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Abstract: Soil erosion varies in space and time. As the contributing surface area increases, heterogene-
ity effects are amplified, inducing scale effects. In the present study, soil erosion processes as affected
by the observation scale and the soil surface conditions are assessed. An experimental field scale
setup of 18 plots (1–150 m2) with different soil surface conditions (bare and degraded, cultivated)
and slopes (0.75–4.2%) are used to monitor soil losses between 2010 to 2018 under natural rainfall.
The results showed that soil loss rates range between 2.5 and 19.5 t.ha−1 under cultivated plots
and increase to 12–45 t.ha−1 on bare and degraded soils, which outlines the control of soil surface
conditions on soil erosion. At a larger scale (38 km2), soil losses are estimated at 2.2–4.5 t.ha−1,
highlighting the major contribution of scale. The scale effect is likely caused by the redistribution
of sediments in the drainage network. These findings outline the nature and contribution of the
emerging and dominant soil erosion processes at larger scales. At the plot scale, however, diffuse
erosion remains dominant, since surface runoff is laminar and sediment transport capacity is limited,
resulting in lower soil erosion rates.

Keywords: surface runoff; soil erosion; soil surface conditions; scale effect; Sahel

1. Introduction

Soil erosion has been reported as the greatest form of land degradation, and is harmful
to food security [1–5]. In the West African Sahel, soils are prone to runoff erosion due to
their compaction and surface sealing, which further promotes surface runoff [6–8]. More-
over, erosion is heightened by the anthropogenic pressure on natural resources through
the conversion of natural vegetation to cultivated areas, the use of non-adapted agricul-
tural practices and overgrazing [1,9–11]. Yet, the region is largely dependent on rainfed
agriculture [12,13], with land being the major factor in the food production. Assessing the
processes and mechanisms by which surface runoff and further soil erosion are generated
appears to be critical in such context for framing adapted water and soil conservation
policies and practices [14–18].

Several previous studies have focused on the assessment of soil erosion driven by
natural rainfall in the Western Sahel region, mostly on quantifying soil loss rates at the scale
of experimental plots [14,19–28]. Likewise, sheet and rill erosion have been reported in
some of these studies, while gully erosion has been rarely considered [29–31]. On the other
hand, few studies addressed the estimation of soil losses at watershed outlets [20,21,32,33].
These studies generally provide global estimates of soil erosion at the watershed level,
which merge together the overall complexity of hydrodynamic processes without providing
sufficient details on the contribution of individual contributing factors [34,35]. However,
analysing the soil erosion processes at such a detailed level is essential as these elementary

Land 2022, 11, 2302. https://doi.org/10.3390/land11122302 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land11122302
https://doi.org/10.3390/land11122302
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-6092-0234
https://orcid.org/0000-0002-3835-9559
https://orcid.org/0000-0002-5586-8881
https://orcid.org/0000-0003-4568-5528
https://orcid.org/0000-0003-3647-7137
https://doi.org/10.3390/land11122302
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land11122302?type=check_update&version=1


Land 2022, 11, 2302 2 of 19

units convey the contribution of agricultural practices and other heterogeneities found
along the flow path [31,36]. Building upon this, a direct link between plot scale erosion
and soil losses at the watershed level can be identified, which could be further explored
through extrapolation methods [28,37–40].

In this regard, an intermediate observation scale, the sub-watershed, can be considered
for monitoring and assessment of soil losses [20,24,28,38]. It is large enough to include
specific contributing soil surface conditions such as agricultural practices, barren lands and
natural vegetation, but also the interaction between heterogeneous soil surface conditions,
morphologies and stemming processes such as delayed runoff [29]. Sub-watershed scale-
based studies offer interesting advantages and appear to be complementary in bridging
the gap in linking plot-scale to watershed-scale observations [41–43]. However, this scale
brings new concerns, namely the representativeness of the hydrological connectivity and
processes. The drainage density is a dynamic manifestation resulting from the effect of
various factors affecting the genesis of surface runoff and its channelling in the network [43].
It is often used as a proxy to characterize the joint effect of climatic, lithological and hydro-
logical factors [44]. In that regard, previous studies mentioned the term “Representative
Elementary Areas” (REA) [45], which can be considered a spatial entity having a stable and
homogeneous behaviour in terms of hydrological response. The REA, therefore, appears as
the minimum size of discretization of the watershed scale for which the representativeness
of processes remains simple to assess and at which the effects of local heterogeneities
are lessened.

In past studies, it has been shown with a large consensus that soil losses per unit area
decrease when the scale increases [6,14,24,34,46–51]. Other studies indicate that this general
trend exhibits a large variability [52,53], with specific cases where this trend has not been
observed [54], or even reported with the opposite behaviour [55,56]. Therefore, there is a
need to analyse such scale issues to improve the actual knowledge and understanding of
the sources of variation. The continuous monitoring of soil erosion at the plot scale, the sub-
watershed scale and the watershed scale can serve in this regard to identify the processes
and factors governing soil erosion at various spatial scales [19,46,57,58]. In this research,
the aim is twofold: (i) to quantify soil loss rates as affected by spatial scales, soil surface
conditions, slopes and soil hydrodynamic properties; (ii) to assess the sources of variations
in soil losses at these scales. The experiment is carried out in the Sahelian watershed
landscape of Tougou in northern Burkina Faso, located within the West African Sahel.

