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Received: 23 October 2022

Accepted: 24 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Testing the Effects of Water-Saving Technologies Adapted to
Drought: Empirical Evidence from the Huang-Huai-Hai Region
in China
Chunxiao Song 1 , Yue Rong 1, Ruifeng Liu 1 , Les Oxley 2 and Hengyun Ma 1,*

1 College of Economics and Management, Henan Agricultural University, Zhengzhou 450046, China
2 School of Accounting, Economics and Finance, University of Waikato, Hamilton 3240, New Zealand
* Correspondence: h.y.ma@163.com

Abstract: The aggravation of extreme weather events has dramatically increased the risk of severe
water shortages and seriously threatened agricultural production. The Huang-Huai-Hai region, an
important agricultural production region in China, is subject to a severe water shortage and is often
hit by drought. As a result, water-saving technologies (WSTs) have been implemented. It remains
unclear how effectively these WSTs can reduce crop yield loss, crop yield variation, and the loss
of net crop income caused by water scarcity. Therefore, this paper aimed to analyze the role of
WSTs in response to drought by establishing a multi-objective expected utility function based on
988 farmers across the Huang-Huai-Hai region. Econometric analysis employing an endogenous
switching regression model showed that using WSTs can significantly reduce crop yield loss and net
income loss caused by drought. Adopting household-based WSTs or community-based water-saving
technology generates even greater positive effects on crop yield and farmers’ net income. Therefore,
the government should promote farmers’ adoption of more advanced WSTs by increasing subsidies
and strengthening policy support.

Keywords: water-saving technologies; drought; crop yield variance; net crop income; Huang-Huai-
Hai region

1. Introduction

The aggravation of extreme weather events has greatly increased the risk of severe
water shortages and, therefore, seriously threatens agricultural production. According
to statistics, 28–38% of global farmland faces total water scarcity [1]. Furthermore, it has
been estimated that the global drought-affected area will increase from 15% to 44% by
the end of the 21st century [2], and 11% (±5%) of global croplands are estimated to be
vulnerable to projected climate-driven water scarcity by 2050 [3]. As one of the most
water-scarce countries, China is facing increasing pressure on agricultural water supply.
With the agricultural water scarcity index rising from 0.32 to 0.49 during 2000–2014 [4],
water shortage has become the most threatening factor to China’s food security [5,6]. The
Huang-Huai-Hai region, one of the most important grain-producing regions in China, faces
severe water shortages all year round, with an agricultural water shortage index beyond
0.80 [4] and, on average, about 20% of the crop area suffering from severe water shortages
every year [7]. As a result, during 2010–2019, the average annual crop income loss reached
26.39 million tons due to drought, and the crop loss rate reached 4.7% [8,9].

Therefore, how to alleviate the pressure of agricultural water shortage and adapt to
drought have become hot topics. Israel and Australia, for instance, have become more
resilient owing to notable success in drought risk management, achieved through improve-
ments in water use practices and development of long-term water management plans [10].
Many studies have shown that adopting water-saving technologies (WSTs) can not only
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limit water waste, but also reduce agricultural water consumption by improving the effi-
ciency of water utilization. For example, Belder et al. [11] found that adopting WSTs can
reduce water consumption by 15% compared to traditional irrigation methods without
affecting crop yield. Similarly, Huang et al. [12] and Vatta et al. [13] found that the use of
WSTs can reduce agricultural water use and increase water productivity. Li et al. [14] and
Zhai et al. [15] made a further step, finding that adopting new WSTs, such as drip irrigation
and micro-sprinkler irrigation, improved the efficiency of water use and reduced water
evapotranspiration at the same time. In addition, Guo et al. [16] found that the dry–wet
alternate irrigation technique reduced total water consumption by 50.9% compared with
continuous flooding irrigation.

As a result, promoting agricultural WST adoption has received increasing attention
from government departments. In April 2009, the General Office of the State Council of
China formulated the National Water-Saving Irrigation Plan. In 2015, the National Agri-
cultural Sustainable Development Plan (2015–2030) issued by the Ministry of Agriculture
of China emphasized the need to vigorously develop water-saving agriculture, promote
water-saving irrigation, and increase the construction of water-saving irrigation projects
in major grain-producing areas. According to the Chinese government’s requirements,
China’s high-efficiency water-saving irrigation area reached over 19.2 million hectares
by 2020, and, meanwhile, the effective irrigation ratio and water-saving irrigation ratio
should reach 57% and 75%, respectively, by 2030. Statistics show that, in the past two
decades (2001–2020), the water-saving irrigation area in China has increased steadily (from
17,466 thousand hectares to 37,796 thousand hectares), and the proportion of water-saving
irrigation in the effective irrigation area has also increased from 32% to 55% [17] (Figure 1).

Land 2022, 11, x FOR PEER REVIEW 2 of 25 
 

resilient owing to notable success in drought risk management, achieved through im-
provements in water use practices and development of long-term water management 
plans [10]. Many studies have shown that adopting water-saving technologies (WSTs) can 
not only limit water waste, but also reduce agricultural water consumption by improving 
the efficiency of water utilization. For example, Belder et al. [11] found that adopting 
WSTs can reduce water consumption by 15% compared to traditional irrigation methods 
without affecting crop yield. Similarly, Huang et al. [12] and Vatta et al. [13] found that 
the use of WSTs can reduce agricultural water use and increase water productivity. Li et 
al. [14] and Zhai et al. [15] made a further step, finding that adopting new WSTs, such as 
drip irrigation and micro-sprinkler irrigation, improved the efficiency of water use and 
reduced water evapotranspiration at the same time. In addition, Guo et al. [16] found that 
the dry–wet alternate irrigation technique reduced total water consumption by 50.9% 
compared with continuous flooding irrigation. 

