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Abstract: Land use and land cover (LULC) change have intense implications on soil resources,
that requires research attention and global collaboration to take urgent actions. The present study
attempted to analyze the impact of LULC change on soil erosion and sedimentation in Muger Sub-
basin, southwestern parts of Ethiopia. Landsat TM 1986, Landsat ETM+ 2003, and Landsat OLI/TIRS
2020 are used for LULC analysis. We used rainfall erosivity, soil erodibility, slope length and steepness,
cover management, and conservation practices to calculate soil erosion and sedimentation between
1986 and 2020. In this study, the integration of revised universal soil loss equation (RUSLE) model and
geographic information system (GIS) are used to analyze the impact of LULC change on soil erosion
and sedimentation. The average soil loss rate is about 53.2 ton/ha/year in 1986 and increased to 63.6,
and 64 ton/ha/year in 2003, 2020, respectively. Result revealed that about 2707.7 ha (33%), 3124.5 ha
(38.1%) and 3197.4 ha (38.9%) were exposed to severe erosion in 1986, 2003 and 2020, respectively. The
mean sediment yields of the study area is estimated to 7.8 ton/ha/year in 1986, and later increased to
10, and 10.2 ton/ha/year in 2003, and 2020, respectively. Results revealed that the steep slope areas
with crop land experience considerable soil loss, with mean soil loss increasing over all study period.
Thus, urgent policy on the wise use of natural resources is essential not optional to reduce the current
soil loss and sedimentation in Muger Sub-basin.

Keywords: RUSLE model; mean annual soil loss; soil erosion; sediment yield; Muger sub-basin

1. Introduction

Soil erosion caused by land degradation is one of the world’s most serious environ-
mental problems [1,2]. Over 75 billion tons of soil lost by erosion every year at global
level [3,4]. These losses of soil have a significant impact on natural resource conservation
as well as agricultural production [4–6]. Substantial studies have shown that soil loss and
sedimentation have an impact on soil degradation, agricultural yield productivity, and
increased nutrient accumulation in water bodies, i.e., eutrophication [6–8]. Frequent land
use and land cover (LULC) change and unwise use of natural resources aggravate soil
erosion and sedimentation [4–6,9,10]. Between 2001 and 2012, the LULC change contributes
about 2.5% for the global soil mean loss [4,6]. Soil erosion can significantly contributes to
the problems of food insecurity of agricultural based economy of developing countries like
Africa, Asia and Latin America [11–13]. In comparison to Asia and Latin America, Africa is
highly exposed to soil erosion [12,14].

The problem of soil erosion and sedimentation driven by LULC and other underly-
ing factors like climate change has been a topic of concern over highland countries like
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Ethiopia. The cumulative impacts of rapid population growth and unwise use of resources
contributes for the increasing trends of soil erosion and sedimentation in Ethiopia. Forest
encroachment to agricultural land is most likely the major factors that contributes for the
current environmental problems in the country [15,16]. Study conducted in the Blue Nile
Basin confirmed that rapid population growth contributed to LULC change which in turn
to erosion risk and hazardous [8]. The increasing trend of human population boosting
space demand for agricultural land and other economic activities. The total population
of Ethiopia is about 114.96 million (Estimated as December 2020) with a growth rate of
2.57% [17]. Un imbalance between human needs and high demand for cultivated land con-
tributes for the current environmental challenges of Ethiopia. About 85% of the total export
earning, and 50% of the gross domestic product of Ethiopia is covered by agriculture [6,18].

According to [19], substantial areas around the Ethiopian highlands have been severely
eroded, which requires multi-sectoral collaboration to recover. These issues are the cumula-
tive effects of unwise use of land resources and the rapid population growth [8,20]. Severe
land degradation and soil erosion has been documented over the central highland regions
of Ethiopia [21,22]. Substantial studies show that the Ethiopian highlands are losing 200 to
300 tons of soil per hectare per year [6,23,24]. In Ethiopia, the presences of heavy rainfall,
less vegetation cover, and high topography are contributing to the severity of soil loss and
sedimentation. Likewise, deforestation, rapid urbanization, cultivation on steep slope, and
overgrazing were another contributing factors for severity of soil loss and sedimentation in
the country [6,24,25]. Soil erosion and sedimentation can significantly reduce agricultural
yields, which enhances the conversion of forest ecosystems to agricultural land [21,26].