2. Material and Methods
2.1. Study Area Description

The present study is carried out in the Tougou watershed (37 km2), located in northern
Burkina Faso, 22 km northeast of Ouahigouya, the chief town of the Yatenga Province
where the watershed lies (Figure 1). The landscape is part of the Sahelian zone and inherits
the typical traits of its climate, which is dry and semi-arid. The daily average temperature
ranges between 18 and 40 ◦C, with relative air humidity on average between 16% (in
February during the dry season) and 77% (in August during the wet season) [26,59]. The
rainfall is typically monomodal, with a dry season from November to May and a rainy
season from June to October, during which 610 mm cumulative rainfall was observed in
the watershed on average over the period 2004–2020 [59]. The months of July, August and
September are the wettest and account for over 80% of annual rainfall on average in the
Tougou watershed [59,60]. The rainfall intensities are high (due to the highly convective
nature of rainfall) and can reach 90 mm.h−1 in 30 min and up to 130 mm.h−1 in 5 min [27].

The watershed hydrographic drainage network is dendritic and mainly depicted by
intermittent watercourses, which collect surface runoff to the main river course in the
watershed [27].
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Figure 1. The experimental design used in the present study and the location of the Tougou watershed.
(a) Location of Tougou watershed in Burkina Faso. The black contour lines indicate the locations of the
sub-watersheds BV1 (which is cultivated) and BV2 (with bare and degraded soils). The ASTER GDEM
Digital Elevation Model, 30 m resolution, tile number N13W003, obtained from USGS Earth Explorer
(https://gdemdl.aster.jspacesystems.or.jp/index_en.html (accessed on 12 September 2020)), is used
to calculate the elevation for the entire watershed. (b) Detailed representation of the experimental
design in BV2. (c) Detailed representation of the experimental design in BV1. (d) Field images of the
experimental design at S4 site in BV2. (e) Field images of the experimental design at S1 site in BV1.

In the Tougou watershed, the altitudes range from 320 to 367 masl. The slopes are
mostly gentle to flat, with values between 0.5 and 5%. The watershed is composed of
three main different types of soils: (i) slightly evolved soils, which make up 25% of the
watershed area and are mostly sandy to sandy-gravel; (ii) raw mineral soils, covering
35% of the watershed area; and (iii) hydromorphic soils, representing 40% of the watershed

https://gdemdl.aster.jspacesystems.or.jp/index_en.html


Land 2022, 11, 2302 4 of 19

area and which are commonly located in alluvial terraces [11,20,26]. The vegetation in the
watershed is sparse and composed of savannah bushes. Cultivated soils, bare and degraded
soils, and natural vegetation are the three main land use categories in the watershed,
representing 64%, 33% and 3% of the watershed area, respectively [11]. As in most Sahelian
hydrosystems, surface runoff quickly onsets through Hortonian flow, while the limited
infiltration and groundwater recharge supply only occurs through pathways at the bottom
of small streambeds [61,62].

2.2. Experimental Design

The monitoring of surface runoff and soil loss rates in the Tougou watershed is
carried out over the period 2010–2018 at the plot scale, sub-watershed scale and water-
shed scale. The outlets of the sub-watersheds are named BV1 (cultivated sub-watershed,
6.1 ha) and BV2 (bare and degraded sub-watershed, 33.8 ha). The outlet of the Tougou
watershed (37 km2) is named BV0. A total of eighteen (18) plots, equally shared within
2 sub-watersheds (9 plots in BV1 and 9 plots in BV2) are set up in this regard. The 2 sub-
watersheds are considered to be homogeneous when referring to the land use/land cover
composition and soil surface conditions. The complete details regarding the physical setting
of all the plots are presented in Table 1.

Table 1. Description of the experimental setup used in the present study.

Site Name Unit
Name

Hydrological
Unit Type

Size
(Width × Length *)

Average
Slope %

Soil Surface
Condition Land Use

S1

S1-1 Plot 1 m2 (1 × 1) 1.60 ± 0.43

C (agricultural
crust) Cultivated

S1-50 Plot 50 m2 (5 × 10) 1.80 ± 0.14
S1-150 Plot 150 m2 (6 × 25) 1.35 ± 0.15

S2

S2-1 Plot 1 m2 (1 × 1) 1.70 ± 0.50
S2-50 Plot 50 m2 (5 × 10) 1.40 ± 0.19

S2-150 Plot 150 m2 (6 × 25) 1.60 ± 0.10

S3

S3-1 Plot 1 m2 (1 × 1) 4.00 ± 0.52
S3-50 Plot 50 m2 (5 × 10) 4.20 ± 0.59

S3-150 Plot 150 m2 (6 × 25) 2.85 ± 0.15

S4

S4-1 Plot 1 m2 (1 × 1) 0.75 ± 0.16
ERO (erosion crust)

Degraded and
uncultivated

S4-50 Plot 50 m2 (5 × 10) 1.25 ± 0.09
S4-150 Plot 150 m2 (6 × 25) 0.93 ± 0.08

S5

S5-1 Plot 1 m2 (1 × 1) 0.90 ± 0.31
G (gravel crust)S5-50 Plot 50 m2 (5 × 10) 0.96 ± 0.11

S5-150 Plot 150 m2 (6 × 25) 0.80 ± 0.14

S6

S6-1 Plot 1 m2 (1 × 1) 2.30 ± 0.24
DES (desiccation

crust)S6-501 Plot 50 m2 (5 × 10) 2.10 ± 0.28
S6-502 Plot 50 m2 (5 × 10) 3.55 ± 0.32

BV1 sub-watershed 6.1 ha 1.91 ± 0.28 C (agricultural
crust) Cultivated

BV2 sub-watershed 33.8 ha 1.18 ± 0.16 ERO, G, DES Degraded and
uncultivated

BV0 watershed 37 km2 0.60 ± 0.11 C, ERO, G, DES Heterogeneous

* The plot length is also termed as the runoff length.

