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Abstract: The Brazilian Amazonian Forest is undergoing significant changes in land use and land
cover in the last few decades. This land-use transition, besides climate change, may be responsible
for the fire regime transition in this territory. Therefore, we aimed at investigating how the fire-
transition occurs over time in the Brazilian Amazonia Forest and identifying the key parameters
that can help to predict this change. For this, we collected yearly data on fire occurrence, forest
cover, deforestation rates, and cropland areas. We used a 0.45◦ spatial surface grid, and with these
annual values, we produced: (i) generalised linear mixed models of fire occurrence against forest
cover, using years and grids as random factors; (ii) annual linear models of fire occurrence against
forest cover; (iii) linear models of the apex values against the years; and (iv) generalised linear
models of these apex values against deforestation and cropland areas. We found that there is a
fire-transition process in the Brazilian Amazon Forest since a quadratic model better predicted the
fire occurrence behaviour. Moreover, the fire occurrence apex is transitioning to more forested
landscapes, from 50.7% in 2003 to 55% in 2019 (R2 = 0.3). The deforestation rates and the cropland
expansion had important relationships with the fire-transition, the first is related to the fire occurrence
in the landscape (R2 = 0.62), while the second better predicts the transition to more forested areas
(R2 = 0.38). Thus, we found that the fire-transition in the Brazilian Amazon Forest is strongly related
to the land-use transition stages in this region.

Keywords: fire-transition; deforestation; cropland expansion; severe droughts

1. Introduction

Fire dynamics are changing across the world due to climate and land-use changes [1].
Globally, there is a trend of increasing fire season length, due to favourable climate condi-
tions for fire occurrence, such as an overall reduction in air humidity, an increase in surface
temperature and the number of rainless days [2]. Yet there has also been a reduction in
burned areas between 1988 and 2015, which occurred mainly in regions with low and
intermediate levels of tree cover, and was countered by an increase in fire occurrence in
closed-canopy forests [3]. Understanding these fire dynamics is particularly important in
fire-sensitive regions, such as humid tropical forests; fires have been historically rare or
absent in these ecosystems [4,5], and in present day wildfires have a strong negative effect
on biodiversity, climate regulation and human wellbeing [6–9].

In humid tropical forests, fires are closely related to land-use changes and the man-
agement of agricultural areas. Fire is a fundamental part of the deforestation process,
and fire occurrence—as measured by satellites—is linked to the burning of felled trees
following the conversion of forests to pasture or cropland [10]. As such, more fires tend to
be detected in years with higher deforestation rates [11]. Fires are also crucial for pasture
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management and subsistence agriculture [12]. In the former, fire is used to periodically
clear pastures of trees and weeds that decrease its carrying capacity. In the latter, fire is
used for slash-and-burning as part of a farm-fallow cycle. Climate also influences fire
occurrence—in the Brazilian Amazon, more fires are detected in years of extreme droughts,
which are becoming more common [13–15]. Fires linked to droughts often occur in forests,
when reductions in leaf litter humidity allow deforestation and agricultural fires to escape
into surrounding forests [12,16,17]. These forest fires are important as they are a major
determinant of an Amazonian tipping point [18] and an important driver of biodiversity
loss [19] and carbon emissions [20,21].

Although deforestation and agricultural expansion increase fire occurrence in humid
tropical forest regions, it has been suggested that this is only temporary. Andela et al. [3]
propose a conceptual model in which fire follows a unimodal relationship during land-
use transitions across the world. In the humid tropics, Andela et al. [3] predict that fire
extent increases in the initial phase of land clearance but then decreases as high capital
activities, such as mechanised farming, replace low capital and extensive agriculture [22].
Such a transition is important as it could have an important influence on fire use, and the
possibility of ignition events in agricultural land escaping into remaining forests. However,
despite some evidence that fire occurrence increases when lands are being cleared, and that
there is a reduction of total occurrence of fire across agricultural landscapes [23], we still
lack a detailed understanding of how the globally hypothesized fire transition is playing
out in the Amazon and how any such transition is being modified by deforestation or
changes in agricultural practices.