The declining of forest ecosystem will likely intensify climate extreme such as drought
and flood. Research finding indicated a strong linkage between land degradation and
climate extremes. Previous studies show that Ethiopia had severe and frequent drought
and famine over the past decades [20,27]. Ref. [28] in the wettest parts of Ethiopia also
detected the presences of extreme and severe drought and floods over the past several
decades. The occurrence of climate extremes can significantly affect soil properties that
may exposed to severe erosion. Soil erosion due to LULC change and other anthropogenic
factors in southwestern parts of Ethiopia. Several studies have been performed to assess
the effects of LULC changes on soil erosion and sedimentation [20,29,30], but the status of
soil loss and yield sediment in the Muger Sub-basin is unknown. To design appropriate
intervention strategies, investigating the impact of LULC change on soil erosion and yield
sedimentation are essential not optional. As a result, soil loss assessment is a pre-requisite
actions to design soil and water conservation measures [20,31–34].

Several scholars have been used revised universal soil loss equation (RUSLE) model
by integrating with geographic information system (GIS) to quantify the amount of soil
loss in different parts of the world [1,35–37]. Substantial studies have been used this model
due to its compatibility with GIS and applicability to quantify the net and mean soil loss
under different ecosystems types and management situations [1,20,32,34,38,39]. The RUSLE
model is more adaptable, simple to apply, and works with GIS technology [37,40]. We
selected the RUSLE because it is successful in highland areas and more operational in
estimating annual soil loss with less field data [41–44].

Although the impacts of LULC change on soil loss and sedimentation have been
studied, the southwestern parts of Ethiopia did not get research attention and little is
known about the Muger Sub-basin. The rapid conversion of forest cover and other land
cover classes to cultivated land worsen soil erosion and sedimentation. In spite of this facts,
there is a knowledge gap on the quantity of soil loss and sedimentation in the study area.

2. Materials and Methods
2.1. Study Area Descriptions

The Muger Sub-basin is located in Oromia regional state, Ethiopia. The absolute
location of the study area is between 9◦ 05′18.7′′–10◦01′21.7′′ N latitude and 37◦44′29.77′′–
39◦01′6.7′′ E longitude. Topography of the study area varies between 930 and 3530 meter
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above sea level (Figure 1). The study area covers about 8188 km2. The study area tem-
perature is warm to hot. The mean maximum temperature is between 16 and 31.5 ◦C,
while the mean minimum temperature varied from 3 to 16.5 ◦C [45,46]. The annual rainfall
around Muger Sub-basin is between 833 and 1326 mm. Leptosols and Luvisols are the most
dominant soil types in Muger Sub-basin. Other common soils occurring in the study area
includes Cambisols, Nitosols, and Rigosols [45,46].
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Figure 1. Map of the study area.

According to [46] the Muger sub basin is characterized as three main climate classifica-
tion: lowland, middle land, and highland. Due to diversified climate types, varies types of
crops are cultivated in this area [19]. In 2007, the Muger Sub-basin has a total population
of 1,827,639 [47,48]. The population projection for 2017, and 2020 was about 2,381,946 and
2,523,089, respectively [48,49].

2.2. Land Use and Land Cover

According to [45], of the different land-use in Muger Sub-basin, agro-pastoral and
agriculture are the major ones. Pastoral land is also observed in some part of the basin.
Eight major LULC types namely: cultivated land, shrub land, forest land, settlement,
bare land, water body, grassland, and wetland are identified [48] and utilized for this
study (Figure 2).
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2.3. Data Sources and Types

The present study used four geographic datasets from various sources: rainfall data,
Landsat imagery, Digital Elevation Model (DEM), and digital soil map from Food and
Agriculture Organization (Table 1). We obtained rainfall data of 35 years (1986–2020) of
18 stations in and around Muger Sub-basin from Ethiopian National Meteorological Agency
(NMA) (Table 2). In the present study, the LULC analysis is taken from the previous land
cover map we have done for the LULC analysis, three map for 1986, 2003 and 2020 [48].
Teshome et al. [48] used three Landsat images (i.e., TM Landsat-5 for 1986, ETM+ Landsat-7
for 2003, and OLI-TIRS Landsat-8 for 2020 LULC analysis in Muger Sub-basin). The DEM
obtained from Ethiopian Ministry of Water, Irrigation and Energy (MoWIE) with 30 m
spatial resolution was used to delineate the Sub-basin, to develop elevation, and to generate
the slope of the Sub-basin.
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Table 1. Data types and sources.