As a result, promoting agricultural WST adoption has received increasing attention 
from government departments. In April 2009, the General Office of the State Council of 
China formulated the National Water-Saving Irrigation Plan. In 2015, the National Agri-
cultural Sustainable Development Plan (2015–2030) issued by the Ministry of Agriculture 
of China emphasized the need to vigorously develop water-saving agriculture, promote 
water-saving irrigation, and increase the construction of water-saving irrigation projects 
in major grain-producing areas. According to the Chinese government’s requirements, 
China’s high-efficiency water-saving irrigation area reached over 19.2 million hectares by 
2020, and, meanwhile, the effective irrigation ratio and water-saving irrigation ratio 
should reach 57% and 75%, respectively, by 2030. Statistics show that, in the past two 
decades (2001–2020), the water-saving irrigation area in China has increased steadily 
(from 17,466 thousand hectares to 37,796 thousand hectares), and the proportion of water-
saving irrigation in the effective irrigation area has also increased from 32% to 55% [17] 
(Figure 1). 

 

 
Figure 1. The water-saving irrigation area and its proportion to the effective irrigation area in China 
(2001–2020). 

0

10

20

30

40

50

60

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Pr
op

or
tio

n 
of

 w
at

er
-s

ai
ng

 ir
rig

at
io

n 
ar

ea
 to

 
ef

fe
ct

iv
e 

irr
ig

at
io

n 
ar

ea
/%

W
at

er
-s

av
in

g 
irr

ig
at

io
n 

ar
ea

/1
00

0h
a

Water-saving irrigation area/1000ha

Proportion of water-saving irrigation area to effective irrigation area/%

Figure 1. The water-saving irrigation area and its proportion to the effective irrigation area in China
(2001–2020).

Given that farmers are the direct decision-makers regarding adopting WSTs in re-
sponse to drought, it is crucial to identify the factors that influence their willingness to
adopt WSTs and to further analyze the efficiency of WSTs. However, most of the current
literature mainly focuses on the impact mechanism of farmers’ adoption of WSTs, such as
institutional and policy subsidies [18–21], financial and technological constraints [20,22,23],
climate and land factors [18,24,25], and farmers’ social capital and household characteris-
tics [6,26,27]. Only a few studies have analyzed the efficiency of WSTs in terms of water
resource utilization and productivity, as well as irrigation frequency [12,15,16,28–31]. In
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addition, in previous studies identifying adaption measures to extreme weather events,
researchers mainly considered farmland management measures and engineering irrigation
measures [7,32–37], and few investigated whether WSTs can effectively address drought
and offset drought risks.

To fill the gaps, this paper attempts to answer the following questions: What types
of WSTs do farmers adopt to deal with drought? Can WSTs effectively adapt to drought?
That is, does the use of WSTs reduce crop yield loss, crop yield variation, and net crop
income loss? What are the different effects of different types of WSTs? This information
and empirical results are useful for policymakers when they are making public irrigation
investment in WSTs. To answer these questions, this paper accurately describes the adaptive
behavior of farmers and analyzes the effects of WSTs in response to drought by establishing
a multi-objective expected utility function of yield maximization, risk minimization, and
profit maximization based on a large field survey dataset from the Huang-Huai-Hai region
in China. This paper contributes to the literature in three ways: (i) a multi-objective
expected utility model of crop yield, risk, and net income is established to analyze farmers’
behavior relating to adopting WSTs; (ii) an endogenous switching regression model is
used to construct a simultaneous equation of farmers’ adaptation decision and effect of
farmers adopting WSTs; and (iii) various types of WSTs are distinguished, and their effects
are investigated.

The rest of this paper is organized as follows. The second part constructs a theoretical
analysis framework and puts forward research hypotheses. The third part explains the
data sources and establishes an empirical model according to the theoretical hypothesis.
The fourth part discusses the estimated results and carries out specific analysis. The last
part concludes.

2. Theoretical Basis and Analytical Framework
2.1. Adaptation Decisions of Farmers to Drought

Based on the assumption of complete information and drawing upon neoclassical
economic theory, the decision-making model mainly proposes unilateral evaluation and
analysis from the perspective of either consumers or producers, aiming to maximize the
utility for consumers or the profit for producers, respectively. When based on the theoretical
background of peasant economics, there is a certain possibility that farmers are both
consumers and producers at the same time. In developing countries, farmers demonstrate
the economic characteristics of self-sufficiency to a certain extent, as their agricultural
products are not only sold in the market but also reserved for household consumption.
Therefore, the farmers’ behavior is the result of a comprehensive decision that takes into
consideration both production and consumption, as well as other factors [38]. Furthermore,
production risk is a typical feature of agricultural sector, and unpredictable weather can
pose serious difficulties and significant uncertainties to crop producers. Given harsh
climatic and agroecological conditions, it is possible that food security can be threatened,
or, worse, a famine is brought about. Without taking the risk of drought into consideration,
it is difficult to accurately assess whether the decision-making behavior of farmers is risk
averse [39]. Therefore, this paper aims to establish a production decision model for farmers
who both produce and consume food when facing the risk of drought.

The economic behavior of farmers under uncertainty can be expressed as follows,
according to Singh et al. [38]:

Max U = U(c1, c2)
S.T. : y = g(x, v) (production restraint)

c2 p2 ≤ mp1 + N(x) (income restraint)
(1)

where U = U(c1, c2) represents the von Neumann–Morgenstern utility index, which is
the preference of farmers facing risks. c1 is a part of the farmers’ crop production and
consumption, and its price is p1; c2 is other products that farmers buy from the market, and
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their price is p2. y = g(x, v) is the crop production function, where y is the crop yield, x is
an explanatory variable related to production, and v is an unpredictable random variable.

