed a significant level of positive spa-

tial autocorrelation [21]. Yeom et al. (2020) confirmed exponential values of 0.398, 0.607, 

and 0.483 for the three indicators and found that they appeared to have high spatial auto-

correlation [38]. 

Figure 4 shows the results of the analysis of global spatial autocorrelation by annual 

mean concentration and season in this study. The average annual mean was 0.37 for both 

PM2.5 and PM10, showing a significant level of positive spatial autocorrelation. In spring 

and winter, it was confirmed that both materials had a high spatial correlation by checking 

an index value of 0.4 or higher. In the case of autumn, a positive spatial autocorrelation of 

0.27 was also confirmed. However, in the case of summer, the index values of PM2.5 and 

PM10 were 0.080 and 0.044, respectively, and the spatial autocorrelation was found to be 

rather weak. Through this, the spatial distribution of PM10 and PM2.5 across Korea was 

positive and confirmed to have spatial autocorrelation. 

Through the global spatial autocorrelation analysis, the correlation in the distribution 

of particulate matter throughout Korea was confirmed. Furthermore, using the local Mo-

ran’s I and LISA analysis, local correlation was identified, as shown in Figure 5. As a result 

of the analysis, it was confirmed that this correlation had interdependent characteristics 

and influence with neighboring regions. In addition, it was found that the distribution of 

PM2.5 and PM10 was spatially different according to the season. It was confirmed that HH-

type hot spot clusters appeared in the metropolitan area. Therefore, the hypothesis of 

question 1 of this study was satisfied. 

In all seasons, except summer, and average annual results, a cluster type with a gen-

erally similar shape was found between PM2.5 and PM10. HH type (hotspot cluster) was 

found in some areas of Chungcheongnam-do and North Korea centering on the metro-

politan area. The LL type (cold spot cluster) was identified in the southern and eastern 

regions of the Korean Peninsula. In the former case, it was because the road transportation 

infrastructure is relatively well developed around Seoul. It is considered to be an area 
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with high development density due to high population density and land use compression. 

In addition, South Korea has the characteristic of land development in that urbanization 

centered on the metropolitan area has been actively carried out. This is believed to be due 

to the relatively insufficient green area. In the latter case, there is a region in the southeast 

that has achieved economic growth mainly in secondary industries. Compared with the 

metropolitan area, the population density and land use compression are relatively low, so 

the development density is low. In addition, there are many cities centered on primary 

industries, and these are judged to have excellent environment characteristics. 

(a) PM2.5_Year (b) PM2.5_Spring (c) PM2.5_Summer (d) PM2.5_Autumn (e) PM2.5_Winter 

     
(f) PM10_Year (g) PM10_Spring (h) PM10_Summer (i) PM10_Autumn (j) PM10_Winter 

     

Figure 4. Moran’s I analysis results. 

(a) PM2.5_Year (b) PM2.5_Spring (c) PM2.5_Summer (d) PM2.5_Autumn (e) PM2.5_Winter 

     

(f) PM10_Year (g) PM10_Spring (h) PM10_Summer (i) PM10_Autumn (j) PM10_Winter 

     

Figure 5. LISA analysis results. 
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4.2. Geodetector Results 

4.2.1. Factor Detector 

Factor detector can measure not only the spatial heteroskedasticity of the dependent 

variable Y but also the degree of influence of the influencing factor X on the dependent 

variable Y through the q statistic. Factor detector results for the average annual concentra-

tions of PM10 and PM2.5 are presented in Table 3, and only factors within the significance 

level of 0.1 have been extracted and are shown in Figure 6. In order to better compare the 

degree of influence of the influencing factors on PM10 and PM2.5, the priorities of the influ-

encing factors were sorted according to the value of the q statistic. The range of the q sta-

tistic for each factor was 0.038 to 0.208 for PM2.5 and 0.077 to 0.376 for PM10. Overall, the 

degree of influence on PM10 was confirmed to be greater than that of PM2.5. In addition, 

the number of workplaces emitting air pollutants (XE2) and waste emission (XE5) and 

green area (XL4) were found to have the greatest impact for both pollutants. The emission 

source that contributed the most to the concentration of particulate matter was workplace 

emission facilities, which is consistent with previous research, namely that it amounts to 

about 38% [50]. The effect of green spaces on the reduction of particulate matter was 

judged to be clear, as has been revealed in several studies [51–53]. From the results of this 

study, we can conclude the degree of influence of the function of green areas to be very 

large. 

Agricultural activity emission (XE3) and incineration rate among domestic waste 

treatment methods (XE1) ranked next in PM2.5. Biological combustion such as incineration 

can be interpreted to be the cause of high local concentration of PM2.5. This is considered 

consistent with the results of previous studies that have reported it to be one of the factors 

influencing the occurrence of PM2.5 and shown a rather low ranking for PM10 [31]. On the 

other hand, in PM10, total mileage per year (XT5) ranked second, but this factor ranked 

slightly lower in PM2.5. These results suggest that there is a difference in the factors affect-

ing PM10 and PM2.5. Combining the analysis results, it was confirmed that the environ-

mental (XE), land use (XL), and transportation (XT) characteristics were large through the 

priority results of factors affecting the distribution of particulate matter. 