We address these knowledge gaps by exploring fire activity in the Brazilian Amazon
from 2003 to 2019. We used active fire as our measure of fire prevalence at the landscape
scale (0.45◦ by 0.45◦ grids) and examined it in relation to landscape-scale year-on-year
datasets on forest cover, Land-use and Land Cover (LULC) and deforestation. We define
a fire transition by the location of the apex of any relation between active fire and forest
cover; and define fire prevalence as the height of the apex. Specifically, we ask: (1) is the
Brazilian Amazon undergoing a fire-transition, and where is the transition point in relation
to forest cover? (2) Has the transition point location and height changed over time? (3) Do
annual changes in deforestation or expansion of cropland help predict the changes in the
active fire and forest cover relationship peak values?

2. Materials and Methods
2.1. Study Area

The study area focuses on the Brazilian Amazon, a region with distinct climate charac-
teristics and occupation histories. Annual deforestation rates varied substantially during
the study period (i.e., 2003–2019). From a peak in 2004, deforestation rates reduced to their
lowest level in 2012 and have gradually increased since then, with a severe spike in 2019
(Figure A2b) [24]. A similar pattern occurs when considering deforestation from primary
and secondary forests [25], with the lowest level in 2012, but with a greater spike in 2016
(Figure A2a).

2.2. Datasets

We focus our analyses on 2003 to 2019, a period in which the Brazilian Amazon
experienced three severe droughts (i.e., 2005, 2010, and 2015–2016) and marked changes in
deforestation rates (Appendix A). We set this time range by the availability of the active
fire dataset (i.e., MODIS Terra and Aqua satellites data available since mid-2002). We
created a 0.45◦ spatial surface grid, which we used as a base for all our spatial estimates.
Subsequently, we removed grid cells with over 20% of savannas or mangroves coverage
from the analysis (using 2003 as the base year from the Mapbiomas 5.0 dataset). We have
excluded all savanna enclaves from the analyses as fire dynamics and fire outcomes are
very different in these fire-dependent ecosystems [26]. In addition, we excluded from
the analyses grids that were on the edges of the biome, as they were not fully covered
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with LULC data (Figure 1). Thus, we investigated 1471 cells in our analysis, wherein we
computed all acquired data for each of these cells. We summarise the datasets used, and
the methods applied in Figure 2.
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Figure 2. Workflow of the used method, describing: (1) the three main datasets to analyse
and interpret the active fire behaviour in relation to forest cover: (i) Active Fire occurrence [27];
(ii) LULC [28,29]; and (iii) Annual Deforestation [25]. (2) The land cover and deforestation metrics
derived from these products. (3) The spatial surface grids metrics calculation used for statistical
analyses. (4) The key questions.
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2.2.1. Active Fire

We used data from MODIS Terra and Aqua satellites, which are produced from MODIS
MCD14ML Collection 6, where active fires are detected at a 1 km spatial resolution. The
MODIS MCD14ML Collection 6 improved the active fire detection in the Amazon by
reducing false positives [27]. This dataset for the Amazon Forest may have low detection
rates where canopy cover is particularly dense and is likely to underestimate understory
fires. However, our hypotheses are mainly about changes in fire-use in open areas, and
we repeat analysis removing dry years to account for the possible influence on forest
fires. We collected these datasets in the Fire Information for Resource Management System
(FIRMS) platform in a point-vector format. We first acquired data from 1 January 2003
to 31 December 2019 and then aggregated all active fires with confidence levels greater
than 30% (nominal and high confidence fires as applied in Chen et al. [30] and Armenteras
et al. [31]) within our 0.45◦ grid cells, counting the annual total for each cell.

2.2.2. Land Use and Land Cover

For this analysis, we used Mapbiomas’ collection 5.0 data. The Mapbiomas product es-
timates forest formation areas, without distinguishing primary from secondary vegetation,
so we considered both in our forest cover estimates. In addition, our main hypotheses were
focussed on fire use in open lands, which further justifies grouping primary and secondary
forests together. Thus, to estimate forest cover values, we calculated the percentage of each
grid that is covered by the forest formation class. In addition, we estimated the cropland
areas considering only the soybean crops as an intensive stage of land-use transition [22]
indicator in the rural areas of the Brazilian Amazon Forest. We considered using other
agricultural classes as indicators of cropland areas, but these areas either not present in
the landscape or inseparable from small-scale subsistence practices. (However, Table A2
shows that there is no significant difference in the results when temporary crops were also
considered). We used the Google Earth Engine platform to process the Mapbiomas dataset
and calculate the forest cover percentage for each grid and we also estimated the cropland
area per year for the entire study area in our analysis.