The budget restraint of farmers is c2 p2 ≤ mp1 + N(x), where m is the crop sales volume
(market surplus), which satisfies the formula m = y − c1, that is, the crop production
volume is composed of households’ own consumption and market sales. Furthermore,
there is no sign limit for m; when the crop yield exceeds the consumption amount, the
market surplus can be positive (m > 0); when the crop yield fails to reach the consumption
amount, the market surplus is negative (m < 0). N(x) is the net income (net cost of x) of
other farmer behaviors. According to m = y− c1 − g(x, v), when assuming p2 = 1, the
budget constraint can be converted into: c2 = N(x) + p1[g(x, v)− c1].

Within the expected utility model, farmers need to make decisions to optimize the
expected utility:

Max {EU(c1, N(x) + p1[g(x, v)− c1]) (2)

CE is the certainty equivalent, which means the utility level corresponding to the net
income is equal to the expected utility level under uncertainty conditions, and the total
income of farmers is π = N(x) + p1[g(x, v)], that is, it satisfies:

U(CE) = EU(π − c1 p1) (3)

which is equivalent to:

U(c1, CE− p1c1) = EU(c1, N(x) + p1[g(x, v)− c1]) (4)

The expected values of certainty and uncertainty may have different utilities for
farmers, and the difference between them is the risk premium R = E(π) − CE, which
is the amount that farmers are willing to pay for avoiding the risks posed by drought.
Considering the risk premium R, the following can be obtained:

U(c1, E(π)− R− p1c1) = EU(c1, π − p1c1) (5)

When farmers are risk averse to drought, R > 0; then, the utility function of farmers’
income is a concave function, that is, U′(π) = ∂U/∂π > 0, U′′ (π) = ∂2U/∂π2 < 0. As
shown in Figure 2, when farmers face drought risk, they may profit in two different ways,
namely, π1 and π2, with probability p1 and p2, respectively. Assuming the same income,
the income utility (point A) of the farmers that face the drought risk is greater than the
expected utility (point B) of the farmers that do not face such risk. Following this, in order to
avoid the risk of climate change, farmers are willing to spend R to adopt relevant measures
to deal with drought. At this time, the income utility of point B and point C is the same,
that is, U(c1, E(π)− R− p1c1) = EU(c1, π − p1c1).

From the above analysis, this paper proposes:

Hypothesis 1. Given that farmers are risk averse to drought, and other conditions remain un-
changed, farmers cope with drought by adopting WSTs to reduce risk and ensure income. This
means that drought may have a positive influence on farmers when they adopt the WSTs.

2.2. Effectiveness Analysis of WSTs

Many studies have testified that multi-objective utility theory has better accuracy in
describing and predicting producer behaviors. Therefore, multi-objective utility theory
models of farmers have recently gained attention [40–42]. In terms of crop production, the
government is inclined to ensure food security from a macro perspective, while farmers
are more concerned on how to reduce production risks and increase agricultural income
from a micro perspective. In the face of climate changes, such as rising temperature, falling
precipitation, and increasing drought, adopting WSTs can reduce the production risks and,
thus, ensure crop yield and stabilize crop income, maximizing expected utility. Therefore,
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in the selection decision behavior of WSTs, we introduce three objective functions: yield
maximization, income maximization, and risk minimization.
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We establish a stochastic production function to analyze the marginal contribution of
each factor to the average crop yield and yield risk. Two independent equations, E(y) =
f(A, X, D;α) and V(y) = g(A, X, D;β), represent average crop yield (the expectation of
yield) and crop yield variation (the variance of yield), respectively. According to the
generalized production function proposed by Just and Pope [43], the specific functional
form is as follows:

y = f(A, X, D;α) +
√

g(A, X, D;β) ε (6)

A represents the behavior of adapting to drought. When A = 1, farmers adopt WSTs
as adaptive measures (adopters), and, when A = 0, they do not adopt WSTs (non-adopters).
X is the cost vector of production factors, and D is the occurrence of drought disasters.
When D = 1, drought has occurred, and it is a drought year; when D = 0, it is a normal year.
Both α and β are parameter vectors, and ε is the error term, which is assumed to obey the
standard normal distribution ε~N(0,1).

Introducing the Just–Pope production function into the multi-objective utility function
of farmers, the following is obtained:

U = Py

[
f(A, X, D;α) +

√
g(A, X, D;β)ε

]
− PxX− PAA (7)

where Py is the crop production cost, Px is the production factors cost, and PA is the cost of
adopting WSTs. According to Equation (7), where the behavior of farmers in taking WST
measures is discussed, the following research hypotheses can be made based on general
economic theory.

Hypothesis 2. WSTs are risk-reducing inputs, and adopters may reduce the negative impact of
drought on the risk of crop production, that is, ∂g/∂A < 0.

Hypothesis 3. The average expected yield obtained by farmers adopting WSTs may be higher than
that without adopting WSTs, that is, ∂ f /∂A > 0.

Hypothesis 4. Farmers are in a perfectly competitive market, that is, they are the recipients of
market prices (factor cost and agricultural production cost). Under the circumstance that the prices
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are all exogenously given, the net crop income obtained by farmers adopting WSTs is higher than
that obtained without adopting WSTs.