Table 3. The results of factor detection for the influencing factors of urban PM10 and PM2.5 in 2019. 

Large Cate-

gory 
Factor 

PM10 PM2.5 

q Rank q Rank 

Population 

XP1 Population density 0.2183 ***  9 0.0950 **  12 

XP2 Dependency ratio 0.1695 *** 15 0.0724  19 

XP3 
Medical expenses for patients with malig-

nant neoplasms of the bronchi and lung 
0.1031 ***  26 0.0402  30 

XP4 Primary industry worker ratio 0.0835 ***  29 0.0379 ***  31 

XP5 Secondary industry worker ratio 0.0772 *** 30 0.0280  33 

XP6 Tertiary industry worker ratio 0.1728 ***  14 0.0917 ***  13 

Social and 

Welfare 

XS1 
Percentage of health and social service busi-

nesses 
0.1100 *** 24 0.0569 ***  27 

XS2 
Number of hospital beds per thousand pop-

ulation 
0.1094 *** 25 0.1026 ***  10 

XS3 
Number of hospital doctors per thousand 

population 
0.0119  35 0.0063  35 

XS4 
Percentage of the population within the liv-

ing area park area 
0.1265 *** 22 0.0592 ***  25 

Land Use XL1 Land use compression  0.1416  19 0.0525  28 
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XL2 Land use complexity 0.2242 ***  7 0.1082 *  8 

XL3 Compact space structure* 0.0680  32 0.0832  18 

XL4 Green ratio 0.2905 *** 3 0.1710 ***  4 

XL5 River ratio 0.0383  33 0.0106  34 

XL6 Commercial area ratio 0.0253  34 0.0322  32 

XL7 Industrial area ratio 0.1150 23 0.0866 * 14 

XL8 Residential area ratio 0.0682  31 0.0603 **  24 

Environment 

XE1 
Incineration rate of domestic waste treat-

ment methods 
0.1436 ***  18 0.1082 ***  7 

XE2 
Number of workplaces that emit air pollu-

tants* 
0.3759 *** 1 0.2076 ***  2 

XE3 Emissions from agricultural activities 0.1317 *** 20 0.1612 ***  5 

XE4 Emissions from industrial activities 0.2355  4 0.1727  3 

XE5 Emissions from waste 0.3428 ***  2 0.2083 ***  1 

XE6 Emissions from vehicles 0.1993  11 0.1237  6 

XE7 NDVI 0.0856  28 0.0686  21 

Transportation 

XT1 Number of vehicle registrations 0.2199 ***  8 0.0854 **  16 

XT2 Road ratio 0.1920  12 0.0721  20 

XT3 Job-housing balance ratio * 0.1269  21 0.0493  29 

XT4 Pedestrian road ratio 0.1517 *** 17 0.0683 ***  22 

XT5 Total vehicle mileage per year 0.2314*** 5 0.0863 **  15 

Economic 

Governance 

XG

1 
Environmental budget per capita* 0.0917 ***  27 0.0591 ***  26 

XG

2 

Ratio of social welfare budget in general ac-

count 
0.1829 ***  13 0.0980 ***  11 

XG

3 
GRDP 0.2181 ***  10 0.0844  17 

XG

4 

Financial independence of local govern-

ment 
0.1627 ***  16 0.0680  23 

XG

5 
Number of businesses 0.2250 ***  6 0.1029 **  9 

Note: Significance levels: *~p < 0.1, **~p < 0.05, ***~p < 0.01. 
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(a) PM2.5 (b) PM10 

Figure 6. q statistics for factor detector. 

4.2.2. Risk Detector 

Risk detector can use the T statistic to determine the direction of the influencing fac-

tor. The relationship between particulate matter and influencing factors is shown in five 

linear and non-linear relationships (Table 4). Positive (+) and negative (−) mean that the 

higher the natural break grade of the influencing factors, the linear relationship increases 

and decreases, respectively. (±) indicates a non-linear relationship. Negative/positive (−/+) 

means changing from decreasing to increasing, and positive/negative (+/−) means an in-

creasing and decreasing relationship. 

Looking at the results of the analysis, the effects of environmental factors on particu-

late matter are more complex than those of population, land u se, transportation, and eco-

nomic governance characteristics (Table 4, Appendix B). First, environmental characteris-

tics such as agricultural activity (XE3), industrial activity (XE4), waste (XE5), and automo-

bile (XE6) emissions show a distinct non-linear effect on particulate matter. The effect of 

the number of workplaces emitting air pollutants (XE2) on particulate matter tends to in-

crease according to grade (Appendix B). In this case, the closer to 1st grade, the smaller 

the number of workplaces. Second, the relationship between particulate matter and the 

number of influencing factors of population, land use, transportation, and economic gov-

ernance characteristics shows a gradually decreasing or increasing trend. 