In each sub-watershed, the plots are grouped by sets of three (03), forming measure-
ment sites. Sites S1 to S3 are located in BV1 (cultivated) and sites S4 to S6 are in BV2 (bare
and degraded). The soil surface conditions in S1, S2 and S3 sites represent, respectively,
40, 25 and 35% of the area of BV1, while the soil surface conditions on S4, S5 and S6 sites,
respectively, represent 35, 65, and 1% of the area of BV2. Each site consists of a set of three
plots of increasing size (1 m2, 50 m2 and 150 m2). The downstream part of the 50 and 150 m2
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plots is equipped with a surface runoff collection tank and a sediment load trapping pond.
It should be noted that, at site S6, there was no plot of 150 m2 installed, but rather two plots
of 50 m2. The reason behind this design is related to the fact that the soil surface conditions
appearing at site S6 (mostly desiccation crust, DES) are seldom in the BV2 sub-watershed
(<1% of the area in BV2) and therefore no patch of 150 m2 for such crust type could be
found in the area.

The soil surface conditions presented in the present study refer to the different types of
crusts, as defined in [63], which are developing at the soil surface: the erosion crust (ERO),
desiccation crust (DES), agricultural crust (C) and gravel pavement crust (G). The term
“crust” refers to a stratified thin layer forming the topsoil layer. One or two micro-horizons
make up type C crusts, which typically occur on clayey or sandy soils. ERO crusts consist
of a single, extremely thin clay-like micro-horizon, which cracks as it becomes dry. The
DES type crust is sandy, made up of a fragile micro-horizon, while the G crust is composed
of a micro-horizon with coarse sediments of about >2 mm median grain size diameter.

Nine (09) plots were installed in the cultivated sub-watershed BV1 (6 ha) (Figure 1c,e),
while the remaining nine plots were set up in the second sub-watershed BV2 with bare
and degraded soils (33.8 ha), (Figure 1b,d). Because of the variability of crust types found
within BV2, the nine plots in BV2 have been equally shared between these crust types:
three plots on ERO crusts, three plots on G crusts and three plots on DES crusts, as shown
in Table 1.

The soil surface conditions were physically investigated as follows: nine soil samples
were obtained from each site and subjected to texture analysis using the sieving and
settling methodology (according to NF ISO 11277 [64]). The double-ring infiltrometer is
used to estimate the saturated hydraulic conductivity Ksat [65]. Undisturbed soil samples
were used to measure the bulk density ρB following a 24 h drying period at 105 ◦C [66].
Equation (1) was used to further estimate the soil porosity [66]:

p = 1 − ρS/ρB (1)

where p is the soil porosity [-], ρB is bulk density [g.cm−3], ρS is the particle density
(=2.65 [g.cm−3]) [20,66]. The Manning’s roughness (n) values for overland surface runoff
on plots are estimated through an empirical function of the median grain size diameter d50
of the soil sample at each site, given by Equation (2) [67]:

n = 21.1(d50)−1/6 (2)

where n [m.s−1/3] is the Manning roughness coefficient and d50 m is the median grain
size diameter.

2.3. Monitoring and Data Collection

Over the period 2010–2018, the rainfall is monitored on an event basis using an array
of rain gauges distributed within the watershed. In both sub-watersheds BV1 and BV2,
each site is equipped with a rain gauge. The average rainfall for each sub-watershed is
further estimated from the rain gauge measurements at the three sites located within that
sub-watershed. Moreover, three other rain gauges spread within the watershed of Tougou
are used to estimate the average rainfall for the whole watershed, calculated through
Thiessen’s polygon averaging method [68].

A Thalimedes water level recorder has been installed at the outlet of each sub-
watershed, and also at the watershed outlet to monitor surface runoff. The daily soil
loss is estimated using water samples manually collected at variable time intervals (10 to
30 min, depending on the rising and recession time of the hydrograph).

At the plot level, the surface runoff for each rainfall event is estimated from the collec-
tion tank downstream of the plot. Likewise, for each plot, sub-watershed and watershed,
the annual total soil loss is determined as a sum of the dry masses of the bedload and
suspended soil losses exported from the plot for all the rainfall events in a year. These



Land 2022, 11, 2302 6 of 19

dry masses are determined from sediment concentration measured in bottled water sam-
ples coupled to surface runoff volumes monitored through the collection ponds (for the
plots), or the continuous discharge measurements from the Thalimedes at the outlets of
sub-watersheds (BV1 and BV2) and the Tougou watershed (BV0). The total soil loss values
are further converted per unit hectare through Equation (3):

SL = λ(SL′)
λ = 10,000 [m2.ha−1]/(1000 [kg.t−1]*Observation scale [m2])

(3)

where SL′ is the annual total soil loss [in kg] measured at a given spatial scale (plot,
sub-watershed or watershed), SL is the corresponding soil loss [in t.ha−1], and λ is a
conversion factor.

2.4. Statistical Analysis of the Effect of Scale and Plot Location on Soil Loss Rates

In the present study, the observation scale and the plot location are considered to be
the major sources of variation in soil losses. The plot location embodies various effects,
including the soil surface conditions as denoted by crust types found within the plot, the
associated soil surface hydrodynamic properties and variation in plot slopes. The non-
parametric Kruskal–Wallis test at α = 5% significance level is used to assess such effects.
The following questions are therefore investigated:

1. Given a specific location, are there significant differences in soil loss measurements
and associated processes at different observation scales?

2. Given a specific observation scale, are there significant differences in soil loss mea-
surements and associated processes at different locations?

For both questions, the null hypothesis (H0) is defined as the “equality of median rank
of soil losses for different groups”. The Mann–Whitney U test (at α = 5% significance level)
is further used to assess significant differences between pairs as a post hoc test. For each
analysis, the statistical power of the test (1-β) is also evaluated in order to assess the effect
size and further quantify the confidence level in the decision made from the statistical test
result, especially when the outcome of the test is not significant (p-value > α).

3. Results
3.1. Physical Description of Soil Types in the Experimental Setup

The physical description of the soil types and properties of all the plots installed on
sites S1 to S6 is presented in Table 2.

Table 2. Physical properties of the soil on the monitoring sites in the Tougou watershed.