3. Data and Descriptive
3.1. Data Sources

The Huang-Huai-Hai region is one of the most important grain-producing areas in
China. This area is dominated by the double-cropping system of winter wheat and summer
maize. The outputs of wheat and maize can reach 75% and 35% of the national total,
respectively [8]. However, the crop output and farmers’ income in the region are not as
promising as they should be due to the severe water shortage all the year round, the low
water availability (1/7 of the national per capita), and the frequent extreme weather events
such as drought. Therefore, it was of great significance to select the Huang-Huai-Hai
region as the study area in this paper. Figure 3 shows the sample distribution across the
Huang-Huai-Hai region.
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This study conducted a large-scale questionnaire survey of villages and farmers
across five provinces in China. A stratified random sampling method was used. First,
several counties were selected in each province. The sampled counties had to meet
the following two criteria: First, the county had to have suffered, at least once during
2010–2012, from a most severe or a severe drought, which indicates a drought disaster year.
Second, the county had to have experienced at least one year of relatively normal weather
during 2010–2012, which indicates a normal year. According to China’s national standard
for natural disasters, natural disasters can be classified into four categories according to
their severity: most severe, severe, moderate, and small [44]. A year is defined as a disaster
year if the local government declares a disaster warning with a most severe or severe
level; otherwise, it is a normal year. Next, three townships were randomly selected from
each sample county. Townships were selected based on the infrastructure condition of
irrigation and drainage, which was divided into three categories: good, medium, and poor.
In each county, one township was selected for each category. Then, three villages were
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randomly selected in each selected township. At last, 10 farmers were randomly selected
from each selected village to answer a questionnaire survey. The selected farmers were
mainly engaged in crop production, and detailed interviews were carried out on the largest
two plots of each farmer. According to the data processing, the total sample included five
provinces, Henan, Hebei, Shandong, Anhui, and Jiangsu, 11 counties, 33 towns, 99 villages,
988 farmers, and 1880 plots (Table 1).

Table 1. The distribution of sample farmers and plots across five provinces.

Province County Number of HHs Number of Plots

Henan Yuanyang 90 167
Huaxian 90 159

Yongcheng 90 176
Hebei Weixian 90 164

Weichang 90 173
Shandong Yuncheng 89 174

Weishan 90 163
Jiangsu Peixin 90 180
Anhui Yongqiao 89 175

Suixi 90 172
Lixin 90 177

Total 11 988 1880

3.2. Sample Descriptive Analysis
3.2.1. Types of WST Uses

The survey data showed that farmers adopt various types of WSTs. If each WST was
analyzed individually, the analysis process would be lengthy, and the results could be
similar. Additionally, some WSTs were used at such a low rate that a separate analysis
was not necessary. Therefore, this paper categorizes WSTs into three types: traditional
WSTs, household-based WSTs, and community-based WSTs [12], based on the distin-
guishing characteristics of different WSTs, such as cost and service time, and referring
to existing literature. Traditional WSTs include border irrigation, furrow irrigation, and
land leveling. This type of technology has a long history and has been used since the
1950s. Moreover, traditional WSTs have low fixed costs and are labor intensive. Due to
the small amount of arable land per capita in China, farmers can build furrows or level
the land in just a few days. Household-based WSTs include seven major types: ground
pipes (plastic pipes or water belts, etc.), plastic film mulching, no tillage/reduced tillage,
straw mulching/returning to fields, chemicals, intermittent irrigation (alternating dry and
wet irrigation), and drought-resistant varieties. These technologies have been used since
the 1980s. Similar to traditional technologies, household-based WSTs are characterized
by low fixed cost and high divisibility and are usually adopted by individual farmers.
Community-based WSTs involve underground pipelines, sprinkler irrigation, drip irriga-
tion, and channel seepage prevention. Compared to the first two types of technologies,
the adoption of community-based WSTs was rather late. Due to the high investment cost,
community-based WSTs often require collaboration within the community or the group
work of farmers, and the divisibility is weak.

As shown in Table 2, in the past three years (2010–2012), the adoption ratio of
household-based WSTs was the highest among the three types (77.6%), followed by tra-
ditional WSTs (40.9%), and community-based WSTs were the lowest (6.3%). The breadth
of usage within the three types of WSTs also varied. Among the traditional WSTs, fur-
row irrigation technology was the most widely used (40.2%), followed by land leveling
(10.1%), while furrow irrigation technology only accounted for 1.4%. Among household-
based WSTs, the adoption rate of a ground pipeline was the highest (72.1%), followed by
straw mulching/field-returning technology (57.1%), no tillage and less tillage (41.5%), and
drought-resistant varieties (12.3%); however, the percentage of farmers using chemicals and
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intermittent irrigation techniques was very low, below 1.0%. Among community-based
WSTs, all types of technologies showed a relatively low adaptation rate. Specifically, the
adoption rates of underground pipelines and channels for anti-seepage accounted for about
5.4% and 2.7%, respectively; only 1.0% of the plots adopted sprinkler irrigation technology.

Table 2. Types of WST and their adoption in the past 3 years (2010–2012).