2.2.3. Deforestation

We collected the deforestation data from the Mapbiomas Deforestation and Regen-
eration dataset. This dataset considers 1988 as a base map to analyse the pixel-by-pixel
trajectory of deforestation and regeneration up to 2019 [32]. We considered the total
deforestation of primary and secondary forests, as both are potential sources of fire igni-
tion [23,33] and the LULC dataset also includes both categories in the forest formation class.
To obtain yearly deforestation rates, we processed this dataset in the Google Earth Engine
platform to sum the total deforested area within each grid cell. We then estimated yearly
deforestation rates for the entire study area.

2.3. Data Analysis

We split the analyses into three stages of data processing: (1) To evaluate whether the
Brazilian Amazon is undergoing a fire transition, we examined the shape of the relationship
between active fires count and forest cover by comparing three Generalised Linear Mixed
Models (GLMM): (i) null, (ii) linear and (iii) quadratic. We produced the GLMMs using
each grid cell and each year as random effects variables—a spatial and a temporal variable,
respectively. Given the high number of zeros in the fire count dataset, we used a zero-
inflation model and set the family as negative binomial, to reduce over-dispersion. We
also estimated the R2-marginal and R2-conditional for the GLMM produced using the
Nakagawa et al. [34] method as it can estimate these values for negative binomial models.
To determine the best fit model, we tested and compared the Akaike Information Criterion
(AIC) results. (2) Thereafter, to determine whether the transition point of the fire occurrence
and forest cover relationship is transitioning over time, we produced yearly quadratic
models to extract the vertices values. The use of a quadratic model implies that there
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is an apex at which we find a maximum number of active fires per year in each grid
cell—hereafter, active fire apex-height, and there is also a maximum amount of forest
cover for this to happen, the line of symmetry of the equation—hereafter, forest cover
apex-location (in Figure 3 there is a visual representation of these variables). Thus, we
extracted the apex-height and the apex-location for each year of the active fire and forest
cover relationship. We then calculated how these parameters changed over time. The
behaviour of the peaks in the active fire-forest cover relationship over time is important;
not only is it a direct test of the hypotheses raised by Andela et al. [3], it also allows
us to verify in which landscapes (% of forest cover) the fire is more likely to happen.
(3) Finally, to examine whether deforestation and cropland expansion can predict changes
in the peak values from the active fire and forest cover relationship per year, we produced
Generalised Linear Models (GLM) using active fire apex-height and forest cover apex-
location as dependent variables, and as independent variables we used: (i) deforestation
rates of primary and secondary forests; and (ii) cropland area estimation. In order to find
the best-fitting model for active fire apex-height and forest cover apex-location, we used
the dredge function analysis, where all possible models are considered, and compared their
AIC results. In addition, we produced linear models with the dependent variables and
their most significant independent variables. We conducted all statistical analyses in R v.
4.1.0 using glmmTMB [35], MuMIn [36] and stats [37] packages.
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Our primary objective was to assess whether active fires are being affected by changes
in land use, and not climate. We therefore analysed these changes considering two climate
scenarios: (i) all years, and (ii) removing years with extreme droughts from the analyses,
since in these years the number of active fires is higher than normal because of climate
conditions—Appendix B, Table A3, and Figure A4. We also re-analysed the time series
separating it into two distinct periods—from 2003 to 2011 and from 2012 to 2019—since the
deforestation rates behaviour was very different in the Brazilian Amazon Forest during
these two periods—Appendix C. Furthermore, in order to understand the relationship of the
results with the anthropogenic dynamics in the region we review the socio-environmental
implications of the fire-transition process for the Brazilian Amazon.

3. Results
3.1. Analysing an Amazon Fire-Transition

We found that the distribution between the active fire count and the forest cover
percentage, for each grid cell and year, was best described by a quadratic form (dAIC with
null model = 767,315.8 and dAIC with linear model = 760.6). The quadratic model is shown
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in Figure 3. However, the proportion of active fire counts explained by the fixed term alone
(percentage of forest cover) was low (R2 marginal = 0.06), and the variance explained by
the entire model was significantly higher (R2 conditional = 0.59). The markedly higher
explanatory power of the entire model suggests a strong influence of the random effects
(years and grid cells).