Table 4. The results of risk detection for the influencing factors of urban PM10 and PM2.5 in 2019. 

Large Category Factor Relation 

Population 

XP1 Population density + 

XP2 Dependency ratio + 

XP3 
Medical expenses for patients with malignant neoplasms of the bronchi 

and lung 
− 

XP4 Primary industry worker ratio + 

XP5 Secondary industry worker ratio − 

XP6 Tertiary industry worker ratio −/+ 

Social and Wel-

fare 

XS1 Percentage of health and social service businesses +/− 

XS2 Number of hospital beds per thousand population +/− 

XS3 Number of hospital doctors per thousand population +/− 
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XS4 Percentage of the population within the living area park area + 

Land Use 

XL1 Land use compression  + 

XL2 Land use complexity + 

XL3 Compact space structure* −/+ 

XL4 Green ratio − 

XL5 River ratio ± 

XL6 Commercial area ratio −/+ 

XL7 Industrial area ratio + 

XL8 Residential area ratio ± 

Environment 

XE1 Incineration rate of domestic waste treatment methods ± 

XE2 Number of workplaces that emit air pollutants* + 

XE3 Emissions from agricultural activities ± 

XE4 Emissions from industrial activities ± 

XE5 Emissions from waste + 

XE6 Emissions from vehicles ± 

XE7 NDVI − 

Transportation 

XT1 Number of vehicle registrations ± 

XT2 Road ratio +/− 

XT3 Job−housing balance ratio* + 

XT4 Pedestrian road ratio − 

XT5 Total vehicle mileage per year ± 

Economic Gov-

ernance 

XG1 Environmental budget per capita* − 

XG2 Ratio of social welfare budget in general account +/− 

XG3 GRDP + 

XG4 Financial independence of local government + 

XG5 Number of businesses + 

Note: “+” positive effector; “−” negative effector; “±” the relationship between PM10 & PM2.5 and its 

influencing factors is complex; “−/+” the influencing factor on PM10 & PM2.5 changes from negative 

to positive; “+/−” the influencing factor on PM10 & PM2.5 changes from positive to negative. Source: 

[54] Zhou et al., 2021. 

4.2.3. Interaction Detector 

Interaction detector can verify the interaction between factors. In other words, it an-

alyzes whether the influence on the dependent variable Y increases or decreases when the 

two influencing factors act in combination. The evaluation method is as follows. The q 

statistic of each influencing factor is calculated, then the q statistic is calculated when the 

two influencing factors are combined, and the two results are compared and analyzed. 

The interaction relationship between the two factors is shown in Table 5, and the analysis 

results are shown in Appendixes C and D. All interaction relationships of the two factors 

showed a strong agonistic effect (enhance, bivariate and enhance, nonlinear) on both PM10 

and PM2.5. No weak action relationship was observed for any of the factors. 
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Table 5. Interaction relationships between two factors. 

Interaction Description 

Enhance if q (X1 ∩X2) > q (X1) or q (X2) 

Enhance, bivariate if q (X1 ∩ X2) > q (X1) and q (X2)  

Enhance, nonlinear if q (X1 ∩ X2) > q (X1) + q (X2)  

Weaken if q (X1 ∩ X2) < q (X1) + q (X2) 

Weaken, univariate if q (X1 ∩ X2) < q (X1) or q (X2) 

Weaken, nonlinear if q (X1 ∩ X2) < q (X1) and q (X2) 

Independent if q (X1 ∩ X2) = q (X1) + q (X2) 

Note: “∩“ denotes the intersection between X1 and X2. Source: [40,44] Wang et al., 2016; Wang et al., 

2017. 

The following looks at the interaction relationship analyzed for each characteristic: 

In terms of population characteristics (XP), when independent, the population den-

sity (XP1) was found to be 0.2183 and 0.0950 for PM10 and PM2.5, respectively, and the most 

influential factor among the characteristics. In the case of interaction, the strongest effect 

relationship (enhance, nonlinear) appeared with the ratio of workers in the secondary in-

dustry (XP5), with 0.4060 and 0.2910, respectively, in the same characteristic. In relation 

to other characteristics, when interacting with the number of workplaces emitting air pol-

lutants (XE2), a stronger effect relationship (enhance, bivariate) was shown, with 0.5419 

and 0.4417, respectively. 