Types of WST Number of Plots Plot Proportion (%)

Traditional WST:
Border irrigation 2269 40.2
Furrow irrigation 79 1.4

Land leveling 570 10.1
Household-based WST:

Ground Pipeline 4066 72.1
Plastic film mulching 73 1.3

No tillage/reduced tillage 2343 41.5
Straw mulching/ returning to fields 3221 57.1

Chemicals 6 0.1
Intermittent irrigation 48 0.9

Drought-resistant varieties 696 12.3
Community-based WST:
Underground pipeline 303 5.4
Sprinkling irrigation 54 1.0

Channel seepage prevention 153 2.7

3.2.2. Drought and WST Uses

Figure 4 presents a descriptive analysis of the adoption rates of the three types of
WSTs in a drought year and a normal year. Overall, the proportion of farmers adopting
WSTs is 80.4% in drought years and slightly higher than 80.0% in normal years. Among
the three types, household-based WSTs are the most widely used (77.5–78.2%), followed
by traditional WSTs (40.9–41.1%) and community-based WSTs (only 6.4–6.8%). It seems
that there is little difference in the proportion of farmers adopting WSTs between drought
and normal years. This is because agriculture is not rainfed in this area. In other words,
whether it is drought year or not, farmers have to choose one of the WSTs to irrigate their
crops. Here, it is interesting to know whether the occurrence of drought is a key factor
affecting the selection of WST types.

Table 3 presents crop yield per hectare and net crop income by the adopted WSTs. The
Huang-Huai-Hai region is dominated by the rotation system of wheat and maize, and most
farmers only grow these two crops in the year. Therefore, we only focused on farmers who
grew wheat and maize, and crop yield and net crop income are also a sum of wheat and
maize in this paper. The findings showed that, regardless of WST adoption, the average
crop yield and net income per hectare in drought years are lower than those in normal
years. For example, the average crop yield per hectare for plots with WSTs is 12,939 kg/ha
in normal years and 11,835 kg/ha in drought years, and the average net income is
15,510 yuan/ha in normal years and 12,310 yuan/ha in drought years. Further, the crop
yield per hectare and net crop income for the plots with WSTs are higher than for those
plots without WSTs. For example, in drought years, for plots with WSTs, the crop yield per
hectare and net crop income are 11,835 kg and 12,310 yuan per hectare, respectively, while,
for plots without WSTs, the crop yield per hectare and net crop income are 9383 kg and
7260 yuan per hectare, respectively. The difference is about 2500 kg of crop and 5000 yuan
per hectare. Further exploration is required to decide whether this gap is mainly caused by
WST adoption or the heterogeneity of different plots.
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Table 3. Crop yield and net income by whether WST is adopted and drought year.

Year
Crop Yield (kg/ha) Net Crop Income (103 yuan/ha)

WST Adoption No WST Adoption WST Adoption No WST Adoption

Drought year 11,835 9383 12.31 7.26
Normal year 12,939 9568 15.51 8.99

Average 12,387 9475 13.91 8.13
Notes: Land costs and discounting for household labor are not considered when calculating the net crop income.
The crop refers to wheat and maize and the same for net income.

4. Model Specification and Test
4.1. The Endogenous Switching Regression

The combination of the decision model and the effect model raises the following
problems. First, the decision to adopt WSTs is voluntary, which may lead to the problem
of sample selection bias. Second, given that WST adoption is used as a decision variable
to analyze its efficiency in relation to crop yield, yield risk, and net income of farmers,
endogeneity problems may arise due to the omission of variables. Third, there is significant
heterogeneity between adopters and non-adopters in terms of WSTs. Therefore, this paper
uses the endogenous switching regression model (ESRM) to analyze the determinants of
farmers’ WST adoption and their impact on crop yield, production risk, and the net income
of farmers.

Specifically, the ESRM model is divided into two stages. In the first stage, the model
uses a Probit regression to analyze and estimate the influencing factors of WST adoption; in
the second stage, farmers are divided into two groups according to their different decisions
(adopters and non-adopters in terms of WSTs), and the difference in effect between the two
groups is estimated [45].

In the first stage, WSTi* is the latent variable of the dummy variable WSTi. The latent
variable is specified as:

WST∗i = Xiα + Ziγ + µi Ai = 1[ A∗i > 0] (8)

where farmland plot i is chosen for adaption by the farmer (WSTi = 1) to address drought.
Xi is a vector of factors influencing WSTi adoption. Zi represents the instrument variable,
and γ is the corresponding estimated parameter. The reason for selecting instrument
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variables is to ensure the model identifiability. It is required that at least one variable in the
selection equation does not appear in the result equation, and this variable must satisfy the
conditions that it affects farmers’ adoption decision but does not directly affect crop yield
or net income. α is a vector of parameters. µi is an error term where µi ∼ N

(
0, σ2

µ

)
.

In the second stage, the outcome function can be defined as:

Y1i = X1iβ + ε1i i f Ai = 1 (9)

Y2i = X2iβ
′ + ε2i i f Ai = 0 (10)

where Y1i and Y2i are the mean of crop yield, the risk of crop yield, and net crop in-
come for adopters and non-adopters, respectively. X1i and X2i are a set of explanatory
variables for adopters and non-adopters, respectively. β and β′ are the corresponding
estimated parameters.

Our analysis relies on a moment-based specification of the stochastic production func-
tion [46,47]. This method is widely used in agricultural economics to model the implication
of weather risk and risk management [32,48]. This paper employs first-order moment and
second-order moment estimation methods to represent the mean of crop yield and the
variation of crop yield, respectively. The mean of crop yield is expressed as the expected
value of yield, E(Y) = f (WST, X; α), and the variation of crop yield is expressed as the
variance of yield, V(Y) = g(WST, X; β). Under the condition of production uncertainty,
according to the first-order moment estimation method, the overall crop yield function can
be defined as: Y = f (WST, X; α) + µ, where f1(WST, X; α) = E(Y) indicates the expected
value of overall crop yield. µ = Y− f1(WST, X; α) is a random error term representing the
uncertainty of farmers facing drought, which satisfies E(µ) = 0. According to the definition
of second-order center distance, crop yield variation can be expressed by the variance of
crop yield: E{[Y− f1(WST, X; α)]2} = E

(
µ2) = g(WST, X; β).