3.2. Key Parameters Defining a Forest Cover-Fire Occurrence Relationship

Both apex-height and apex-location of the forest cover-active fire relationships changed
year to year (Figure 4a). The active fire apex-height registered varied from ~127 in 2013 to
~662 in 2005, while the forest cover apex-location varied from 47.03% in 2007 to 56.74% in
2018. This variation was predicted by time, as with active fire apex-height decreasing from
~524 in 2003 to ~139 in 2019 (R2 = 0.52), and the forest cover apex-location increasing from
landscapes with 50.7% of forest cover in 2003 to landscapes with 55.0% of forest cover in
2019 (R2 = 0.3) (Figure 4b,c).
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When we investigated these relationships in two different periods (Figure 5): (i) dur-
ing the 2003–2011 period, the active fire apex-height had an important decreasing trend
(R2 = 0.61) and the forest cover apex-location decreased but with a low significance value
(R2 = 0.11); ii) the opposite happened with the behaviour of these variables during the
2012–2019 period, in which the active fire apex-height slightly increased, with a low sig-
nificance value (R2 = 0.038), and the forest cover apex-location significantly increased
(R2 = 0.48). These results therefore indicate an important change in the fire transition dur-
ing the two different periods, with the first period being most important in determining the
decrease in the apex-height, and the second period being more important for determining
the increase in the apex-location.
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3.3. The Influence of Deforestation Rates and Cropland Expansion on the Forest Cover-Fire
Occurrence Relationship

The dredge analyses (Table A1) showed that two models are more plausible (dAIC < 2)
for both active fire apex-height and forest cover apex-location. In these models, we found:
(i) the deforestation rates in all best-ranked models for the active fire apex-height (R2 = 0.59
and p-value = 0.0003 in the bivariate analyses—Figure 6a), and (ii) the cropland area is in
all best-ranked models for forest cover apex-location (R2 = 0.38 and p-value = 0.009 in the
bivariate—Figure 6b). The strength of these relationships improved when we removed the
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severe dry years from the analyses (lower AIC values—Table A3), and we found better
results in the active fire apex-height by deforestation rates model (R2 = 0.67—Figure A4c).
In addition, when we investigated these significant relationships in two different periods
(Figure A6), we found that there is a strong relationship between the active fire apex-height
and the deforestation rates during the 2003 to 2011 period (R2 = 0.57 and p-value = 0.02)
and an important relationship between forest cover apex-location and cropland area in
the 2012 to 2019 period (R2 = 0.38 and p-value = 0.05). In summary, the key variables are
important to describe the active fire apex-height and forest cover apex-location, and the
behaviour of each one is better predicted in different periods.
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4. Discussion
4.1. Fire-Transition Patterns in Brazilian Amazon

Our analyses indicated that fire occurrence in Amazonia follows a quadratic relation-
ship with forest cover and spatiotemporal variables. This relationship is not static over
time: between 2003–2019, the active fire apex-height decreased while the forest cover apex-
location increased. The deforestation rates and the cropland expansion predicted mainly
the apex of these relationships within the landscape. Our results show that the reduction in
the deforestation rates is crucial to the reduction of fire occurrence, reflecting the fact that
many of the detected fires are those detected during the land clearing process. Furthermore,
we highlight that the fire occurrence apex is transitioning to more forested landscapes
which may be vulnerable to increased deforestation. We also show that the expansion of
mechanised agriculture practices is resulting in the peak of fire occurrence shifting towards
regions with higher levels of forest cover. Thus, our results broadly support the model of
Andela et al. [3]. We found that the fire-transition in the Brazilian Amazonian Forest is
related to the stage of land-use transition, increasing during the deforestation process, and
further reducing when more advanced agricultural practices are implemented.