For the social and welfare characteristics (XS), 0.1265 of the population ratio (XS4) in 

the living area park area was the largest q value for PM10. PM2.5 had the largest q value, as 

the number of beds per 1000 population (XS2) was 0.1026. As a result of the interaction 

analysis, the ratio of health and social welfare organizations (XS1) was found for both 

PM10 and PM2.5 with the same characteristics. In other characteristics, the number of work-

places emitting air pollutants (XE2) was found to have the strongest effect (enhance, non-

linear). 

In terms of land use characteristics (XL), it was confirmed that the green area ratios 

(XL4) of PM10 and PM2.5 were 0.3759 and 0.1710, respectively, which were the largest q 

values. In the case of interaction, for the same characteristic, the residential area ratios 

(XL8) were 0.4272 and 0.3121, respectively, indicating the strongest effect (enhance, non-

linear). In other characteristics, the number of workplaces emitting air pollutants (XE2) 

was found to have the strongest effect (enhance, bivariate). 

For the environmental characteristics (XE), the number of workplaces emitting air 

pollutants (XE2) was found to be the most influential factor, with 0.3759 for PM10 and 

0.2076 for PM2.5. In the case of interaction, agricultural activity emissions (XE3) were 0.7550 

and 0.2076, respectively, for the same characteristic, indicating the strongest interaction 

(enhance, nonlinear). In terms of the other characteristics, in the case of PM10, the ratio of 

health and social welfare organizations (XS1) was found to have the strongest effect (en-

hance, nonlinear). In the case of PM2.5, it was found that the number of doctors in medical 

institutions per 1000 population (XS3) had the strongest effect (enhance, nonlinear). 

In terms of the transportation characteristics (XT), PM10 and PM2.5 showed 0.2314 and 

0.8627 values, respectively, of annual vehicle total mileage (XT5) when independent, and 

it was found to be the most influential factor. In the case of interaction, it was found that 

the direct pole proximity ratio (XT3) had the strongest action relationship (enhance, biva-

riate) in the same characteristic. In the other characteristics, in the case of PM10, the number 

of workplaces emitting air pollutants (XE2) was 0.5243, indicating that this had the strong-

est effect (enhance, nonlinear). And in the case of PM2.5, agricultural activity emission 

(XE3) was 0.4414, which showed the strongest effect relationship (enhance, bivariate). 
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In the economic governance characteristics (XG), the total number of businesses 

(XG5) was analyzed to be the most influential factor, with 0.2250 for PM10 and 0.1023 for 

PM2.5. In the same characteristic, the per capita environmental budget (XG1) was 0.3889 

and 0.2884, respectively, indicating the strongest effect relationship (enhance, nonlinear). 

In the other characteristics, PM10 showed the strongest effect (enhance, bivariate) with the 

number of workplaces emitting air pollutants (XE2), with 0.5352. On the other hand, in 

the case of PM2.5, the agricultural activity emission (XE3) was 0.5352, confirming that it 

had the strongest effect (enhance, bivariate). 

It was confirmed that the factors affecting particulate matter had a greater effect 

when they interacted than when they were independent. Through this, it was confirmed 

that all influencing factors were interdependent, and this conclusion proved that Hypoth-

esis 2 of Question 2 of this study was satisfied. 

5. Conclusions 

This study used the concentration data of PM10 and PM2.5 in 2019 and classified them 

into six categories: characteristics of population, social welfare, land use, the environment, 

transportation, and economic governance. Detailed indicators that can be explained were 

selected. 

Looking at the spatial distribution of particulate matter, it was confirmed that both 

pollutants have a spatial correlation with the distribution of particulate matter throughout 

Korea. In particular, each has interdependent characteristics with neighboring regions. In 

particular, HH-type hotspot clusters were identified centered on the metropolitan area, 

proving Question 1 and Hypothesis 1. As a result of seasonal analysis, it was found to be 

high in spring, autumn, and winter and low in summer. 

The influencing factors of this study were confirmed to have a greater degree of in-

fluence on PM10 than on PM2.5 as a whole. The number of workplaces emitting air pollu-

tants (XE2) and waste (XE5) and amount of green area (XL4) were found to have the great-

est impact on both pollutants, suggesting that they are the major influencing factors. How-

ever, by confirming that there is a difference between the two pollutants in the ranking 

that appears next to the relevant factors, it is possible to show that the factors to be con-

sidered for each substance are somewhat different. In addition, the interaction relation-

ship of all factors showed a strong action effect on both pollutants, so it was confirmed 

that all influencing factors are interdependent. In particular, it was proven that the com-

binations of population and land use characteristics, population and environmental char-

acteristics, social welfare and environment characteristics, and land use and environment 

characteristics have a more pronounced effect on particulate matter than when independ-

ent. 

We would like to suggest some policy proposals to improve air pollution, as follows. 