When unobservable factors affect both the choice variable WSTs and the result variable
Y of adopters, the correlation coefficient of the error term in the choice equation and the
result equation are not zero, that is, corr(µ, ε) 6= 0. In addition, since the expected values
of the error terms ε1i and ε2i are not 0, direct estimation of the parameters (9) and (10) using
OLS suffers from sample selection bias [43].

The three error terms µ, ε1, and ε2 in Equations (8), (9), and (10) are assumed to have a
trivariate normal distribution with mean vector zero and covariance matrix:

Σ =

 σ2
µ σµ1 σµ2

σ1µ σ2
1 σ12

σ2µ σ21 σ2
2


where Var(µ) = σ2

µ, Var(ε1) = σ2
1 , Var(ε2) = σ2

2 , Cov(ε1, µ) = σ1µ, Cov(ε2, µ) = σ2µ, and
Cov(ε1, ε2) = σ12. Due to the missing data (the results Y1i and Y2i of farmers in different
adoption behaviors cannot be obtained at the same time), this paper introduces the inverse
Mills ratio into the result equation to solve this problem [49]. The expected values of
the error terms ε1 and ε2 of the resulting Equations (11) and (12) for the adopter and
non-adopter are given as follows:

E[ε1i|Ai = 1] = σ1µ
ϕ(Xiα+Ziγ)

φ(Xiα+Ziγ)
= σ1µλ1i (11)

E[ε2i|Ai = 0] = −σ2µ
ϕ(Xiα+Ziγ)

1− φ(Xiα+Ziγ)
= σ2µλ2i (12)

where the standard normal probability density function is ϕ(.), and φ(.) is the normal
cumulative distribution function. The terms λ1 and λ2 refer to the inverse Mills ratio
evaluated at A∗i = Xiα + Ziγ + µi, respectively, λ1 = ϕ(Xiα+Ziγ)

φ(Xiα+Ziγ)
and λ2 = − ϕ(Xiα+Ziγ)

1−φ(Xiα+Ziγ)
.
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Here, this paper uses the full information maximum likelihood (FIML) method to
estimate the ESRM, which advances the two-step least-squares and maximum likelihood
methods [50]. Given the assumption of trivariate normal distribution for the error terms,
the logarithmic likelihood function can be given as follows:

ln Li = ∑N
i=1{Ai

[
ln ϕ

(
ε1i
σ1

)
− ln σ1 + ln φ(θ1i)

]
+(1− Ai)[ln ϕ

(
ε2i
σ2

)
− ln σ2 + ln (1− φ(θ2i)]}

(13)

where θji =
Zi+ρjε ji/σj√

1−ρ2
j

, j = 1, 2, with ρj denoting the correlation between the error term µi

of the selection Equation (8) and the error term ε ji of Equations (11) and (12), respectively.
ρ1µ =

σ1µ

σ1σµ
is the correlation coefficient between µ and ε1, and ρ2µ =

σ2µ

σ2σµ
is the correlation

coefficient between µ and ε2. The estimated ρ1µ and ρ2µ are bounded between −1 and 1,
and the estimated σ1 and σ2 are always positive. Additionally, full information maximum
likelihood estimation for endogenous switching regression model can be achieved through
the movestay command of STATA software [50].

4.2. Empirical Model

In order to examine the determinants of farmers adopting WSTs in response to drought,
a specific selection model is established as follows:

WSTiht = α0 + α1Dct + α2Zct + α3 Iiht + α4Hht + α5Fiht + α6P + µiht (14)

In order to examine the effect difference of the WST measures, the separate outcome
equations for adopters and non-adopters are defined as follows:

Y1iht = β0 + β1WST1iht + β2D1ct + β3 I1iht+β4H1ht + β5F1iht + β6P1 + ε1iht (15)

Y2iht = β′0 + β′1WST2iht + β′2D2ct + β′3 I2iht
+β′4H2ht + β′5F2iht + β′6P2 + ε2iht

(16)

where the subscripts of i and h represent farmland plot and farmers, respectively. The
subscript of c represents the county, and t represents the year. α, β, and β′ are the vectors
of parameters to be estimated. µiht, ε1iht, and ε2iht are the error terms. Table 4 presents the
definition and descriptive statistics of variables used in the above equations.

WSTiht is the dependent variable, which indicates that the percentage of farmers using
WSTs reaches 80%, whether or not the hth household adopts WST measures at t year when
the farm is on I plot. Yiht represents crop yield, crop production risk (yield variance), and
net crop income, respectively. It can be seen from Table 4 that the average crop yield is
11,809 kg per hectare, the average crop variance is 0.38, and the net crop income for farmers
is 12,760 yuan per hectare. Among them, the net income from grain growing is obtained by
subtracting the actual input, which includes the cost of production factors such as fertilizers,
pesticides, machinery, irrigation water, and labor costs from the total value of crop yield.
This paper does not consider domestic labor discount in land costs and labor costs. The
instrument variable is represented by the price of agricultural irrigation water Zct, and the
average agricultural irrigation water is 1544 yuan per hectare.