The amount of variance explained was higher when we removed the years with severe
droughts from the analyses (Table A3 and Figure A4c,d). This is plausible since in these
years, the amount of deforestation capture by Mapbiomas (Figure A2a) and the amount
of active fire occurrence (Figure A1b) significantly increased, compared to previous years.
For instance, Aragão et al. [11] found a 36% increase in fire incidence during the 2015
drought event, and in that year the largest ever ratio between fire and deforestation was
registered. On the other hand, the global analysis by Andela et al. [3] indicated that climate
is relevant only for the intra-annual fire occurrence behaviour. In the Amazonian forest,
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intra-annual analyses have indicated that fire occurs mainly during the dry season and
there is also a spatial variance in this fire regime [31,38]. These results, in accordance
with the scientific literature, indicate that variation in climate has an important role in the
fire-transition relationships.

4.2. Spatiotemporal Changes in Fire Occurrence

Our findings suggest that the two key variables responsible for the spatiotemporal
variation in the fire-transition process in the Brazilian Amazonian Forest were the an-
nual rates of deforestation and cropland expansion. In addition, our results have shown
that in the first analysed period—from 2003 to 2011—higher rates of deforestation led to
greater active fire apex-heights, while in the second period—from 2012 to 2019—there is
a clearer relationship between the expansion of the cropland areas and the forest cover
apex-location. These differences can be explained by changes in the Brazilian Amazon
during these periods, as deforestation rates significantly decreased during the first period
and constantly increased in the second period [39]; while there was a constant expansion of
the cropland reas.

The use of fire is expected during the initial phases of land-use transition (deforestation)
since fire is a cheap tool to clear felled vegetation when converting forests to agriculture [22]. The
deforestation phase is then followed by consolidation, which often starts with pastures, which
may later on be converted into croplands as part of the intensification process [10,40]—although
some deforested areas are converted straight to cropland [10]. Fire is a key tool during the
initial stages of the clearance process. For instance, Aragão and Shimabukuro [23] found that
most of the reported fires occurred in recently deforested areas, indicating that new frontiers of
deforestation may increase fire occurrence in the Brazilian Amazon Forest. Morton et al. [10]
showed that the cropland expansion trend is linked with the increase in the average size of
deforested areas and with the frequency of fire usage for deforestation.

4.3. Socio-Environmental Implications of the Fire-Transition Relationship with Land-Use Variables
in the Brazilian Amazon

The fire-transition behaviour and its relationships with deforestation and cropland
expansion are key to understanding mechanisms and developing more effective environ-
mental policies. Although agricultural intensification and mechanisation appear to be a
solution to fire, this is overly simplistic as they have many important problems associated
with them. First, much of the environmental harm associated with deforestation and
fire may occur in the initial phase of these relationships, meaning any potential benefits
of mechanisation for fire reduction occur when the remaining forests have already been
fragmented and degraded. Second, an increase in incentives for cropland expansion may
lead to more deforestation [10,40]. Third, high capital activities are responsible for con-
flicts between land rights of the local populations and the agribusiness sector, since these
socioeconomic dynamics only indulge business-as-usual development, excluding people
from its process [41,42]. In the Brazilian Amazon, these disputes over territory during the
land-use transition are commonly violent [42], causing irreparable social and cultural losses
to local communities including the depletion of key ecosystem services provided by the
forest [43], which compromises the ways of living of local communities [44]. Moreover,
mechanised agriculture is a high-capital intervention that is not affordable for most of the
small-scale farmers, who have less access to financial subsidies, besides depending on
a supply chain infrastructure to deliver high-income agricultural production limited to
peri-urban or easily accessible areas [45]. Finally, cropland expansion invariably involves
increased use of agrochemicals, which result in a substantial amount of environmental
pollutants entering the soil and being destined to groundwater water and surface water
supplies [46] and social conflicts due to the depletion of natural resources [47]. Thus, this
land-use transition is unfeasible for sustainable land management.

Taken together, these social and environmental impacts show that intensification
should not be seen as a solution to Amazonia’s fire problem. Rather, our results highlight the
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importance of ceasing further deforestation; forest loss is the biggest driver of changes in fire
occurrence and marks the start of a transition to more intensive land uses. However, actions
taken to reduce deforestation may not on their own be effective at preventing new forest
fires, especially given the increases in temperature and reductions in dry season rainfall [48]
and increasing levels of forest disturbance [49] that make forests more flammable [12,50].
Tackling forest fires will require a broad range of measures, including greater participatory
policy development (e.g., Carmenta et al. [51]), restoration [52], and much greater support
for community firefighters and development of coherent fire monitoring and combat plans
for protected areas [53].