Site Soil Type Tillage Operations Crop Type Ksat *
(mm.h−1)

Ksat (mm.h−1),
Reported in [63]

Bulk Density
ρb (g.cm−3)

Porosity
p (%)

n
(s.m−1/3)

S1 Loam
Row sowing +

ploughing + weeding
+ hoeing

Millet, sorghum
and cowpea 21–25

15–35

1.40–1.46 45–47 0.050

S2 Sandy Row sowing +
ploughing + ridging

Millet, sorghum
and cowpea

27–33 1.36–1.44 46–49 0.060

S3
Sandy

gravelly
Row sowing +

weeding + hoeing
Millet, sorghum

and peanut 16–19 1.46–1.48 44–45 0.065

S4 Dry clay
No tillage

2–2.5 2–4 1.58–1.61 39–40 0.015
S5 Gravelly No cropping 3–3.5 3–5 1.88–1.94 27–29 0.020
S6 Sand 12–15 10–20 1.66–1.70 36–37 0.025

* Ksat is the measured soil saturated hydraulic conductivity. Twelve soil infiltration measurements are carried out
for each site, while nine soil samples are used to estimate soil porosity for each site.

The Ksat values measured on the monitoring plots in Table 2 are similar to previous
observations reported by [14,23,24,63] for Sahelian soil crusts. The variability of Ksat values
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across the different crust types is thought to be affected by the soil slope and microrelief
(surface roughness and surface storage capacity).

In bare and degraded soils, due to surface sealing and crusting, infiltration is limited,
as shown by the lower values of Ksat on these soil surface conditions. Moreover, without
any consideration given to the soil types, bare and degraded soils are almost similar in
terms of infiltration, as suggested by the low variability in Ksat values on S4, S5 and S6
sites. Additionally, from the bulk density measurements and the porosity values, it appears
that the soil compaction is higher in bare and degraded areas than in cultivated areas.

In cultivated areas, ploughing is the primary tillage operation, followed by sowing,
hoe weeding or weeding carried out with animal traction [26,69]. These practices aim at
breaking down the topsoil crusts to promote infiltration and further reduce surface runoff
and limit soil erosion [70–72].

3.2. Analysis of Rainfall over the Period 2010–2018

Table 3 summarizes the rainfall characteristics in the Tougou watershed over the
period 2010–2018. The annual rainfall varies between 460 and 730 mm, with nearly 35% of
the daily events occurring between 10 and 20 mm and 15.1% of these events exceeding
30 mm, representing 42% of the cumulative annual rainfall on average. The average rainfall
intensity in 30 min varies between 35 and 70 mm.h−1. Considering the annual average
rainfall over the period 2010–2018 at the nearest synoptic station, which is Ouahigouya,
located 25 km from the Tougou watershed, the years 2010, 2012, 2014, 2015 and 2018 can be
considered as “wet years” (annual rainfall in Tougou watershed above the annual average
at Ouahigouya station), while the years 2011, 2013, 2016 and 2017 are referred to as “dry
years” (annual rainfall in Tougou watershed less than the annual average at Ouahigouya
station). It can be further noted that, for the wet years, the cumulative rainfall for rainfall
events above 30 mm reaches 50% of the annual rainfall. These events occur generally in
June and August with high intensity and often high erodibility, as they can produce up to
75% of the annual sediment yield of the watershed [20].

Table 3. Rainfall event description over the monitoring period 2010–2018 in the Tougou watershed.

Years

Cultivated Sub-Watershed (BV1) Bare and Degraded Sub-Watershed (BV2) Watershed (BV0)
A

nn.R
f

M
ax.D

aily
R

f.

N
.R

f≥
30

C
um

.R
f≥

30

A
nn.R

f

M
ax.D

aily
R

f.

N
.R

f≥
30

C
um

.R
f≥

30

A
nn.R

f

M
ax.D

aily
R

f.

N
.R

f≥
30

C
um

.R
f≥

30

mm mm - mm mm mm - mm mm mm - mm

2010 649 45 5 203 664 42 6 291 672 54 6 253
2011 460 80 4 192 464 52 3 173 449 54 4 156
2012 705 65 12 426 675 99 10 425 698 82 11 412
2013 591 42 4 141 596 42 4 142 579 42 3 110
2014 636 49 6 248 628 51 8 325 624 47 7 280
2015 723 114 7 422 724 116 7 424 730 114 7 424
2016 517 46 3 126 513 36 3 130 515 38 3 115
2017 546 51 6 201 576 57 7 255 555 47 7 265
2018 667 60 8 315 714 76 8 391 681 87 8 370

Legend: Ann. Rf: cumulative annual rainfall; Max. Daily Rf.: maximum daily rainfall; N. Rf ≥ 30: Number of daily
rainfall events above 30 mm; Cum. Rf ≥ 30: cumulative volume for rainfall events above 30 mm.

Figure 2 shows the distribution of rainfall events. It shows that, for instance, 31.9% of
the rainfall events are below 8.5 mm and produce 10% of the yearly rainfall volume.
Additionally, 7.2% of the events are above 40 mm and account for 26.8% of the yearly
rainfall volume. The rainfall events above 30 mm, considered as erosive events, occur
15.1% of the time and account for 41.6% of the yearly rainfall volume.



Land 2022, 11, 2302 8 of 19
Land 2022, 11, x FOR PEER REVIEW 8 of 20 
 

 
Figure 2. Distribution of rainfall events monitored in the Tougou watershed over the period 2010–
2018. The distribution in terms of number of events is presented in the upper bar and the distribu-
tion in terms of rainfall volume is presented in the lower bar. 

