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Abstract: Kenya’s vulnerability to climate variability and change has been compounded by depen-
dence on rain-fed agriculture with constrained capacity to adapt, a rapidly growing population,
low-mechanized and low-input smallholder agricultural systems, and compromised soil fertility. The
Ukraine war, COVID-19 and the desert locust invasion have only amplified the prevailing sensitivity
to shocks in the agriculture sector, creating an emphasis on the need to strengthen local agricultural
production to reduce reliance on imports. This paper seeks to assess the opportunities for improving
agriculture adaptation and resilience based on future expected changes in climate, length of the
growing period and agro-ecologies. The study uses 2020 as the baseline year and explores changes in
agro-ecological zones (AEZs) in “near future” 2040 through two representative concentration path-
ways, 4.5 and 8.5, representing a medium carbon emissions and a dire emissions future, respectively.
Google Earth Engine and R Statistics are used in data-processing. Down-scaled climate projections
from CIMP5 are used for future analyses combined with static soil suitability and drainage data.
Fuzzy logic is used to normalize inputs and compute the agro-ecological zones (AEZ). Interesting
results emerge from the study that validate the hypothesis that the seasons and production potential
are shifting. Lowland drylands will experience an increasingly long growing period, creating the
potential for diversifying production systems from rangelands to agro-pastoral systems, with the
capacity to grow more drought-resistant crops and the potential to take advantage of increased runoff
for water harvesting. Midland highland areas, which form part of the food basket areas, have already
started experiencing a reduction in the length of the growing period and agricultural potential. In
these areas, resilience mechanisms will need to consider the expected future reduction in rain-fed
agricultural potential, gendered preferences, convergence of technology and indigenous coping
mechanisms, and drought-resilience-focused diversification.

Keywords: AEZ; Kenya; agro-ecologies; lower eastern; adaptation; resilience; predictions; future;
climate change

1. Introduction
1.1. Background

There is no denying that the climate is changing, and fragmented areas with strained
economies and coping mechanisms are most affected. The rising frequency and intensity of
precipitation variations, heat waves, droughts and floods have all served as catalysts to
rethink and re-evaluate climate adaptation investments, decisions and priorities [1–3]. The
Inter-Governmental Panel on Climate Change (IPCC) has reported the alarming increase
in greenhouse gas (GHG) emissions over the years, with agricultural production and
its effects on land use contributing to these detrimental increases [4,5]. The impacts of
climate change are expected to worsen in environments where other stressors, such as
inflation, poverty and land size, amplify food insecurity [6,7]. The demand for food
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and resource consumption will continue to create a destructive loop where increased
competition for dwindling resources will trigger more degradation and increase losses in
livestock, livelihoods and human lives [8]. In Kenya, agriculture is the backbone of the
economy, contributing to almost 33% of gross domestic product (GDP) and employing more
than 40% of the workforce that represents 70% of the rural population [9]. The evidence
is overwhelming that the shorter recovery period between extreme events will worsen
poverty, trapping smallholder farmers in a cycle of vulnerability [2].

1.2. The Complex Case of Food Insecurity

Already, the capacity for sufficient food production has been affected by cyclic droughts,
floods and unexpected disruptions to regular weather patterns that have resulted in high
human and livestock mortalities, as well as reduced productivity [10–12].

Over 3.1 million Kenyans faced acute food shortages in 2022, following a third consec-
utive below-average rainy season that led to deteriorating food security outcomes driven
by the impacts of poor crop and livestock production, resource-based conflict, livestock
disease and mortality, and the COVID-19 pandemic [13]. The sector’s capacity to address
food security has also been weakened by the disruption of agricultural supply chains and
markets caused by the global financial and economic crisis [1,14].

The Ukraine war occurred when the country was already grappling with the effects of
the COVID-19 pandemic and the desert locust invasion exacerbated the situation further,
resulting in record high food prices due to shortages, and pushing millions more people
into severe poverty and hunger. Years of development progress were undone, with food
prices reaching all-time highs due to conflict in Ukraine, supply-chain disruptions, and the
ongoing economic effects of the COVID-19 pandemic [1].