First, through the results of the LISA analysis, it was confirmed that air pollution in one 

area is related not only to the influence within the area but also to the air quality of the 

surrounding area. Since it has been shown that there is a spatial diffusion effect on partic-

ulate matter pollution, it is necessary to strengthen cooperation between neighboring local 

governments. For example, the findings suggest that the standards for energy conserva-

tion and environmental protection among regions should be identical, and that coopera-

tion and enforcement systems for sharing air quality information between regions and 

responding to emergencies are necessary. 

Today, cities are expanding rapidly and continuously, and the reality is that nonur-

ban areas are relatively underdeveloped. Therefore, it is necessary to limit the indiscrim-

inate increase of the population accompanying urban expansion. In addition, it is neces-

sary to establish a land use development plan that considers the balance of economy, so-

cial welfare, and resources in consideration of local environment and resource sustaina-

bility. Measures prepared by the government are also important in the existing fragmen-

tary management and reduction of emission sources. However, in the future, the influence 
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of urban characteristics, which has a high correlation with the qualitative level of the ur-

ban environment, must be considered. 

Through this study, we have confirmed significant results for the factors affecting 

particulate matter. However, it is necessary to discuss the topographical factors that form 

the basis for land use planning. In addition, an in-depth study on the relationship with 

the wind direction should be added as the basis for the hypothesis setting. In addition, if 

time series analysis of more than 10 years is carried out to solve the limitation of the tem-

poral range, it is expected that more effective and specific measures can be proposed. 
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Appendix C. The Results of the Interaction Detection for the Influencing Factors of Urban PM10 in 2019 

XP1 XP2 XP3 XP4 XP5 XP6 XS1 XS2 XS3 XS4 XL1 XL2 XL3 XL4 XL5 XL6 XL7 XL8 

XP1 0.2183                   

XP2 0.2553  0.1695                  

XP3 0.2917  0.2611  0.1031                 

XP4 0.3540  0.3552  0.2169  0.0835                

XP5 0.4059  0.3794  0.2162  0.1115  0.0772               

XP6 0.3069  0.3393  0.2441  0.3214  0.3556  0.1728              

XS1 0.3643  0.3083  0.3264  0.2964  0.2648  0.3330  0.1100             

XS2 0.3424  0.3117  0.2527  0.2972  0.2502  0.3175  0.2868  0.1094            

XS3 0.2789  0.3070  0.1310  0.1836  0.1619  0.2258  0.1791  0.1499  0.0119           

XS4 0.2586  0.2139  0.1959  0.2648  0.2608  0.2039  0.2783  0.2759  0.1668  0.1265          

XL1 0.2867  0.2468  0.1630  0.2878  0.2540  0.1944  0.2480  0.2760  0.1884  0.2172  0.1416         

XL2 0.3025  0.3059  0.2453  0.3069  0.3144  0.2701  0.3385  0.3134  0.2899  0.2418  0.2293  0.2242        

XL3 0.3011  0.2526  0.1907  0.1347  0.1239  0.2650  0.1747  0.1777  0.0788  0.2162  0.2219  0.2845  0.0680       

XL4 0.4696  0.3903  0.4395  0.4055  0.3732  0.4571  0.3675  0.4025  0.3561  0.4754  0.3961  0.3975  0.3375  0.2905      

XL5 0.2962  0.2384  0.1431  0.1964  0.1713  0.2191  0.1695  0.2113  0.0681  0.2201  0.1908  0.2866  0.1146  0.3646  0.0383     

XL6 0.3326  0.2793  0.1788  0.2401  0.1512  0.2749  0.1886  0.1637  0.0686  0.2865  0.2667  0.3219  0.1267  0.3967  0.1276  0.0253    

XL7 0.3785  0.3692  0.2860  0.2217  0.1993  0.3930  0.2966  0.2603  0.1730  0.3087  0.2956  0.4012  0.2001  0.4148  0.2081  0.3331  0.1150   

XL8 0.3885  0.3409  0.3009  0.2919  0.2577  0.3055  0.2485  0.2581  0.1555  0.3160  0.3064  0.3243  0.1704  0.4272  0.1792  0.1516  0.3200  0.0682  

XE1 0.4809  0.5172  0.3713  0.4106  0.3999  0.4555  0.3699  0.3952  0.2947  0.4822  0.3847  0.4559  0.2173  0.5075  0.2831  0.2850  0.4063  0.3567  

XE2 0.5419  0.5011  0.4649  0.4905  0.5022  0.4949  0.5968  0.5566  0.5576  0.5070  0.5173  0.5309  0.4215  0.5870  0.5106  0.4862  0.5292  0.5421  

XE3 0.4896  0.4654  0.3629  0.4806  0.4950  0.4540  0.3487  0.3908  0.2184  0.4292  0.3758  0.5031  0.2031  0.4577  0.2497  0.2743  0.4162  0.3290  

XE4 0.5225  0.5183  0.4100  0.4419  0.3532  0.4935  0.4296  0.4469  0.3486  0.4968  0.4791  0.4987  0.3037  0.5668  0.4181  0.4387  0.4246  0.4192  