Data Category Sources Purpose Period/Resolution

DEM
The shuttle radar topographic

mapping obtained from the
MoWIE Ethiopia

To generate drainage network,
flow length, and LS factor 30 m

Landsat images
Derived from Landsat images

(Landsat-5, Landst-7, and
Landsat 8) [48]

For LULC types and C, and
P-factor 30 m (1986, 2003, and 2020)

Soil data MoWIE, Ethiopia To map soil types and to generate
the soil erodibility (K) factor 1:250,000

Rainfall data NMA To extract the R-factor from the
mean annual rainfall data 1986–2020

Table 2. The mean annual rainfall (mm) and the R-factor.

Stations
Location Mean Annual

Rainfall (mm)
(1986–2020)

R-Factor MJ mm
ha−1 h−1 year−1Latitude (◦N) Longitude (◦E) Elevation (m)

Addis Ababa Obs 9.02 38.75 2386 1213.24 673.72
Kachise 9.61 37.86 2557 1847.11 1029.96

Fiche 9.77 38.73 2784 1156.95 642.08
Debre Berhan 9.63 39.50 2750 928.52 513.71

Gohatsion 10.00 38.24 2507 1203.34 668.16
Gebere guracha 9.82 38.42 2560 1337.10 743.33

Degem 9.82 38.63 3086 1120.82 621.78
Debre Tsige 9.64 38.83 2640 883.55 488.43

Fital 9.62 38.65 2566 978.66 541.89
Muke Turi 9.62 38.65 2649 979.29 542.24

Derba 9.43 38.65 2385 1154.67 640.81
Chancho 9.30 38.74 2632 1536.33 855.30
Sululta 9.18 38.73 2610 1202.92 667.92
Muger 9.45 38.34 2553 1371.37 762.59
Enchini 9.32 38.37 2687 1231.11 683.76
Shekute 9.37 38.04 2581 1448.90 806.16

Harodoyo 9.56 37.96 2532 1478.80 822.96
Jeldu 9.25 38.08 2952 1524.05 848.40

2.4. Soil Loss Estimation Based on RUSLE Model

The revised universal soil loss equation (RUSLE) model has the capacity to calculate the
amount of soil loss over particular area or region [42]. This model considers a real situation
at watershed level [42,50]. The RUSLE is easy to use under data deficient and applicable
at different scale [6,20,33,42,51–55]. Five key parameters namely: rainfall erosivity, soil
erodibility, slope length and steepness, cover management, and conservation practices
were required to calculate soil loss and sedimentation using RUSLE model as indicated in
Equation (1). The overall methodology used for annual soil loss estimation is demonstrated
in Figure 3.

A = R ∗K ∗ LS ∗C ∗ P (1)

where A is the average soil loss (ton/ha/year);

R is rainfall runoff erosivity factor (MJ mm ha/year);
K is soil erodibility factor (ton/ha MJ mm/year);
LS is slope length and steepness factor;
C is land cover and management factor, and
P is conservation practice factors.
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2.4.1. Rainfall Erosivity (R) Factor

R-factor shows the relationship between rainfall kinetic energy and soil nature [56].
Rainfall erosivity of a particular area is influenced by intensity and distribution of rain-
fall [37,57], from the two factors, intensity is the most important factor in influencing erosion
severity [12]. The R-factor is calculated as recommended by [58] to the Ethiopian conditions
(Equation (2)). Rainfall data from 18 stations around the Muger sub-basin are collected
from Ethiopia’s National Meteorological Agency (NMA) from 1986 to 2020 (Table 2). The
estimated R factor was converted into a 30-m resolution using the inverse distance weight
(IDW) method (Figure 4).

R = −8.12 + (0.562∗P) (2)

where R is the rainfall erosivity factor and P is the mean annual rainfall (mm).

2.4.2. Soil Erodibility (K) Factor

The K-factor indicates the capacity of soil particles to resist the influence of soil
detaching after rainfall [56]. This factor indicates the degree of exposure and sensitivity to
soil erosion [38]. However, in case of deficient on soil data soil color can be used as the base
for K-factor determination [15,59]. The K-factor is assigned based on soil color and types,
and clipped with Ethiopian digital soil map (Figure 5a). The K value were given based on
soil color and scientific literatures on Ethiopian highland (Table 3).