The changes in climate are expected to continue into the future with implications for
agricultural production. By 2030, it is expected that temperatures will rise by 1 to 2.5 degrees
Celsius. By 2050, there is consensus across the prediction models that the most evident
change will be an increase in the average land surface temperature, estimated at between 3
to 7 °C, resulting in drier conditions and, in some cases, overriding the expected benefits
that could be derived from the projected increase in precipitation in some areas [5,15]. By
the end of the 21st century, climate change is predicted to raise the average temperature by
1.4 to 5.5 °C and the average amount of precipitation by 2 to 20 percent.

Projections also point towards slightly greater warming in the long-rains than in the
short-rains season [5,16].

These changes are expected to result in average declines of around 12 percent in the
output of rain-fed crops, including wheat, maize and rice in Africa by 2080, with a potential
loss of 47% of agriculture revenue to intra-extra production and trade dynamics globally. In
Kenya rain-fed agriculture yields could be cut by half and crop net sales could decrease by
90% by 2100 [4]. Even in highland areas, increased heat is predicted to reduce crop yields,
leading to increased levels of food insecurity, increasing risks in the agricultural sector, the
majority of which will occur through human-induced factors [4].

While numerous efforts have been made to increase Kenyan communities’ ability to
adapt to climate change, commensurate success for investments in climate adaptation and
resilience has not been realized. If the current trajectory continues, smallholder farmers
will suffer greater impacts from emerging climate-change-related problems [17].

1.3. Technology Driven Data for Decision Making

The increasing availability of satellites and Earth observation (EO) datasets and sys-
tems provides opportunities for evaluating past, present and future trends at micro-scales.
High-quality, high-resolution remote-sensing and model-based datasets that are blended
and unbiased that use station and ground data are now readily available and provide
opportunities to improve the quality of information available for decision making [15].
This paper, seeks to evaluate what these climate shifts represent in terms of agricultural
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potential, using predicted agro-ecological zones and the length of the growing period, and
to identify opportunities for future-based agriculture and climate adaptation.

1.4. Global Climate Models

The primary tools for predicting climate change are global climate models (GCMs),
which are developed based on consideration of alternative scenarios for the evolution of
GHGs and aerosol concentrations. They work well at replicating both global and continen-
tal climate characteristics, such as global and continental temperature and precipitation
patterns, and are intended to assess the behavior of the global climate system [18]. The most
recent GCMs from the phase 5 Coupled Model Intercomparing Project (CMIP5) used the
UK Meteorology Office Hadley Centre Global Earth System Models (HadGEM-ESM) and
contributed to the Fifth Assessment Report of the Inter-Governmental Panel on Climate
Change (IPCC AR5) [19]. Transparent assumptions about how the GCM/ESM has been
derived are essential for diagnosing the simulated climate response and comparing re-
sponses across different models, especially since the implementation can involve subjective
choices and may vary between modeling groups carrying out the same experiment [19].
This necessitates the need to downscale projections to improve their accuracy in informing
scale specific decisions.

1.5. Defining Future Emission-Based Trajectories

CIMP5 contains outputs for the three different representative concentration pathways
(RCP), defined as 2.6, 4.5 and 8.5, respectively. RCP4.5 depicts a medium emissions scenario
in which greenhouse gas levels gradually rise until around 2040 before declining later. This
scenario presupposes that climate policy will be used to alter related reference situations.
The direst scenario, known as RCP8.5, predicts a future with steadily rising greenhouse gas
levels [12,15,19].

2. Mapping Future Agro-Ecological Zones

The Food and Agricultural Organization (FAO) has developed methodologies for
mapping agro-ecological zones [20] that were used to develop the Kenya Farm Management
Handbook. To create comparable decision support outputs, the FAO methodology was
adopted and adjusted to use satellite data, cloud computing and future climate scenarios,
as shown in Figure 1. The year 2020 was used as the baseline year with AEZ computed
using predicted climate parameters and current biophysical parameters for 2040 under
RCP 4.5 and 8.5 [21]. Predicted climate regimes were combined with the static biophysical
land inventory to produce the predicted AEZ. Fuzzy logic was used to compute the AEZ
and to normalize inputs into the climate regimes and land inventory. Climatic and land
constraints to agriculture production were included in the form of an aridity index and
soil/slope constraints to agricultural production.