XE5 0.3997  0.4545  0.4797  0.5421  0.5128  0.4602  0.5775  0.5226  0.4721  0.4883  0.4600  0.4481  0.3849  0.5436  0.4334  0.4688  0.5180  0.5625  

XE6 0.4280  0.3897  0.2633  0.4143  0.3768  0.3346  0.4189  0.3818  0.3369  0.3526  0.3000  0.4313  0.2848  0.4910  0.2780  0.4120  0.4319  0.4565  

XE7 0.2702  0.2315  0.1742  0.1748  0.1635  0.2482  0.2008  0.2019  0.1022  0.1988  0.2110  0.2725  0.1539  0.3426  0.1245  0.1184  0.2214  0.1514  

XT1 0.2556  0.2486  0.3114  0.3401  0.3662  0.3386  0.3593  0.3319  0.2793  0.2880  0.2769  0.3198  0.3203  0.4009  0.2788  0.3327  0.3508  0.3722  

XT2 0.2900  0.3018  0.2421  0.2985  0.2966  0.2554  0.3212  0.3140  0.2266  0.2333  0.2114  0.2757  0.2552  0.3750  0.2396  0.3169  0.3338  0.3087  

XT3 0.3306  0.2889  0.1789  0.2673  0.2606  0.2211  0.2161  0.3330  0.1861  0.1851  0.1806  0.2744  0.1896  0.3491  0.1489  0.2059  0.3017  0.2618  

XT4 0.2776  0.2539  0.2012  0.3318  0.3373  0.2836  0.3407  0.3342  0.2118  0.2160  0.1989  0.2521  0.2479  0.3983  0.2106  0.2178  0.3727  0.2443  
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XT5 0.3064  0.2974  0.3243  0.3366  0.3610  0.3456  0.3615  0.3743  0.3214  0.3048  0.2735  0.3330  0.3311  0.4525  0.2947  0.3134  0.3730  0.3816  

XG1 0.3470  0.3312  0.3113  0.2697  0.2351  0.3825  0.2420  0.2731  0.1256  0.2444  0.2161  0.2868  0.1695  0.3760  0.1489  0.2235  0.2894  0.2764  

XG2 0.2897  0.2709  0.2479  0.3842  0.3802  0.2393  0.2845  0.3434  0.2989  0.2306  0.2165  0.2600  0.2651  0.4586  0.2816  0.2828  0.3799  0.3277  

XG3 0.3195  0.3519  0.2737  0.3821  0.3821  0.3062  0.3691  0.3574  0.3522  0.2558  0.2584  0.3574  0.2693  0.4828  0.2492  0.3470  0.4155  0.4043  

XG4 0.3146  0.2782  0.2707  0.3129  0.2989  0.2949  0.3149  0.2921  0.1880  0.2873  0.2290  0.2823  0.2467  0.4572  0.1977  0.3276  0.3243  0.4047  

XG5 0.2610  0.2568  0.3033  0.3490  0.3931  0.3246  0.3749  0.3419  0.3185  0.2655  0.3047  0.3055  0.3061  0.4736  0.2792  0.3321  0.3693  0.3918  

 XE1 XE2 XE3 XE4 XE5 XE6 XE7 XT1 XT2 XT3 XT4 XT5 XG1 XG2 XG3 XG4 XG5 

XE1 0.1436                  

XE2 0.6857  0.3759                 

XE3 0.5667  0.7550  0.1317                

XE4 0.5821  0.5618  0.6428  0.2355               

XE5 0.7535  0.5499  0.6714  0.5527  0.3428              

XE6 0.5239  0.5567  0.5451  0.5200  0.5934  0.1993             

XE7 0.2266  0.4238  0.2203  0.3288  0.3962  0.2566  0.0856            

XT1 0.5078  0.5188  0.5280  0.5004  0.4287  0.3804  0.2675  0.2199           

XT2 0.3849  0.5239  0.3924  0.4593  0.4471  0.3209  0.2503  0.2909  0.1920          

XT3 0.3517  0.4961  0.3551  0.4597  0.4704  0.3141  0.1928  0.3299  0.2724  0.1269         

XT4 0.4524  0.5336  0.4109  0.4013  0.4499  0.3242  0.2144  0.2557  0.2515  0.2627  0.1517        

XT5 0.5164  0.5243  0.5242  0.5180  0.4103  0.4170  0.2802  0.2602  0.3216  0.3422  0.2802  0.2314       

XG1 0.3813  0.4967  0.4637  0.3708  0.5254  0.3717  0.1718  0.3733  0.2702  0.2149  0.2496  0.3463  0.0917      

XG2 0.4739  0.5002  0.4499  0.5008  0.4612  0.4016  0.2407  0.2811  0.2934  0.2693  0.2683  0.2971  0.2760  0.1829     

XG3 0.5235  0.4759  0.5156  0.4998  0.4870  0.3984  0.2827  0.3184  0.2636  0.2862  0.3269  0.3422  0.3906  0.3372  0.2181    