5. Conclusions

Our study shows that the fire-transition process in the Brazilian Amazonian Forest
is mainly related to anthropogenic changes in landscapes and that the fire occurrence
apex is transitioning to more forested landscapes. We found deforestation rates as a key
determinant of the apex of active fire occurrence, although cropland expansion (presumably
in regions with low forest cover) has resulted in the apex of fire occurrence happening
in areas with higher forest cover. This transition of the peak of active fire occurrence to
areas with more forest cover appears to have accelerated in the last few years (2012–2019
analyses). So, although fire occurrence is lower in the more advanced phases of land-use
transition, this fails to resolve fire occurrence at the frontier, where it is associated with
deforestation and land speculation, and where it has the potential to affect large areas of
previously undisturbed primary forests. Improving our understanding of the relationships
underlying fire transition is important for the sustainable planning and management of the
Amazon landscape.
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Appendix A

Most of the active fires occurs in grids with more than 50% of forest cover (Figure A1a),
being the peak of hotpots occurrence in landscapes with 80% of forest cover. Over the
analysed years, there was an important decrease in the active fires’ occurrence (Figure A1b),
from peaks of ~300,000 hotspots in the El Niño of 2005 to ~175,000 hotspots in the El Niño
of 2015.
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Figure A1. Active fire behaviour plots: (a) Mean of active fires per year divided per fractional forest
cover of each grid cell. (b) Active Fire per year.

We used deforestation data for both primary and secondary forests from the Mapbiomas
Deforestation and Regeneration database [25]—Figure A2a. This Mapbiomas database is still
new and being improved over time. Its method differs from PRODES/INPE [24] (Figure A2b)—
which is the most conventional method to calculate deforestation in the Brazilian Amazon. The
Mapbiomas Deforestation and Regeneration database computes deforestation from the first to
the last day of the normal year and estimates the deforestation of secondary vegetation. Because
of the differences in the deforestations rates patterns at the middle of the time series (decreasing
in the first years and then increasing again), we conducted some investigations separating the
analyses in two periods (2003–2011 and 2012–2019; Appendix C).
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In order to determine the years impacted by severe droughts, we used the Climate
Hazards group Infrared Precipitation with Stations (CHIRPS) [54] monthly dataset to
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calculate the Maximum Cumulative Water Deficit (MCWD) [55,56]. We re-sampled the
MCWD data to 0.45◦ and re-projected it to our grid to compute the pixel-based MCWD
anomalies. We calculated these anomalies from the long-term mean from 1981 to 2019 (t)
normalised by the standard deviation (σ) [57]. A reclassification was then applied and
years with result values smaller than −1.96 were considered as anomalous. Lastly, the
number of cells with MCWD anomalies for the entire study area per year was calculated
(Figure A3). From these results, we considered 2005, 2010, 2015 and 2016 as dry years, and
we made analyses where these years are not modelled to observe their implications in the
analyses (Appendix B).
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Appendix B

In order to find the best-fitting model for predicting the active fire apex height and
the forest cover apex-location, we produced a dredge analysis with the key variables (Ta-
ble A1). For these models, we considered total deforestation rates of primary and secondary
vegetation, and soybean areas as a marker of cropland area. In these analyses, all years
were considered. The deforestation rate was the variable that better predicted the active
fire apex-location, being in all the best ranked models; and cropland area was the variable
most important for predicting the forest cover apex-location. However, both variables were
found in the best-fitting models (dAIC < 2) for apex-height and apex-location.

We also analysed the active fire apex-height and forest cover apex-location models,
considering soybean and temporary crop as markers of cropland (mechanised production)
areas (Table A2). We did not use these models because we could not confirm whether all
temporary crops areas were mechanised. However, and for reference only, the results from
the models were similar to the ones found when only the soybean areas were considered.
Deforestation was the most repeated variable in the active fire apex-height models, and the
cropland area was included in a greater number of forest cover apex-location models.
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Table A1. Predicted models for the active fire apex-height and forest cover apex-location models.
These analyses considered deforestation rates and cropland area as independent variables. The results
are ranked by the AIC of each function.