Data Processing

Downscaled CIMP5 data for rainfall and temperature for 2040 were acquired and used
due to their notably better performance, especially over eastern Kenya [15]. RCP8.5 and
RCP4.5 were used in this study, since the two scenarios generally capture the potential
range of future greenhouse gas releases and because fewer simulations are available for
other emission scenarios [22]. The CIMP5 rainfall and temperature was used to derive po-
tential evapotranspiration (PET), using the Thornthwaite (1948) equation, moisture regimes
and the aridity index. Kenya’s rainfall is bimodal, with two distinct wet seasons that
support most of the rain-fed agriculture production [15,23]. This is defined by the Kenya
Meteorological Department (KMD),as the long rains (LR) experienced through March,
April and May (MAM) and the short rains (SR) occurring through October, November and
December (OND).
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The length of the growing period (LGP) was defined and computed as the number of
days when

Tmean ≥ 50C (1)

and precipitation is
ppt > 0.5pet (2)

The moisture regime is useful in capturing the seasonal variation in effective moisture
and was computed using the Thornthwaite and Mather (1955) method based on annual
rainfall and potential evapotranspiration [24]. The aridity index from Terra Climate was
used as an indicator of the moisture deficit constraints to rain-fed production [25].

Figure 1. Methodology: An illustration of the approach used for mapping future agro-ecological zones.

Baseline period biophysical parameters, including soil suitability and drainage, were
used and assumed to remain constant. Soil suitability for agricultural production was
categorized from the Kenya Soil Survey (KSS) map and used to define soil characteristics,
including texture, and their relationship to supporting agricultural production. The soil
type, drainage capacity, elevation, depth and consistency were used in defining suitability
for agricultural production [20,26]. The drainage map was derived from Shuttle Radar
Topography Mission (SRTM) elevation data [27].

3. Results
3.1. Changing Agro-Ecological Potential in a Changing Climate

To capture micro-variations, all layers were acquired at a scale of 1 km or less where
possible. Fuzzy logic was used to normalize the outputs. Change was determined from
the 2020 baseline assessments and the 2040 predictions by season (MAM and OND). From
the assessment, the expected climate shifts and increase in precipitation was observed,
with higher gains observed during OND than MAM. This corresponds to RCMRD’s [15]
assessment that future seasonal rainfall will likely increase during OND under all scenarios,
with greater increase over eastern parts of Kenya, as shown in Figure 2.

Temperature was adjusted to thermal regimes by adding a threshold to allow for
adjustment of temperatures that fall below the minimum needed for crop growth [26].
Increasing temperature was observed across the region, with higher increases observed
in the lower eastern part, but more pronounced increases in MAM than in OND, as seen
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in Figure 3. This is consistent with the consensus on projections that suggests changes in
temperature point to a warmer future over almost all parts of Kenya. In the near future, the
annual surface temperature is projected to increase by between 1.0 °C and 2.0 °C under the
RCP4.5 scenario, but will likely be greater in the RCP8.5 scenario, which is expected to be
between 1.5 °C and 2.5 °C [15]. Most of the change in thermal regimes was observed from
the lowland regions in Machakos and in the highland areas of Tharaka Nithi and Meru,
with the change pronounced in both MAM and OND.

Figure 2. Precipitation range across MAM and OND for 2040 RCP’s 4.5 and 8.5.

Figure 3. Thermal Regimes for MAM, OND in 2040 for RCPs 4.5 and 8.5.
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An increase in PET adversely affects agriculture, as more water is lost to evaporation
and transpiration. An increase in PET was observed across the study area, with a more
pronounced increase in RCP 8.5 than in 4.5, as seen in Figure 4. The highest increases were
observed in already constrained areas, such as Embu, Tharaka Nithi, North Meru and the
lower sides of Kitui.