XG4 0.4401  0.4858  0.4677  0.4920  0.4027  0.3389  0.2345  0.3267  0.2439  0.2621  0.2516  0.3458  0.2673  0.2871  0.2662  0.1627   

XG5 0.4883  0.5352  0.4851  0.5317  0.3827  0.4351  0.2779  0.2879  0.3215  0.3248  0.2547  0.2890  0.3889  0.2867  0.3157  0.2840  0.2250  
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Appendix D. The Results of the Interaction Detection for the Influencing Factors of Urban PM2.5 in 2019 

 XP1 XP2 XP3 XP4 XP5 XP6 XS1 XS2 XS3 XS4 XL1 XL2 XL3 XL4 XL5 XL6 XL7 XL8 

XP1 0.0950                   

XP2 0.1232  0.0724                  

XP3 0.1836  0.1825  0.0402                 

XP4 0.2222  0.2396  0.1493  0.0379                

XP5 0.2910  0.2525  0.1345  0.0450  0.0280               

XP6 0.1617  0.2154  0.1590  0.2368  0.2842  0.0917              

XS1 0.2171  0.1971  0.2363  0.2307  0.1773  0.2078  0.0569             

XS2 0.2484  0.2047  0.1885  0.2598  0.2358  0.2195  0.2336  0.1026            

XS3 0.2119  0.2222  0.0790  0.1429  0.1247  0.1887  0.1151  0.1546  0.0063           

XS4 0.1223  0.1060  0.1360  0.1860  0.1921  0.1125  0.2012  0.2208  0.0993  0.0592          

XL1 0.2122  0.1685  0.0681  0.1419  0.1237  0.0986  0.1532  0.1936  0.1414  0.1584  0.0525         

XL2 0.1610  0.1754  0.1342  0.1745  0.1689  0.1737  0.2011  0.2234  0.2029  0.1368  0.1264  0.1082        

XL3 0.1997  0.1729  0.1679  0.1317  0.1139  0.2115  0.1570  0.2045  0.1013  0.2062  0.1690  0.2182  0.0832       

XL4 0.3122  0.2667  0.2752  0.2762  0.2464  0.3077  0.2430  0.2957  0.2627  0.3399  0.2336  0.2512  0.2770  0.1710      

XL5 0.1525  0.1449  0.0577  0.1438  0.0964  0.1304  0.1160  0.1862  0.0452  0.1291  0.1029  0.1601  0.1307  0.2534  0.0106     

XL6 0.2552  0.1953  0.1365  0.1842  0.1197  0.2164  0.1428  0.1927  0.0750  0.2455  0.2017  0.2328  0.1690  0.2990  0.1047  0.0322    

XL7 0.2607  0.2382  0.2109  0.1803  0.1406  0.3285  0.2102  0.2205  0.1463  0.2874  0.2018  0.2697  0.1976  0.2852  0.1619  0.2954  0.0866   

XL8 0.2760  0.2469  0.2137  0.2414  0.1946  0.2679  0.1759  0.2332  0.1612  0.2509  0.2419  0.2183  0.1898  0.3121  0.1320  0.1202  0.2751  0.0603  

XE1 0.3693  0.4244  0.2705  0.3673  0.3680  0.3291  0.2708  0.3895  0.2513  0.4092  0.2861  0.3153  0.2228  0.4122  0.2174  0.3231  0.3834  0.3202  

XE2 0.4417  0.3545  0.3110  0.3463  0.3419  0.3725  0.4435  0.4184  0.4621  0.3714  0.3226  0.3016  0.2984  0.4430  0.4272  0.3660  0.4325  0.4121  

XE3 0.4360  0.4328  0.3556  0.4429  0.4317  0.4542  0.3066  0.4343  0.2511  0.3889  0.3376  0.4614  0.2643  0.4100  0.2791  0.2866  0.3999  0.3382  

XE4 0.4257  0.4379  0.3224  0.3618  0.2759  0.4338  0.3462  0.3798  0.3028  0.4096  0.3926  0.3840  0.2779  0.4454  0.3425  0.3562  0.3239  0.3569  

XE5 0.2856  0.3094  0.3732  0.4292  0.3425  0.3565  0.4104  0.4051  0.3392  0.3626  0.3463  0.3183  0.2953  0.4112  0.3287  0.3674  0.3929  0.4498  

XE6 0.3480  0.3010  0.1770  0.3334  0.2636  0.2553  0.3722  0.3239  0.3030  0.2530  0.2014  0.3277  0.2131  0.4042  0.2130  0.3229  0.3583  0.3918  