Dependent Variable Intercept Cropland
Area

Deforestation
Area

Deforestation X
Cropland AICc Delta Weight

Active Fire
Apex-Height

2003–2019

68.1341 NA 0.0252 NA 214.2524 0.0000 0.5396

185.1137 −0.0053 0.0210 NA 214.8702 0.6178 0.3962

227.6442 −0.0110 0.0176 0.0000 218.8215 4.5690 0.0549

479.5580 −0.0106 NA NA 222.6618 8.4093 0.0081

331.6909 NA NA NA 226.4416 12.1892 0.0012

Forest Cover
Apex-Location

2003–2019

50.4838 0.0002 NA NA 78.0671 0.0000 0.4685

47.9510 0.0002 0.0002 NA 78.2357 0.1686 0.4306

47.7533 0.0002 0.0002 0.0000 82.3456 4.2785 0.0552

52.8240 NA NA NA 83.1258 5.0587 0.0373

52.7333 NA 0.0000 NA 86.1093 8.0423 0.0084

Table A2. Predicted models for the active fire apex-height and forest cover apex-location models.
These analyses considered deforestation rates and cropland area as independent variables. In these
models, we considered soybean and temporary crops as cropland area. The results are ranked by the
AIC of each function.

Dependent Variable Intercept Cropland
Area

Deforestation
Area

Deforestation
X Cropland AICc Delta Weight

Active Fire
Apex-Height

2003–2019

68.1341 NA 0.0252 NA 214.2524 0.0000 0.5024

217.5720 −0.0051 0.0203 NA 214.7015 0.4490 0.4014

339.4363 −0.0152 0.0099 0.0000 217.8758 3.6234 0.0821

531.5038 −0.0103 NA NA 221.5704 7.3179 0.0129

331.6909 NA NA NA 226.4416 12.1892 0.0011

Forest Cover
Apex-Location

2003–2019

46.5932 0.0002 0.0002 NA 77.1620 0.0000 0.5438

49.8425 0.0002 NA NA 78.0471 0.8851 0.3494

45.8719 0.0003 0.0003 0.0000 81.1776 4.0156 0.0730

52.8240 NA NA NA 83.1258 5.9637 0.0276

52.7333 NA 0.0000 NA 86.1093 8.9473 0.0062

Additionally, we investigated the active fire apex-height and forest cover apex-location
without considering dry years (2005, 2010, 2015 and 2016). We found these analyses
relevant because in these years, the amount of active fire occurrence tends to be greater
than in normal years, which might change the fire-transition patterns during the analysed
period (Table A3). In these analyses, we also found the deforestation rates as the key
variable for active fire apex-location and cropland area as the main predictor of forest cover
apex-location. However, the results of the models performed slightly better without the
dry years.

Subsequently, we present the key variables results when compared with the active fire
apex-height and forest cover apex-location when the severe dry years (2005, 2010, 2015 and
2016) are not considered in the analyses (Figure A4). In these analyses, the deforestation
rates were more significant to describe the active fire apex-height without dry years in the
analyses, and the cropland areas were slightly relevant to predict the forest cover apex-
location when all years are considered. However, the differences between these models
and the ones with all years were not significant.
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Table A3. Predicted models for the active fire apex-height and forest cover apex-location models.
These analyses considered deforestation rates and cropland area as independent variables. In these
models, we removed the years with severe droughts (2005, 2010, 2015 and 2016). The results are
ranked by the AIC of each function.

Dependent Variable Intercept Cropland
Area

Deforestation
Area

Deforestation
X Cropland AICc Delta Weight

Active Fire
Apex-Height
No Dry Years

50.5988 NA 0.0251 NA 162.5920 0.0000 0.8178

118.6297 −0.0030 0.0225 NA 165.9493 3.3573 0.1526

262.6756 −0.0258 0.0104 0.0000 169.8633 7.2713 0.0216

435.2554 −0.0093 NA NA 172.8497 10.2576 0.0048

310.5030 NA NA NA 173.7141 11.1221 0.0031

Forest Cover
Apex-Location
No Dry Years

51.0259 0.0001 NA NA 61.9643 0.0000 0.5479

52.9153 NA NA NA 63.4096 1.4453 0.2660

49.1293 0.0002 0.0001 NA 64.8540 2.8897 0.1292

53.0844 NA 0.0000 NA 66.8583 4.8940 0.0474

47.7071 0.0004 0.0003 0.0000 70.0586 8.0943 0.0096
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Appendix C