Land 2022, 11, 2173 7 of 20Land 2022, 11, x FOR PEER REVIEW  7 of 23 
 

 
Figure 4. Mean annual Rainfall (mm) (a) and Rainfall erosivity (R) factor (b) of the Muger sub-
basin. 

2.4.2. Soil Erodibility (K) Factor 
The K-factor indicates the capacity of soil particles to resist the influence of soil de-

taching after rainfall [56]. This factor indicates the degree of exposure and sensitivity to 
soil erosion [38]. However, in case of deficient on soil data soil color can be used as the 
base for K-factor determination [15,59]. The K-factor is assigned based on soil color and 
types, and clipped with Ethiopian digital soil map (Figure 5a). The K value were given 
based on soil color and scientific literatures on Ethiopian highland (Table 3). 

Figure 4. Mean annual Rainfall (mm) (a) and Rainfall erosivity (R) factor (b) of the Muger sub-basin.

Land 2022, 11, x FOR PEER REVIEW  8 of 23 
 

 
Figure 5. Map of soil types (a) and Soil erodibility (K) factor (b). 

Table 3. Soil types, color, coverage and its K-factor. 

Soil Types Soil Color K-Factor Area (ha) Percentage (%) References 
Calcic Vertisols Black 0.15 29,407.92 3.59 [20,51] 
Chromic Luvi-

sols Brown 0.2 68,522.20 8.37 [20,51] 

Eutric Cambisols Brown 0.2 29,829.01 3.64 [10,51] 
Eutric Fluvisols Yellow 0.3 27,378.35 3.34 [20,51] 
Eutric Leptosols Red 0.25 149,753.05 18.29 [34,51] 
Eutric Regosols Brown 0.2 21,513.83 2.63 [20,34,51] 
Eutric Vertisols Black 0.15 93,894.68 11.47 [20,34,39.51] 
Haplic Alisols Red 0.25 65,453.09 7.99 [15,20,51] 

Haplic Luvisols Brown 0.2 52,497.27 6.41 [16,20,34,51] 
Haplic Nitisols Red 0.25 21,213.26 2.59 [14,39,51] 
Rendzic Lepto-

sols 
Red 0.25 247,882.08 30.27 [34,51] 

Rhodic Nitisols Red 0.25 11,322.20 1.38 [34,51] 
Urban, mining, 

etc - 0 75.10 0.01 [60] 

Water bodies - 0 68.92 0.01 [30,60] 
 

Figure 5. Map of soil types (a) and Soil erodibility (K) factor (b).



Land 2022, 11, 2173 8 of 20

Table 3. Soil types, color, coverage and its K-factor.

Soil Types Soil Color K-Factor Area (ha) Percentage (%) References

Calcic Vertisols Black 0.15 29,407.92 3.59 [20,51]
Chromic Luvisols Brown 0.2 68,522.20 8.37 [20,51]
Eutric Cambisols Brown 0.2 29,829.01 3.64 [10,51]
Eutric Fluvisols Yellow 0.3 27,378.35 3.34 [20,51]
Eutric Leptosols Red 0.25 149,753.05 18.29 [34,51]
Eutric Regosols Brown 0.2 21,513.83 2.63 [20,34,51]
Eutric Vertisols Black 0.15 93,894.68 11.47 [20,34,39,51]
Haplic Alisols Red 0.25 65,453.09 7.99 [15,20,51]

Haplic Luvisols Brown 0.2 52,497.27 6.41 [16,20,34,51]
Haplic Nitisols Red 0.25 21,213.26 2.59 [14,39,51]

Rendzic Leptosols Red 0.25 247,882.08 30.27 [34,51]
Rhodic Nitisols Red 0.25 11,322.20 1.38 [34,51]

Urban, mining, etc - 0 75.10 0.01 [60]
Water bodies - 0 68.92 0.01 [30,60]

2.4.3. Slope Length and Steepness (LS) Factor

Water erosion is more severe on steeper and longer slopes, while less common on
gentler and shorter slopes [56,57,61]. The LS-factor is estimated from DEM with a 30-meter
resolution from the slope (Figure 6) as used by [62,63]. The standard slope length 22.1 m
and slope steepness of 9% [42,64] and expressed as Equation (3).