3.3. Relationship between Annual Rainfall, Surface Runoff and Soil Loss Rates in the Tougou 
Watershed 

Figure 3 shows the relationship between annual rainfall, surface runoff and soil loss 
rates at the scale of the cultivated sub-watershed (BV1), the bare and degraded sub-wa-
tershed (BV2) and the Tougou watershed (BV0), as monitored over the period 2010–2018. 
It appears that annual surface runoff, as shown in Figure 3a, is highly linear to annual 
rainfall (R2 = 0.93–0.96). Additionally, cultivated areas produce less surface runoff (runoff 
coefficient = 13.97–19.43%), while bare and degraded soils produce higher surface runoff 
values in comparison (runoff coefficient = 49.38–56.36%), similarly to [73]. The watershed 
(BV0) shows intermediate values, with annual surface runoff slightly higher than in culti-
vated areas (runoff coefficient = 19.62–30.23%). Soil loss rates also have a significant linear 
relationship with surface runoff, as shown in Figure 3b (R2 = 0.92–0.98), with cultivated 
areas producing lower annual soil loss rates (2.05–3.88 t.ha−1), while bare and degraded 
areas produce the largest soil loss rates in comparison (between 6.07 and 10.80 t.ha−1). 
Likewise, the annual sediment yield at the watershed scale (BV0) is slightly larger than 
that of cultivated areas (between 2.31 and 6.30 t.ha−1). 

Figure 2. Distribution of rainfall events monitored in the Tougou watershed over the period
2010–2018. The distribution in terms of number of events is presented in the upper bar and the
distribution in terms of rainfall volume is presented in the lower bar.

3.3. Relationship between Annual Rainfall, Surface Runoff and Soil Loss Rates in the
Tougou Watershed

Figure 3 shows the relationship between annual rainfall, surface runoff and soil
loss rates at the scale of the cultivated sub-watershed (BV1), the bare and degraded sub-
watershed (BV2) and the Tougou watershed (BV0), as monitored over the period 2010–2018.
It appears that annual surface runoff, as shown in Figure 3a, is highly linear to annual
rainfall (R2 = 0.93–0.96). Additionally, cultivated areas produce less surface runoff (runoff
coefficient = 13.97–19.43%), while bare and degraded soils produce higher surface runoff
values in comparison (runoff coefficient = 49.38–56.36%), similarly to [73]. The watershed
(BV0) shows intermediate values, with annual surface runoff slightly higher than in culti-
vated areas (runoff coefficient = 19.62–30.23%). Soil loss rates also have a significant linear
relationship with surface runoff, as shown in Figure 3b (R2 = 0.92–0.98), with cultivated
areas producing lower annual soil loss rates (2.05–3.88 t.ha−1), while bare and degraded
areas produce the largest soil loss rates in comparison (between 6.07 and 10.80 t.ha−1).
Likewise, the annual sediment yield at the watershed scale (BV0) is slightly larger than that
of cultivated areas (between 2.31 and 6.30 t.ha−1).

3.4. Effect of Observation Scale and Soil Surface Condition on Soil Loss Rates

The soil loss measurements carried out at different observation scales on all sites are
compared in Figure 4.

The analysis of Figure 4a shows that soil losses are in general 2–3 times higher on bare
and degraded soils, in comparison to cultivated soils, at all spatial scales. Such findings are
similar to those of [43,53,74–76]. However, considering the similar soil surface condition, it
also clearly appears that soil loss decreases when the spatial scale of observation increases.
The latter trend seems to support the idea that soil erosion processes are affected by various
factors, some of which are particularly sensitive to scale [19,46,77–79].

The average coefficient of variation on cultivated soils (21.3%) is higher than that
observed on bare and degraded soils (14.2%). The variability in soil loss erosion on
cultivated soils is likely due to the differences in soil types, cultivation practices and
hydrodynamic properties (see Table 2). At the plot scale, various factors such as the soil
texture, micro-relief and cultivation practices strongly influence the elementary soil erosion
processes [63]. On bare and degraded soils, ERO and G-type crusts have similar behaviour.
The reported values vary between 12 t.ha−1 and 34 t.ha−1, with the highest erosion values
reported on DES crusts with values up to 45 t.ha−1 at the unit scale.
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At the sub-watershed scale (Figure 4b), the average soil loss is, respectively, 2.83 and
8.24 t.ha−1 on BV1 and BV2, with the average coefficient of variation estimated at 24.1% and
19.3%, respectively. These values also illustrate that the variability in soil losses is still
higher in the context of cultivated soils. In comparison with the soil loss values measured
on plots of 150 m2, a relative reduction of 33% and 47% at the sub-watershed scale is
observed (for BV1 and BV2, respectively), suggesting that sediment deposition is higher in
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bare and degraded areas than in cultivated areas. This finding is likely due to the fact that
crusts patches are found in decreasing occurrence from upstream to downstream in each
sub-watershed, with the decrease being more significant in BV2 than in BV1. In addition,
the size of the cultivated sub-watershed BV1 (which is 5.5 times smaller than the bare
and degraded sub-watershed BV2) seems to explain the difference in sediment deposition
amount between the two scale units.
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loss rates measured on plots: sites S1 through S3, located on cultivated areas; sites S4 through S6,
located on bare and degraded areas. (b) Soil loss rates for sub-watersheds (BV1 and BV2) and the
Tougou watershed (BV0). The error bars on all histograms are defined based on nine values.

At the Tougou watershed scale, the interannual average of soil loss is 4.11 t.ha−1 with
an average coefficient of variation of 32%, which appears to be intermediate between the
values reported for the cultivated and bare/degraded sub-watersheds. Additionally, the
fact that the average soil loss for the entire watershed of Tougou is closer to that of the
cultivated (BV1) sub-watershed is likely due to the dominant proportion of cultivated areas
(64% of the watershed area), which is almost twice the proportion covered by bare and
degraded areas (33% of the watershed area). The specific erosion rates reported in the
present study are compared to the outside literature in other African watersheds, as follows:
0.1 t.ha−1 in Amitioro (south Ivory Coast) [80], 0.37 t.ha−1, 0.70 t.ha−1 and 0.15 t.ha−1,
respectively, in Dounfing, Djitiko and Belekoni (south Mali) [81,82], 2.21 t.ha−1, 2.10 t.ha−1

and 5.25 t.ha−1, respectively, in Mayo Boula [83], Mayo Tsanaga [84] and Mouda (north
Cameroon) [85] and 4.70 t.ha−1 in Oued Haddad (Algeria) [86].