Among the explanatory variables, Dct indicates whether a drought disaster t occurred
at the county level. Factor input variables include fertilizer Iiht1, pesticide Iiht2, capital input
for machinery Iiht3, and labor input Iiht4. Among them, the fertilizer input is the highest,
at 4898 yuan per hectare. It is followed by the cost of mechanical operation (2561 yuan
per hectare), the input of pesticides (821 yuan per hectare), and the labor input (92 labor
days per hectare). Among the characteristic variables of farmers’ families, the average
value of household durable goods Hht1 is 9610 yuan; the probability of family members
having participated in agricultural production technique training Hht2 in the past three
years is 25%; the gender indicator of household heads Hht3 is 0.95, indicating that 95% of
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household heads are males; the average education level Hht4 of the heads is 6.91 years,
which is equivalent to the education level of junior high school; the average number of
years of arable land Hht5 is 34.97 years. The characteristic variables of the plot include the
arable land area of the plot Fiht1. The statistics showed that the average size of individual
plot area is only 0.2 hectares, indicating that the arable land is fragmented and scattered;
the land form of arable land Fiht2 is mainly flat land, with only 7% of farmers choosing
to grow crops on the mountains. In terms of the property rights of land plot Fiht3, 95% of
the land is owned by farmers, and only 5% is taken in loan from others; soil types include
sandy soil Fiht41 (27%), loamy soil Fiht42 (35%), and clay soil Fiht43 (38%). In addition, the
regional variable P is represented by five provinces, respectively.

Table 4. Definitions and descriptive statistics of variables.

Name of Variables Unit/Definition Mean S.D.

Explained variables:
If WST is adopted 1 = yes; 0 = otherwise 0.80 0.40

Crop yield kg/ha 11809 3584
Variance of crop yield variance 0.38 1.64

Net crop income 103 yuan/ha 12.76 7.22
Instrument variables:

Price of agri. irrigation water yuan/ha 1544 1382
Explanatory variables:

Extreme weather events
If it is a drought year 1 = yes; 0 = otherwise 0.50 0.50

Input factors:
Fertilizer cost yuan/ha 4898 2202
Pesticide cost yuan/ha 821 597

Machinery cost yuan/ha 2561 1164
Labor Adult days/ha 91.51 79.37

Farmers’ characteristics:
Durable goods of family 103 yuan 9.61 16.87

If family members have received
agricultural production technology

training in the past 3 years
1 = yes; 0 = otherwise 0.25 0.43

Gender of head 1 = male; 0 = female 0.95 0.21
Education of head year 6.91 3.22

Farming experience of head year 34.97 11.51
Farmland characteristics:

Farmland plot ha 0.20 0.18

Farmland types 1 = plain;
0 = otherwise 0.93 0.26

Farmland property 1 = owned; 0 = taken
in loan from others 0.95 0.22

If soil is sand or not 1 = yes; 0 = otherwise 0.27 0.44
If soil is loam or not 1 = yes; 0 = otherwise 0.35 0.48
If soil is clay or not 1 = yes; 0 = otherwise 0.38 0.49
Location variables:

Henan province 1 = yes; 0 = otherwise 0.27 0.44
Hebei province 1 = yes; 0 = otherwise 0.18 0.38

Shandong province 1 = yes; 0 = otherwise 0.18 0.38
Jiangsu province 1 = yes; 0 = otherwise 0.10 0.29
Anhui province 1 = yes; 0 = otherwise 0.28 0.45

Notes: S.D. is standard deviation. Crop includes wheat and maize.

4.3. Endogeneity and Instrument Variable Test

When WST adoption is used to explain crop yield or income, there may be endo-
geneity problems in farmers’ choice. Therefore, this study first needs to test whether the
WST variable Siht is an endogenous explanatory variable. According to the Hausman
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test results, χ2(1) =
(

β̂ IV − β̂OLS
)′Var

(
̂̂β IV−β̂OLS

)−1(
β̂ IV − β̂OLS

)
= 9.01 **, this study

rejects the null hypothesis H0 that all explanatory variables are exogenous. According to
the results of Durbin–Wu–Hausman test, Durbin (score) χ2(1)= 9.058 ***, Wu–Hausman
F(1,3738) = 9.027 ***, it is further verified that WST variable WSTiht is an endogenous ex-
planatory variable.

To this end, this study uses the agricultural irrigation water price Zct as an instrument
variable of the WST variable WSTiht. First, an increase in water price can motivate or
constrain farmers’ water-saving behavior and thus promote WST adoption. Second, consid-
ering changes in water prices are government actions, raising the price of irrigation water
only affects farmers’ WST adoption, but does not directly affect the crop yields per hectare.
Based on the above analysis and referring to the methods provided by Di Falco et al. [51]
and Huang et al. [32], this study finds that the examination of the effect on the crop yield of
all samples imposed by instrument variables is not enough to explain whether the change
in yield is caused by instrument variables or by other water-saving measures. On the
contrary, if only non-adopters are analyzed, it turns out that the change of water price has
no effect on farmers’ adoption behavior, and does not affect the crop yield.

In Table 5, the Probit model set for the water-saving technology choices presents that
the price of irrigation water plays a significant role in promoting the adoption of WSTs by
farmers. The mixed-effects OLS model constructed for the crop yield per hectare shows
that the price of irrigation water has no significant effect on crop yield. Therefore, it is valid
to select the price of agricultural irrigation water as an instrument variable.

Table 5. Endogenous test on instrument variables.

Instrument
Variables (IV) WST Adopters Crop Yield (log)

Coefficient t-Value Coefficient t-Value

Price of
agricultural

irrigation water
Zct

0.486 *** 11.360 0.007 0.510

Constant −3.966 *** −8.110 0.187 0.560
χ2(20) 1722 6088

Observations 3760 745
Note: *** represents significance 1%.