LS =

(
λ0.3

22.1

)
∗
(

S
9

)1.3
(3)

where λ is flow length, and S is slope in percent.
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2.4.4. Land Cover and Management (C) Factor

Soil erosion by water is more common in locations where vegetation is limited, while
lower around high vegetation cover [61]. The C-values (Table 4) were allocated for different
LULC class based on scientific literature [10,15,16,30,34,51,65]. Cultivated land, forest land,
grassland, settlement, and shrub land C-factor values were compiled from [16,34], for
water bodies and wetland were adapted from [15,51,66] and for bare land was adapted
from [10,30,65]. The C factor maps of 1986, 2003 and 2020 is illustrated in (Figure 7).

Table 4. The LULC types in Muger sub-basin and the corresponding C and P factors.

LULC Types
1986 2003 2020

C-Factor P-Factor
Area (ha) % Area (ha) % Area (ha) %

Bare Land 9413.19 1.15 8601.39 1.05 4654.5 0.57 0.05 0.8
Cultivation land 563,823 68.86 592,957 72.42 576,806 70.44 0.15 0.9

Forest land 96,475.9 11.78 76,634.6 9.36 48,326.3 5.90 0.001 0.7
Grassland 12,482.9 1.52 28,152.5 3.44 3362.4 0.41 0.01 0.8
Settlement 262.89 0.03 6182.91 0.76 12,563.5 1.53 0.004 0.9
Shrub land 117,792 14.39 92,954.9 11.35 165,935 20.27 0.014 0.8
Water body 2764.56 0.34 2066.04 0.25 4613.58 0.56 0.00 0.0

Wetland 15,809.5 1.93 11,274.6 1.38 2562.66 0.31 0.05 0.8
Total 818,823.9 100 818,823.9 100 818,823.9 100
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2.4.5. Support Practice (P) Factor

The P value ranges from 0 to 1, where values closer to 0 shows better conservation
activities, while values near to 1 indicating poor conservation [1,42,67]. The p value is
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calculated based on the slope gradient and conservation practices [15,20,34,51]. The P-
factor value for each LULC class is adapted from literature [8,30,66,68,69]. The P factor
maps of 1986, 2003 and 2020 is indicated in (Figure 8).
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2.5. Estimation of the Sediment Delivery Ratio (SDR)

Sediment delivery ratio (SDR) is calculated by using different parameters such as;
channel slope, stream density, LULC, sediment source, and rainfall-runoff [70]. The work
followed a method proposed [71] (Equation (4)). The SDR equation have been widely used
fin the northwestern parts of Ethiopia, with reasonable forecast results [20,30,72]. The SDR
is also utilized in other countries; Irga watershed in Jharkhand, India [73,74]; Kalu Ganga
basin, Sri Lanka [74,75], and in Sebeya watershed in Congo river, Congo [55]. In this study,
SDR was determined by adopted the model developed by [71] using Equation (4).

SDR = 0.627 ∗ (SLP)0.403 where SLP =
∆Ch
Lc

(4)

where SLP is stream slope expressed in percent;

∆Ch is the channel divide and outlet;
Lc is the distance between the same two points parallel to the mean channel.
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Hec GeoHMS was used to compute the stream slopes after mapping the flow direction,
accumulation, and drainage network [54]. SDR was finally computed in the raster calculator
tool in GIS environment using Equation (5).

SDR = 0.627 ∗ (SLP)0.403 (5)

2.6. Estimation of Sediment Yield (SY)

Sediment yield is a function of sediment delivery ratio and gross erosion [55]. Three
SY raster grids were calculated for the years 1986, 2003, and 2020, assuming that LULC
changes have an impact on sedimentation [55]. The SY value for the three-time period is
calculated using Equation (6).

SY = SDR ∗A (6)

where SY denotes sediment yield ((t/ha)/year); SDR is sediment delivery ration, and A is
annual mean soil loss ((t/ha)/year).