XE7 0.1528  0.1331  0.1064  0.1153  0.1037  0.1642  0.1319  0.1692  0.0840  0.1244  0.1179  0.1572  0.1587  0.2189  0.0852  0.1103  0.1789  0.1305  

XT1 0.1199  0.1150  0.2065  0.1970  0.2477  0.1826  0.2184  0.2223  0.1915  0.1671  0.1643  0.1829  0.2343  0.2215  0.1236  0.2444  0.2473  0.2470  

XT2 0.1556  0.1708  0.1068  0.1666  0.1465  0.1522  0.1765  0.2329  0.1266  0.1122  0.0924  0.1460  0.1759  0.2259  0.1139  0.2405  0.1999  0.2271  

XT3 0.1785  0.1785  0.0741  0.1304  0.1326  0.1243  0.1104  0.2400  0.1215  0.1160  0.0757  0.1568  0.1462  0.2031  0.0733  0.1344  0.1984  0.1812  

XT4 0.1548  0.1433  0.1142  0.2358  0.2159  0.1926  0.2504  0.2511  0.1214  0.1335  0.1027  0.1300  0.1912  0.2125  0.1113  0.1781  0.2875  0.1676  

XT5 0.1416  0.1403  0.1926  0.2067  0.2358  0.1808  0.2061  0.2485  0.2310  0.1556  0.1548  0.1746  0.2329  0.2693  0.1252  0.2182  0.2626  0.2391  
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XG1 0.2816  0.2239  0.2182  0.2667  0.1470  0.3009  0.2279  0.2239  0.0800  0.2176  0.1264  0.1755  0.1602  0.2599  0.1129  0.1740  0.2520  0.2341  

XG2 0.1717  0.1595  0.1803  0.2347  0.2263  0.1450  0.1783  0.2222  0.2412  0.1347  0.1328  0.1339  0.2298  0.2845  0.1927  0.2298  0.2705  0.2502  

XG3 0.1786  0.2059  0.1626  0.2018  0.2428  0.1759  0.2128  0.2553  0.2810  0.1239  0.1238  0.1919  0.1764  0.3088  0.1578  0.2226  0.3001  0.2510  

XG4 0.1775  0.1744  0.1753  0.2446  0.1879  0.2050  0.2072  0.2260  0.1355  0.1882  0.1303  0.2077  0.2072  0.3044  0.0883  0.2677  0.2457  0.2985  

XG5 0.1364  0.1344  0.2042  0.2140  0.2605  0.1907  0.2270  0.2475  0.2391  0.1413  0.1977  0.1763  0.2113  0.3105  0.1506  0.2520  0.2369  0.2631  

 XE1 XE2 XE3 XE4 XE5 XE6 XE7 XT1 XT2 XT3 XT4 XT5 XG1 XG2 XG3 XG4 XG5 

XE1 0.1082                  

XE2 0.6685  0.2076                 

XE3 0.6613  0.6968  0.1612                

XE4 0.5092  0.4490  0.6105  0.1727               

XE5 0.6753  0.4798  0.5879  0.4645  0.2083              

XE6 0.4726  0.4793  0.4928  0.4486  0.4983  0.1237             

XE7 0.1833  0.2711  0.2283  0.2773  0.2720  0.1789  0.0686            

XT1 0.4262  0.4114  0.4461  0.4132  0.3039  0.2959  0.1408  0.0854           

XT2 0.2490  0.3594  0.3361  0.3716  0.3046  0.2115  0.1368  0.1308  0.0721          

XT3 0.2499  0.2839  0.3178  0.3588  0.3303  0.2399  0.1071  0.1781  0.1217  0.0493         

XT4 0.3273  0.3705  0.3716  0.3874  0.3090  0.2509  0.1271  0.1110  0.1162  0.1507  0.0683        

XT5 0.4013  0.4025  0.4414  0.4102  0.2807  0.3318  0.1404  0.1192  0.1603  0.1838  0.1166  0.0863       

XG1 0.3229  0.3283  0.4113  0.3190  0.4217  0.2966  0.1253  0.2981  0.1678  0.1156  0.1850  0.2702  0.0591      

XG2 0.3748  0.3559  0.4751  0.4040  0.3475  0.2921  0.1498  0.1588  0.1753  0.1659  0.1788  0.1651  0.2104  0.0980     

XG3 0.4062  0.3056  0.4466  0.4202  0.3314  0.3107  0.1497  0.1588  0.1164  0.1577  0.2025  0.1694  0.2624  0.1815  0.0844    

XG4 0.3508  0.3102  0.3874  0.4143  0.3163  0.2823  0.1375  0.1668  0.1237  0.1463  0.1385  0.1740  0.1829  0.2001  0.1619  0.0680   

XG5 0.3972  0.3884  0.4335  0.4241  0.2556  0.3525  0.1592  0.1596  0.1754  0.2073  0.1353  0.1373  0.2884  0.1654  0.1451  0.1709  0.1029  
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