3.5. Effect of the Timing of Rainfall Events on Soil Loss Rates in Tougou Watershed

In this section, the focus is carried out on the high soil loss values monitored at the sub-
watersheds and the watershed scale for specific dry years over the study period 2010–2018.
The analysis reveals that some extreme rainfall events generated significant soil loss rates.
On average, rainfall events above 30 mm account for 41.6% of the annual rainfall over
the period 2010–2018 and are responsible for 65% of the annual soil loss exported from
the Tougou watershed. In Figure 5, the soil loss rates generated from rainfall events are
presented, according to the timing of the occurrence of the rainfall event. It can be seen that,
for a given rainfall amount, the amount of soil loss from rainfall events occurring at the
onset of the rainy season (June–July) is slightly higher on average than that occurring from
rainfall events occurring in the middle-end of the rainy season (August–September). This
could be further largely explained by the availability of sediment material, which is higher
at the onset of the rainy season, and decreases towards the middle-end of the season [60].
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Figure 5. Effect of the timing of the rainfall event on soil loss rates in the Tougou watershed over
the period 2010–2018. Rainfall events occurring at the onset of the rainy season (June–July) generate
slightly higher soil loss rates than rainfall events occurring at the middle-end of the rainy season
(August–September).

3.6. Statistical Analysis of the Effect of the Observation Scale and the Plot Location on Soil
Loss Rates
3.6.1. Effect of Observation Scale on Soil Loss Rates

Table 4 shows the results of the statistical analysis of the effect of the observation scale
on soil loss in the Tougou watershed. The null hypothesis (H0), which states that soil loss
rates distributions from plots of different sizes (within the same land use type) come from
the same population, is rejected on all six observation sites. This means that on each site (S1
through S6), at least one of the group distributions of soil loss rates is significantly different
from the others being compared. Furthermore, the power (1-β) of the Kruskal–Wallis test is
satisfactory for all sites as the value of 80% (deemed to be suitable) is reached.

Considering the analysis of the different pairs, it appears that all three distributions
are significantly different at all sites with high power values (1-β > 94%). This means that
the erosive processes at the unit scale are significantly different from those observed on
the 50 and 150 m2 plots, which are themselves different. In other words, it reveals that soil
loss rates measured at a given scale are not necessarily representative of those obtained
at other scales. At the unit scale, soil erosion is mostly due to the splash effect and/or the
supply of aeolian material, given the short runoff length. At this scale, only diffuse erosion
is measured since the surface runoff depth is shallow, with a low flow velocity. On the other
hand, on the 50 and 150 m2 plots, the soil loss measured is essentially sheet erosion as the
surface runoff accumulates along the plot length. Therefore, the difference in plot length
increases the complexity of the process, as surface runoff energy is sometimes washed over
the soil surface roughness (due to heterogeneities such as clods, stems, mulch, pebbles,
etc.). Such findings highlight the complexity of soil erosion processes even at the plot scale,
but also highlight that the average soil loss values depend on the size of the observation
scale [34,51].

3.6.2. Effect of Plot Location on Soil Loss Rates

Table 5 shows the results of the statistical tests of the effect of the plot location on
observed soil loss rates. At the unit scale, the null hypothesis (H0) is rejected with high
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power test values (1-β > 93%). At the 50 and 150 m2 plot scale, the null hypothesis
(H0) cannot be rejected. However, the values of the test power appear to be below 80%,
commonly deemed as the minimum threshold required for a type II error (not rejecting H0
when it is false). There are 51% and 90% odds (on cultivated and on bare and degraded
soils, respectively) of wrongly accepting the null hypothesis (H0) when it is false.

Table 4. Analysis of the plot size effect on soil loss values in the Tougou watershed.

Site Plot Size

Kruskal–Wallis Test
(α = 5% Significance Level)

Mann–Whitney U Test
(α = 5% Significance Level)

p-Value Decision (H0) 1-β Hypothesis H0 p-Value Decision (H0) 1-β

S1
(cultivated)

1 m2

<0.01% Rejected 95%
µ(1m2) = µ(50m2) <0.27% Rejected 94%

50 m2 µ(1m2) = µ(150m2) <0.01% Rejected 95%
150 m2 µ(50m2) = µ(150m2) <0.11% Rejected 95%

S2
(cultivated)

1 m2

<0.01% Rejected 95%
µ(1m2) = µ(50m2) <0.08% Rejected 95%

50 m2 µ(1m2) = µ(150m2) <0.01% Rejected 95%
150 m2 µ(50m2) = µ(150m2) <0.11% Rejected 95%

S3
(cultivated)

1 m2

<0.01% Rejected 95%
µ(1m2) = µ(50m2) <0.01% Rejected 95%

50 m2 µ(1m2) = µ(150m2) <0.01% Rejected 95%
150 m2 µ(50m2) = µ(150m2) <0.15% Rejected 95%

S4
(Bare and degraded, ERO crusts)

1 m2

<0.01% Rejected 95%
µ(1m2) = µ(50m2) <0.36% Rejected 95%

50 m2 µ(1m2) = µ(150m2) <0.01% Rejected 95%
150 m2 µ(50m2) = µ(150m2) <0.20% Rejected 95%

S5
(Bare and degraded, G crusts)

1 m2

<0.01% Rejected 95%
µ(1m2) = µ(50m2) <0.20% Rejected 95%

50 m2 µ(1m2) = µ(150m2) <0.01% Rejected 95%
150 m2 µ(50m2) = µ(150m2) <0.27% Rejected 95%

S6
(Bare and degraded, DES crusts)

1 m2

<0.02% Rejected 95%
µ(1m2) = µ(50m2) <0.01% Rejected 95%

50 m2 µ(1m2) = µ(50m2) <0.06% Rejected 95%
50 m2 µ(50m2) = µ(50m2) 48.00% Not rejected 21%

Legend: µ refers to the mean of the distribution of soil loss values measured at a given scale.