3. Results and Discussion
3.1. Land Use Land Cover Change

According to [48], the results show that cultivated land, shrub land, forest land,
settlement, bare land, water body, grassland, and wetland are major LULC in Muger Sub-
basin. Overall classification accuracy was found to be 85.45, 88.51, and 89.39% for the year
1886, 2003, and 2020, respectively. The Kappa statistics were 0.79, 0.83, and 0.83 for the 1986,
2003, and 2020, respectively. Cultivated land was the dominant LULC types which covers
68.88%, 72.42% and 70.44% in 1986, 2003, and 2020, respectively (Table 5 and Figure 2).
Substantial studies on Ethiopia have also found that cultivated land is the major LULC
with an increasing trend caused by rapid population growth and increasing demand for
cultivated land [10,48,76–78].

Table 5. LULC change the percentage and rate of change in the Muger sub-basin between 1986, 2003,
and 2020 adapted from [48].

LULC
Types

1986 2003 2020 Percentage Change (%) Rate of Change in ha/year

Area
(ha) % Area

(ha) % Area
(ha) % 1986–

2003
2003–
2020

1986–
2020

1986–
2003

2003–
2020

1986–
2020

Bare Land 9413.19 1.15 8601.39 1.05 4654.5 0.57 −8.62 −45.89 −50.55 −47.75 −232.17 −139.96
Cultivation

Land 563,823 68.86 592,957 72.42 576,806 70.44 5.17 −2.72 2.30 1713.76 −950.06 381.85

Forest
Land 96,475.9 11.78 76,634.6 9.36 48,326.3 5.90 −20.57 −36.94 −49.91 −1167.14 −1665.19 −1416.16

Grass
Land 12,482.9 1.52 28,152.5 3.44 3362.4 0.41 125.53 −88.06 −73.06 921.74 −1458.24 −268.25

Settlement
Area 262.89 0.03 6182.91 0.76 12,563.5 1.53 2251.90 103.20 4679.00 348.24 375.33 361.78

Shrub
Land 117,792 14.39 92,954.9 11.35 165,935 20.27 −21.09 78.51 40.87 −1461.01 4292.95 1415.97

Water
Body 2764.56 0.34 2066.04 0.25 4613.58 0.56 −25.27 123.31 66.88 −41.09 149.86 54.38

Wetland 15,809.5 1.93 11,274.6 1.38 2562.66 0.31 −28.68 −77.27 −83.79 −266.76 −512.47 −389.61
Total 818,823.9 100 818,823.9 100 818,823.9 100 −8.62 −45.89 −50.55 −47.75 −232.17 −139.96

Results show that agricultural land experiencing an increasing trend over the study
period at the expense of forest, grassland and wetland. This finding is in line with the
work obtained by [34], which report an increasing trend of agricultural land and settlement
area in the northwestern parts of Ethiopia. Results revealed that agricultural/cultivated
land increased by 381.85 ha/year. This finding is consistent with the report of various
scholars [20,49,76,77,79].
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3.2. Soil Loss Estimation Using RUSLE Model

The annual soil loss is calculated using RUSLE model. This model considers five major
factors and superimposing each factor to commute the average annual soil loss rate, which
can determine high erosion risk area for further interventions.

3.2.1. Rainfall Erosivity (R) Factor

There is a significant variation of rainfall erosivity factors in the Muger Sub-basin
(Figure 4a). The lowest erosivity value is detected at Debre Tsige station with the value
of 458.43 MJ mm ha−1 h−1 year−1 in the north east, while the highest value is detected at
Kachise station with erosivity value of 1029.96 MJ mm ha−1 h−1 year−1 in the north west
part of the Sub-basin. This finding is a slightly higher than the findings of [10] who found
the value of 1022.79 MJ mm ha−1 h−1 year−1 in western part of Ethiopia.

3.2.2. Soil Erodibility (K) Factor

In the present study, the K-factor is estimated as suggested by [58] for Ethiopian
highlands. To calculate the K-factor value of the Muger Sub-basin we considered soil
color and types (Table 2). Rendzic Leptosols (Red), Eutric Leptosols (Red), Eutric Vertisols
(Black), Chromic Luvisols (Brown) and Haplic Alisols (Red) were the major soil types in
the study area. The Rendzic Leptosols and Eutric Leptosols (Red) are the two dominant
soils in the Sub-basin. The erodibility factor values varied between 0 to 0.3 (Figure 5a).

Substantial studies proved that both water bodies and urban have no estimated
erodibility value [30,60,80]. Thus, these two land cover classes assigned zero K value. The
map revealed that Eutric Fluvisols with Erodibility value of 0.3 and for Rendzic Leptosols
and Eutric Leptosols with erodibility with a value 0.25, while Calcic Vertisols and Eutric
Vertisols Calcic Vertisols assigned 0.15 (Figure 5b). These values are found to be with the
range suggested by [20,81].