We also analysed the active fire apex-height and forest cover apex-location in two
different periods: (i) from 2003 to 2011, period in which the deforestation rates had a
significant decrease due to governmental interventions in Amazon to reduce deforestation;
and (ii) from 2012 to 2019, during which the deforestation rates first stabilised and then
increased again. In addition, there were also differences in the fire behaviour when these
two periods are compared. Figure A5 shows the fire behaviour in each grid cell, wherein
most of the areas with the oldest occupancy history (northeast and south-southeast) had a
reduction in fire occurrence, and the rest had a small increase. Moreover, there are more
areas with a significant decrease in fire occurrence than there are areas with a significant
increase in fire occurrence.
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Figure A5. Standard deviation difference between the fire occurrence in the two analysed periods.
We made this calculation based on the mean of the second period (2012–2019) minus the mean of the
first period (2003–2011).

Additionally, we performed a dredge analysis of the active fire apex-height and forest
cover apex-location for each period, to investigate whether deforestation rates or cropland
areas can predict their behaviour (Table A4). Our results show that deforestation metrics are
good for predicting the apex-height in the 2003–2011 period, while we found the cropland
areas in the second best-fitting model for all dependent variables. The apex-location models
for the 2012–2019 period had three models with similar AIC, and they also had the smallest
AIC values when all analyses are considered.
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Table A4. Predicted models for the active fire apex-height and forest cover apex-location models for
the two analyses periods: (i) 2003–2011 and (ii) 2012–2019. These analyses considered deforestation
rates and cropland area as independent variables. The results are ranked by the AIC of each function.

Dependent Variable Intercept Cropland
Area

Deforestation
Area

Deforestation
X Cropland AICc Delta Weight

Active Fire
Apex-Height

2003–2011

147.816 NA 0.022 NA 121.706 0.000 0.523

753.998 −0.048 NA NA 122.615 0.908 0.332

421.384 NA NA NA 124.472 2.766 0.131

7.281 0.011 0.027 NA 128.872 7.165 0.015

175.291 -0.023 0.009 0.000 138.938 17.231 0.000

Active Fire
Apex-Height

2012–2019

230.786 NA NA NA 94.197 0.000 0.868

177.852 0.002 NA NA 99.182 4.985 0.072

183.840 NA 0.006 NA 99.572 5.375 0.059

187.893 0.003 −0.002 NA 108.494 14.297 0.001

−266.007 0.026 0.061 0.000 126.271 32.074 0.000

Forest Cover
Apex-Location

2003–2011

51.450 NA NA NA 45.261 0.000 0.735

53.629 −0.0003 NA NA 48.610 3.348 0.138

49.862 NA 0.0001 NA 48.836 3.575 0.123

56.883 −0.0006 −0.0001 NA 55.746 10.485 0.004

55.904 −0.0004 0.0000 0.0000 67.544 22.283 0.000

Forest Cover
Apex-Location

2012–2019

54.369 NA NA NA 37.193 0.000 0.398

50.529 0.0002 NA NA 37.494 0.302 0.343

49.036 NA 0.0007 NA 38.094 0.901 0.254

49.194 0.0001 0.0003 NA 45.967 8.774 0.005

65.328 −0.0007 −0.002 0.0000 61.432 24.239 0.000

We also investigated the individual relationship between the active fire apex-height
and the forest cover apex-location per period with each of the key independent variables
(Figure A6). Our results shows that the deforestation rates are key to understanding the
active fire apex-height in the first period (2003–2011)—Figure A6a, while the increase in
the cropland area is strongly related with the increase in the forest cover apex-location in
the second period (2012–2019)—Figure A6d. Therefore, to reduce the amount of active
fire occurrence per year the deforestation of new areas must be avoided, and investments
in mechanized agriculture are not a guarantee that forests will be preserved in the near
future, since the increase in its area is related to an increase in the forest cover apex-location
investigated in our analyses.
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