Table 5. Analysis of the effect of the plot location on soil loss values in the Tougou watershed.

Land Use Type
Plot Name Kruskal–Wallis

(α = 5% Significance Level)
Mann–Whitney U Test

(α = 5% Significance Level)

Scale Plot p-Value 1-β Null Hypothesis (H0) p-Value 1-β

Cultivated

1 m2
S1-1m2

0.21% 93%
µ(S1-1m2 ) = µ(S2-1m2 ) 9.34% 57%

S2-1m2 µ(S1-1m2 ) = µ(S3-1m2 ) <2.73% 78%
S3-1m2 µ(S2-1m2 ) = µ(S3-1m2 ) <0.15% 95%

50 m2
S1-50m2

6.70% 49%
µ(S1-50m2 ) = µ(S2-50m2 ) <3.41% 70%

S2-50m2 µ(S1-50m2 ) = µ(S3-50m2 ) 59.62% <10%
S3-50m2 µ(S2-50m2 ) = µ(S3-50m2 ) 9.34% 49%

150 m2
S1-150m2

8.41% 49%
µ(S1-150m2 ) = µ(S2-150m2 ) 5.21% 70%

S2-150m2 µ(S1-150m2 ) = µ(S3-150m2 ) 53.65% <10%
S3-150m2 µ(S2-150m2 ) = µ(S3-150m2 ) 9.34% 46%

Bare and degraded

1 m2
S4-1m2

<0.11% 95%
µ(S4-1m2 ) = µ(S5-1m2 ) 48.00% <10%

S5-1m2 µ(S4-1m2 ) = µ(S6-1m2 ) <0.27% 95%
S6-1m2 µ(S5-1m2 ) = µ(S6-1m2 ) <0.15% 95%

50 m2
S4-50m2

53.85% 10%
µ(S4-50m2 ) = µ(S5-50m2 ) 48.00% <10%

S5-50m2 µ(S4-50m2 ) = µ(S6-50m2 ) 86% <10%
S6-50m2 µ(S4-50m2 ) = µ(S6-50m2 ) 28.93% 21%

150 m2 S4-150m2 53.65% <10% µ(S4-150m2 ) = µ(S5-150m2 ) 53.65% <10%S5-150m2

Legend: µ refers to the mean of the distribution of soil loss values measured at a given scale.

From these results, it can therefore be suggested that the location of the plot appears
to be affecting the soil loss observations. Considering the field scale experiment used in
the present study, the plot location embodies various effects including variations in the
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plot average longitudinal slope and also in soil surface hydrodynamic properties, as also
reported by [34].

3.7. Sources of Variation in Soil Loss at Different Scales

From the statistical analysis presented in Tables 4 and 5, it appears that complex
interactions between the plot location, the surface runoff length, the slope gradient, the
soil surface conditions, and hydrodynamic properties (affected by tillage depth, frequency,
orientation) affect soil erosion, which significantly varies from one site to another.

Fine erosive processes can be directly observed at the plot scale. At this scale, rainfall
plays a major role in driving soil erosion processes. Under experimental conditions, diffuse
and sheet erosion are the only observable forms of erosion, due to the short slope length.
The soil type, plot length and slope inclination are the factors that mainly affect these
processes. Therefore, at the plot scale, the major sources of variation in soil erosion appear
to be the intrinsic properties of the plot itself [2].

At a larger scale (sub-watershed), the dominant erosion process is the removal of soil
particles by surface runoff, termed linear erosion. The spatial distribution of land use, the
direction of the steepest slope, the spatial distribution of the main drainage collectors and
their hydrological connectivity appear to be the dominant factors affecting surface runoff
and linear erosion [31].

Soil erosion, at the watershed scale, is the response of cascading effects which include
detachment–transport–deposition processes [87]. In the absence of extreme rainfall events,
the dominant process driving sediment transport mechanisms is the redistribution of
bedload material along the hillslopes into the streambed [55]. At this scale, sediment
transport depends on a wide range of variables such as topography, spatial distribution of
soil elementary units, soil hydrodynamic properties, sediment availability and hydrological
connectivity [88]. The erosive response thus observed reflects the combined effect of the
spatial heterogeneity of these parameters, the spatial and temporal patterns of rainfall and
the interaction between the different erosive processes (detachment, transport, deposition).

Another source of variation in soil loss observations reported in the present study
is related to specific thresholds: the minimum daily rainfall amount, which triggers sur-
face runoff (Plr), and the minimum rainfall intensity, also triggering surface runoff (Ilr),
determined as in [27]. Figure 6 shows the range of values for these thresholds for all the
observation scales (sites S1 through S6, sub-watersheds BV1 and BV2 and the Tougou
watershed BV0). Over the monitoring period 2010–2018, a total of 328 rainfall events are
recorded in the watershed, of which 191 and 268 triggered surface runoff on cultivated
soils and bare and degraded soils, respectively.