3.2.3. Slope Length and Steepness (LS) Factor

The slope of the Muger sub-basin varied between 0 and 426.2% (76.80) (Figure 6a). The
study area is characterized with steps, fragmented hills, and gentle slopes. Steep slopes
with high risk of erosion are characterized by higher LS factor values. This finding is
consistent with findings from other tropical studies [20,33,38].

3.2.4. Land Cover and Management (C) Factor

In the study area cultivated land is a dominant LULC during the study period. In
the present study, the corresponding C values of each cover management is obtained from
scientific literature (Table 4). The C-factor values for the three-time period varied from 0 to
0.15 (Figure 7). These findings are comparable with the work of [10,82] who found that the
C factor from 0.001 to 0.18 in western part of Ethiopia.

3.2.5. Support Practice (P) Factor

The P-factor shows the role of erosion mitigation strategies to minimize soil loss [56].
The P-factor value varied between zero and one, where values near to zero indicates better
conservation practices with minimum erosion, while values approaching to one indicates
low conservation practices (Figure 8).

3.3. Soil Erosion Rate under Different LULC Change

The calculated soil erosion rate is categorized into five major severity classes namely:
very slight, slight, moderate, severe, and very severe following previous studies [8,39,78].
The annual soil loss in the Muger Sub-basin varied from 0 to 867.3 ton/ha/year, 0 to
905.7 ton/ha/year and 0 to 958.2 ton/ha/year in 1986, 2003 and 2020, respectively. Other
study by [29] found the annual soil loss around lake Hawassa lake in south-central part of
Ethiopia found 0 to 605.26 ton/ha/year. The average annual soil loss for the Sub-basin is
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about 53.2 ton/ha/year, 63.6 ton/ha/year and 64.8 ton/ha/year in 1986, 2003 and 2020,
respectively (Table 6; Figure 9).

Table 6. Soil loss (ton/ha/year) in 1986, 2003, and 2020.

Year Min Max Mean

1986 0 867.3 53.2
2003 0 905.7 63.6
2020 0 958.2 64.8
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From the total area, about 33, 38.1, and 38.9% is exposed to very severe erosion risk in
the year 1986, 2003, and 2020, respectively (Table 7; Figure 10). In the year 1986, about 25.5%
is exposed to very slight soil erosion. In 2003, about 24.9% of the study area is categorized
under very slight, 14.6% slight, 11.2% moderate, 11.2% sever, and 38.1% very severe soil
erosion risk. By the year 2020, about 23.9% is categorized as very slight soil erosion risk,
which lower than the results of 1986, and 2003. About 56% and 60% of the Sub-basin
experienced moderate and very sever soil erosion in 1986 and 2020, respectively.
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Table 7. Erosion severity classes and area of soil loss in the Muger Sub-basin.

Severity Class
1986 2003 2020

Soil Erosion Rate (ton/ha/year) Area (km2) % Area (km2) % Area (km2) %

Very slight 0–5 2089 25.5 2037.2 24.9 1950.5 23.9
Slight 5–15 1485.3 18.2 1190.1 14.6 1269.5 15.5

Moderate 15–30 1066 13.0 919.5 11.2 844.2 10.3
Severe 30–50 840 10.3 916.7 11.2 926.4 11.3

Very severe >50 2707.7 33.0 3124.5 38.1 3197.4 38.9
Total 8188 100.0 8188 100 8188 100Land 2022, 11, x FOR PEER REVIEW 14 of 23 
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Figure 10. Muger Sub-basin spatial distribution of soil loss in 1986, 2003, and 2020.

It is not difficult to speculate that the rate of soil erosion decreased significantly
between 1986 and 2003 due to the expansion of cultivated land and declining of forest cover
in the study area as due to rapid population growth and increased demand for more food
supply. In addition to agricultural land expansions, very little efforts were made to protect
the soil for erosion, however, after 2003 onwards governments have encouraged the use of
soil and water conservation measures to minimize the severity of soil loss.