Increases of between 1–20 growing days were observed in Embu, Tharaka Nithi, Embu,
Kitui, Machakos and Makueni in the MAM period for RCPs 4.5 and 8.5, with the lower
drylands anticipated to experience a much higher increase in both MAM and OND, as seen
in Figure 5. Parts of the north arid areas of Meru also showed an increase in LGP. However,
the main growing areas in Meru showed a decrease in the length of the growing period
of 1–10 days in MAM for RCP 4.5 and 8.5. OND projections for RCP 4.5 and 8.5 exhibited
negative trends for the main growing areas in Meru. A higher increase in LGP OND over
the lower eastern areas of Kitui and Machakos, and in the upper parts of Machakos and
Embu, was predicted, where a 1–20 day increase was observed for RCP 4.5. However, the
highland areas experienced a decrease in the length of the growing period. Similar but
more pronounced trends were observed for RCP 8.5.

Figure 4. Potential evapotranspiration and change across the seasons and epochs.

Figure 5. Changes in the length of growing days during MAM, OND in 2040 for RCPs 4.5 and 8.5.
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From the aridity index, higher increases in effective moisture were observed in the
eastern dryland regions, with the losses more pronounced in Machakos, Embu, Tharaka
Nithi and Meru in OND, as seen in Figure 6 and 7 .

Climate regimes were computed from PET, with thermal regimes, moisture index and
LGP computed by season. The inputs were first normalized using fuzzy logic before being
combined to produce the climate regimes (Figure 8).

Soil suitability and soil drainage derived from the soil and elevation data indicate the
biophysical suitability for agricultural production (Figure 9).

Figure 6. Changes in moisture index during MAM, OND in 2040 for RCPs 4.5 and 8.5.

Figure 7. Changesin aridity index during MAM, OND in 2040 for RCPs 4.5 and 8.5.
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Figure 8. Climate regimes for MAM, OND in 2040 for RCPs 4.5 and 8.5.

Figure 9. Soil suitability for agricultural production and drainage.

Climate regimes and biophysical parameters were normalized using fuzzy logic and
used as inputs to the definition of the AEZ. Linear and inverse relationships were applied
based on the variable’s contribution to agriculture potential. An inverse relationship applies
in the interpretation of AEZ change maps. For example, a change from 7 (per-arid) to 6 (arid)
represents improved potential. The highest losses in potential of the agro-ecologies were
observed around Machakos, Embu, Meru and Tharaka Nithi and were more pronounced
in RCP 4.5 MAM than in RCP 8.5 MAM (see Figure 10). Improvements in AEZ were more
notable during the OND for both RCPs in the lower eastern region, corresponding with the
noted increase in rainfall and length of the growing period.
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3.2. Learning from the Current Adaptation to Improve Forward Future-Based Investments

The baseline AEZ mapping covering 1990–2020 demonstrated a historical change,
where an opposite shift was experienced, with highland and midland areas experiencing
a reduction in LGP and AEZ potential, while drylands experienced an improvement. To
verify this change, 860 farmers within the microclimates and agroecologies in the study
area were interviewed.

Figure 10. Agro-ecological zones and change maps from a 2020 baseline and RCP 4.5 2040.

Despite considerable investments by the government and private sector, as well as
indigenous adaptation measures, food security was still a major concern in most of the
households, despite diversification in farming systems and in spite of larger land holdings,
as shown in Figure 11.

Figure 11. Relationship between land size and food security and demographics.

Different adaptation measures were being adopted, as seen in Figure 12. Most farmers
adjusted their farming by adopting drought-resistant crops, adjusting planting dates and
diversifying livelihoods to include livestock-keeping. Soil management focused on the use
of manure, retaining residue and zero tillage. Water harvesting and conservation methods
were also used to manage water availability.
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Figure 12. Farmers adaptation strategies for farming, soil and water management.

These adaptation mechanisms were enabled through farmers’ initiatives as well as
government and donor investments in the region. Lack of capital, lack of storage facilities
and challenges accessing extension and education were identified as key barriers (Figure 13).

Figure 13. Farmers’ perceived adaptation barriers.
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3.3. Opportunities for Adapting and Transitioning Adaptation Strategies
3.3.1. Gendered Adaptation Mechanisms

Gender influences the success of adaptation mechanisms. For example, the survey
found that female-headed households adapted by diversifying food crops, while male-
headed households adapted by diversifying cash crops with reported higher incomes, as
seen in Figure 14. Female-headed households were more interested in improving their food
security first. Future adaptation mechanisms will need to be structured with the sensitivities
of gender and population groups considered. For example, high-yielding, drought-resistant
and early maturing food crops would be more appropriate for female-headed households.