It can be observed that, on cultivated soils (sites S1, S2 and S3), the Plr threshold is
between 8.5 mm and 14.0 mm and decreases between 4.0 mm and 7.5 mm for bare and
degraded soils (sites S4, S5 and S6). For rainfall intensities thresholds (Ilr), the values
range between 12.0 mm.h−1 and 18.0 mm.h−1 and decrease between 5.5 mm.h−1 and
12.0 mm.h−1, respectively, for the same sites. The lower values for both Plr and Ilr thresh-
olds triggering surface runoff on bare and degraded soils can be explained by the nature of
the impervious crust types developing on such soils, which increase their runoff potential.
As compared to cultivated soils, where tillage is often applied, infiltration is favoured,
which tends to increase the rainfall thresholds (Plr, Ilr) at which surface runoff is triggered.
The thresholds reported for BV1 (cultivated) and BV2 (bare and degraded) sub-watersheds
are similar to those observed for the corresponding sites. At the watershed level (BV0),
the Plr (8.5–12.0 mm) and Ilr (15.0–18.0 mm.h−1) thresholds appear to be affected by the
heterogeneous composition of soil surface conditions.
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4. Discussion

In the present study, soil loss estimates from the plot scale to the watershed scale, under
various soil surface conditions and average longitudinal slopes, have been systematically
monitored on a rainfall event basis for nine years (2010 to 2018) in a typical Sahelian
landscape. The results showed that soil loss rates are substantially higher on bare and
degraded plots than on cultivated plots. Depending on the scale of observation, soil loss
is reduced by orders of 2.5 to 4.5 times on cultivated soils, in comparison to bare and
degraded soils. Similar findings regarding soil erosion rates have been reported in the
Tondi Kiboro watershed, the Fakara region (both near Banibouzou, Niger) during field
monitoring carried out under the AMMA programme [89], in Melé Haoussa (in Tillabéry
region, Niger) [90], in Wankama watershed (Niger) [30], and in Djitiko, Belekonu, and
Dounfing watersheds (Mali) [81,82].

Furthermore, the results show that soil erosion decreases with the increase in the
active contributing area or spatial scale of observation. On cultivated soils, previous studies
highlighted that the protective effect of vegetation cover [91] and the suitable agricultural
practices implemented by the farmers could explain the lower rates of soil erosion in such
land use conditions [43,73,74,92,93]. In the case of the Tougou watershed, the spectrum of
these agricultural practices being used (row sowing, ploughing, weeding, hoeing, ridging)
is wide. Moreover, the intrinsic characteristics of the observation scales where the plots
were set up (slope location, plot shape and length, plot slope inclination) further add up to
the variability of the reported estimates.

Additionally, it has been observed that erosion rates can be significantly different
for plots of similar size. It can, therefore, be inferred that erosion rates obtained on such
plots are only representative of those of plots of both similar size and soil surface condi-
tions, and therefore extrapolation beyond such context might be flawed by large orders
of magnitude [2]. Interestingly, the finding that soil erosion and sediment supply are also
affected by extreme and/or highly intense rainfall events has been observed in the present
study, as shown by the analysis of rainfall events over 30 mm at the watershed scale. As
highlighted by [35,94–96], the driving forces and mechanisms behind soil erosion variability
across scales might result from a complex interplay between several major factors such as
the intrinsic properties of the observation plot, the differences in erosive scale-dependent
processes and the hydrological connectivity between sediment production areas (having
a higher erodible topsoil). Such variability becomes more complex when soil conserva-
tion techniques are implemented [15,26], further amplified by the spatial and temporal
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distribution of rainfall during a rainfall event and also throughout the rainy season, which
is the last factor contributing to the amplification of the variability of soil erosion across
spatial scales.

Our results highlight the significant contribution of the scale effect on soil erosion, es-
pecially from the plot to the watershed. A likely explanation is that the dominant processes
are not the same at increasing scales. Indeed, the question of the relationship between soil
loss, sediment yield and observation spatial scale has been framed simply through the
decrease in soil loss with the increase of the observation scale. Among the reasons put
forward in this regard are, in particular, the decrease in average longitudinal slope with the
increase in the watershed size, which likely causes increasing amounts of sediment yield to
be trapped within the watershed, especially through the decreasing distribution of erosive
forces between the upstream and downstream locations [42,54,56]. Such consideration
should, however, be called into question, especially considering that the direction of the
active contributing area–soil erosion relationship varies with the dominant processes at
play: when slope erosion is dominant (and in particular gullying), soil loss and sediment
yield decrease with the size of the watershed; however, if bank erosion is dominant, soil loss
and sediment yield increase with the watershed size [97]. This relationship also becomes
more complex when vegetation cover is unevenly distributed across space in the water-
shed [98] and when profound changes in the hydrological alteration occur in hydrosystems
(e.g., changes in land use/land cover such as restoration of degraded soils, conversion of
cultivated soils to natural vegetation), which can ultimately reverse the trend [11,60,98,99].

5. Conclusions

In the present study, the estimation of soil erosion according to spatial scale and surface
soil conditions in the Tougou watershed was monitored during nine years under natural
rainfall on various soil surface conditions and at different observation scales in a typical
Sahelian landscape. The significant differences observed are explained by the protective
effect of the vegetation cover and the agricultural practices implemented in cultivated areas.
Soil losses measured at the plot level vary between 2.5 t.ha−1 and 45 t.ha−1 depending on
the soil properties. The sediment yield of the watershed varies from 2.5 to 4.5 t.ha−1, which
is lower in comparison, highlighting the scale effect between the plot and the watershed.
The scale effect is due to the redistribution of sediments detached from the hillslopes and
transported in the drainage network. This trend is mainly due to threshold effects and the
emergence of new dominant processes with increasing scale. These findings highlight the
fact that new processes emerge and become dominant at increasing scales, which makes
surface runoff and soil erosion both complex in nature. However, the study sheds light on
how eventual pathways relate plot scale to watershed scale, especially in typical Sahelian
landscapes. This can serve to develop similarity indices of soil erodibility across scales,
accounting for soil surface conditions and further improving quantitative estimations of
soil losses in distributed hydrological modelling.
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