3.4. Impact of LULC Change on Soil Erosion

The estimated annual soil loss across different LULC classes in 1986, 2003, and 2020
is presented (Table 8). Among all LULC, cultivated land is experiencing an increasing
trend in soil loss, i.e., the soil loss is increased from 74.3 ton/ha/year in the year 1986 to
83.7 ton/ha/year and 87.6 ton/ha/year, 2003 and 2020, respectively. Substantial studies
have been reported that LULC change and type significantly influence soil erosion [4,6,83].
After cultivated land, Shrubs land experienced the highest soil loss.
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Table 8. Mean soil loss rate across different LULC classes in the Muger Sub-basin.

LULC Types
1986 2003 2020

Mean Soil Loss
(ton/ha/year)

Mean Soil Loss
(ton/ha/year)

Mean Soil Loss
(ton/ha/year)

Bare land 25.9 26.4 28.1
Cultivated land 74.3 83.7 87.6

Forest land 1.1 1.1 1.2
Grassland 1.0 2.3 3.2
Settlement 1.9 1.9 2.9
Shrub land 7.2 8.0 10.6
Water body 0.0 0.0 0.0

Wetland 2.8 4.3 4.5

3.5. Sediment Yield Estimation

The result of sediment delivery ratio (SDR) in the Sub-basin varied between 0 to
0.54 (54%), which indicates only 46% were re-deposited in the Sub-basin and the others
transported in the form of runoff, which later converted to sediment yield (Figure 11).
Our findings is more or less comparable with the work of [30,72]. The results of the
annual sediment yield ranges from 0 to 195.3 ton/ha/year, 0 to 293.2 ton/ha/year, 0 to
334.5 ton/ha/year in in 1986, 2003 and 2020, respectively. The mean sediment yields in the
Sub-basin increased from 7.8 in 1986 to 10 and 10.2 ton/ha/year, in the year 2003, and 2020,
respectively (Table 9, Figure 12). This finding is comparable with the work reported by [20],
which varied between 6.7, and 9.6 ton/ha/year. Other study also reported between 14.8
and 22.1 ton/ha/year [14].
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Table 9. Soil sediment (ton/ha/year) result during 1986, 2003, and 2020.

LULC Types 1986 2003 2020

Mean 7.8 10 10.2
Max 195.3 293.2 334.5
Min 0 0 0
SD 16.2 18.5 21.5
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4. Conclusions

In this study, we analyzed the effects of changes in LULC on soil erosion and sediment
yield for the period 1986 to 2020. During the period 1986–2003, bare land lost in total
in total of 4758.69 ha equivalent to annual decrease of 139.96 ha/year. While cultivated
land increased in total 12,983 ha, with an average increment by 381.85 ha per year, forest
land lost in total in total of 48,149.6 ha equivalent to annual decrease of 1416.16 ha/year,
grassland lost in total in total of 9120.5 ha equivalent to annual decrease of 268.25 ha/year,
settlement area increased in total 12,300.61 ha equivalent to 361.78 ha/year, shrubs land
increased in total 48,143 ha equivalent to 1415.97 ha/year, water body increased in total
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1849.02 ha equivalent to 54.38 ha/year and wetland lost in total 13,246.8 ha equivalent to
389.61 ha/year annual decreasing rate.

The mean annual soil loss varies greatly between LULC. The findings revealed that soil
loss from cultivated land was higher than in other LULC classes. About 56% and 60% of the
sub basin suffered from moderate to very sever soil erosion in 1986 and 2020 respectively,
and only remaining part of the sub basin had under the very slight and slight soil erosion
categories. The rapid conversion of forest cover to cultivated land resulted in a significant
rate of soil erosion. Thus, high volume of silt can be easily transferred to downstream
in the form of erosion. The results revealed that increasing trends towards cultivated
land and decreasing conservation practices were the main reasons for soil erosion and
sediment yield in the study area. Thus, there is an urgent need of conservation strategies to
minimize the problem of soil erosion and sedimentation. Specifically, afforestation and re-
afforestation programs are crucial to reduce environ-mental risk in general and soil erosion
and sediment yield loss in particular. Soil erosion and sediment yield loss prevention
requires collaboration of multi-sectors. Thus, all concerned stokeholds including the local
people should work hand in hand to minimize the negative effects of soil loss and sediment
loss on the environment. Moreover, further research with fine spatial resolution satellite
images is required to enforce policy makes towards soil and water conservation strategies
in the study area and beyond.
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