Figure 14. Relationship between gender, adaptation bias and incomes.

3.3.2. Agricultural Land Consolidation and Zoning

From the survey, reported food insecurity in large areas (>5 acres) points to chal-
lenges in land utilization and optimization of farming activities to increase the return
on investments. Agricultural zonation, where farmers collectively plant specific suitable
crops for their agro-ecologies, has been used to optimize production and access to mar-
kets, improving the resilience of farmers. Further considerations for consolidation of land
for agricultural production would allow leveraging of economies of scale to reduce pro-
duction costs and increase return on investments in a sustainable agriculture business
model. Moreover, this would allow responsive production to both local and international
market demands.

3.3.3. Focused Diversification of Farming Systems

The projected increase in rainfall and the length of the growing period in the lowland
drylands (from per arid/arid to arid/semi-arid) presents an opportunity to shift purely
rangeland areas to agro-pastoral production. The study conducted by RCMRD [15] con-
firmed that higher run-off in OND was observed in lower dryland areas. This represents
an opportunity for water harvesting for increasing agro-pastoral systems. In the midland
areas of Embu, Tharaka Nithi and Meru, adaptation mechanisms would need to focus on
the projected loss in agricultural potential to introduce production systems matching the
reduced potential.

3.3.4. Customizing Adaptation Based on Vulnerabilities

An understanding of perceptions of drivers to vulnerability was found to be different
between food-secure and food-insecure respondents. An assessment of the education
levels of the respondents did not seem to affect their perceptions of their sensitivity to
climate change. However, there were distinct variations in the definitions of the responses
from food-secure and food-insecure households (Figure 15). For example, food-secure
households responded that they were more affected by farm destruction by floods and
post-harvest losses than drought, poverty or inflation. This implies that, in food-secure
areas, management of post-harvest losses was more important as well as mitigation of
flood-related destruction.



Land 2022, 11, 2172 12 of 15

Figure 15. Perceptions of drivers of food insecurity between food-secure and food-insecure households.

3.3.5. Converging Technology and Indigenous Knowledge for Adaptation

Most respondents accessed forecasts and used them to inform their farming activities.
It is important to note that 27% of the farmers used indigenous knowledge of forecasts
and season change to adapt their farming practices. The convergence of technological
advances and indigenous knowledge can be harnessed to increase access to information for
optimizing adaptation. Further, education did not emerge as a major barrier to access to
forecasts since TV and radios provided vernacular translations, as seen in Figure 16.

3.3.6. Innovations for De-Risking Agriculture and Use of Technologies

There is an increasing investment in de-risking agriculture in Kenya, with the government-
subsidized crop insurance extended to 33 counties, covering high, medium and marginal
production areas. Lowland drylands have especially benefited from higher subsidies
from the government. The top barrier was cited as lack of access to capital and exten-
sion/education, as well as mechanization.

Opportunities for innovative financing of farmers is required, as well as education,
to ensure that there is a return on investment for the farmer. The increasing mobile and
internet connectivity has made farmers more accessible. The African Union, through
its digital agriculture strategy has emphasized the need for countries to register their
farmers and develop agricultural data hubs that harness technological advances to deliver
customized information, resources and opportunities for farmers [28].

Figure 16. Access to information and forecasts irrespective of education level.
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4. Conclusions

A changing climate presents new opportunities for optimizing adaptation mechanisms.
This research has highlighted the expected changes in agricultural potential. The methods
developed utilize data and approaches that are scalable for replication and learning in other
areas. The understanding provided of the projected changes in agricultural potential can
guide the prioritization of investments to effect the cultural change required to ensure that
these investments result in increased resilience.

Further, the study has demonstrated the value of projection-based climate adaptation
planning in providing opportunities for adjusting trajectories in investments for resilience
building. While the study is not exhaustive, it focuses on demystifying the "gloom and
doom" around climate change, focusing instead on the opportunities that climate change
presents for adaptation. For sure, every cloud has a silver lining.
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