5. Estimated Results and Analyses
5.1. The Determinants of Adoption Decision

The estimated results for the determinants of farmers’ WST adoption are presented in
column 2 of Tables 6–8. The instrument variable the price of agricultural irrigation water
has a positive impact on WST adoption, indicating that the increase in the price promotes
farmers’ WST adoption. The finding is consistent with previous studies on irrigation water
price policy [52]. When water price is low, the water-saving enthusiasm of farmers is not
reflected and nor is the scarcity of water resources. Raising water prices inevitably leads
to increase input costs for farmers, and, thus, rational farmers invest in the more effective
WST measures to minimize production costs. Therefore, water price increase can motivate
or constrain farmers’ water-saving behavior and promote their WST adoption.

One possible reason is that the adoption cost of the traditional WSTs and household-
based WSTs is relatively low, and the adoption of WSTs is affected by farmers’ production
behaviors and habits; thus, the potential coverage can be relatively wide. Due to the
long-term trend of precipitation reduction in the surveyed area, farmers use the household-
based WSTs regardless of whether they encounter drought or not. However, once a drought
occurs, the adoption of community-based WSTs may be too late due to the high price, large
amount of engineering, and long construction time.
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Table 6. Farmers’ WST adoption decision and its impact on mean crop yield.

Variables
WST

Adoption
Decision

Crop Yield (Log)

Adopters Non-
Adopters

If it is a drought year Dct −0.038 0.069 *** −0.011
(0.043) (0.007) (0.034)

Fertilizer cost log Iiht1 0.308 ** 0.305 *** 0.983 ***
(0.156) (0.111) (0.045)

Pesticide cost log Iiht2 −0.014 0.047 * 0.057 *
(0.062) (0.025) (0.031)

Machinery cost log Iiht3 0.502 *** 0.415 *** −0.007
(0.136) (0.108) (0.028)

Labor cost log Iiht4 0.010 0.111 *** 0.021
(0.107) (0.027) (0.047)

Durable goods of family log Hht1 0.084 0.012 −0.002
(0.059) (0.011) (0.058)

If family members have received agricultural
production technology training in the past 3 years Hht2

0.067 0.021 −0.073
(0.113) (0.025) (0.082)

Gender of HH head Hht3 −0.048 −0.053 0.244
(0.202) (0.045) (0.151)

Education of HH head Hht4 0.032 ** 0.002 0.024 **
(0.016) (0.003) (0.012)

Farming experience of head Hht5 −0.003 0.001 0.005
(0.005) (0.001) (0.003)

Farmland area Fiht1 0.023 0.233 *** 0.177 *
(0.239) (0.067) (0.100)

Farmland types Fiht2 1.121 *** −0.008 −0.355
(0.254) (0.041) (0.247)

Farmland property Fiht3 0.141 0.029 0.062
(0.188) (0.045) (0.103)

If soil is loam or not Fiht42 0.089 0.062 ** 0.011
(0.145) (0.024) (0.117)

If soil is clay or not Fiht43 0.026 0.040 * 0.108
(0.142) (0.024) (0.134)

Price of agricultural irrigation water Zct 0.338 * - -
(0.175) - -

Province dummies P YES YES YES
Constant −2.370 2.774 *** −1.002 **

(1.654) (0.967) (0.506)
σi - 0.170 0.198

- (0.094) (0.047)
ρj - 0.278 −0.172

- (0.342) (0.087)
Obs. (plots) 3760 3015 745

Notes: Robust standard errors are in parentheses. *, **, and *** represent significance at 10%, 5%, and 1% level, respectively.

In terms of production factor input, Table 6 shows that fertilizer input and mechanical
input play a positive role in farmers’ adoption of WSTs. Specifically, when the fertil-
izer input increases by 10%, the possibility of farmers adopting WST increases by 3.08%,
and when the mechanical input increases by 10%, the possibility of farmers adopting
WSTs increases by 5.02%. It is apparent that the marginal effect of fertilizer input on the
adoption of WSTs is larger than that of mechanical input. The possible explanations are:
(i) theoretically, an increase from one factor input can possibly result in a change of factor
input combination; (ii) increasing fertilizer input can cause crops to need more irrigation
to obtain higher yield, which makes a larger possibility for farmers to adopt new WSTs;
(iii) in fact, fertilizer and irrigation (or WSTs) are complementary from the perspective of
crop nutrition.

In terms of the characteristic variable of farmers, family wealth has a positive effect
on the WST adoption (Hht1 = 0.086, Table 7), indicating that relatively wealthy households
are more likely to adopt WSTs to offset the crop loss caused by drought. Family member
participation in production technology training and the education level of household heads
also have a significant positive impact on the WST adoption. Specifically, when other
conditions remain unchanged, if family members have received production technology
training, the probability of adopting WST increases by 14.5%. For each additional edu-
cation year of the household head, the probability of adopting WSTs increases by 2.2%
(Table 7, row 17). Consistent with the research findings of scholars such as Zhang et al. [18],
Mi et al. [26], and Yuan et al. [20], the present study finds that the higher the education level
of farmers, the more willing they are to adopt WSTs. Farmers of higher education level
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demonstrate stronger ability to accept new technologies, and, thus, it is easier for them to
seize opportunities.

Table 7. Farmers’ WST adoption decision and its impact on variance of crop yield.

Variables
WST

Adoption
Decision

Variance of Crop Yield (log)

Adopters Non-
Adopters

If it is drought year Dct −0.007 0.001 0.083
(0.040) (0.014) (0.200)

Fertilizer cost log Iiht1 0.285 *** −0.374 *** −0.790 ***
(0.029) (0.012) (0.135)

Pesticide cost log Iiht2 0.093 *** 0.010 −0.348 ***
(0.023) (0.009) (0.098)

Machinery cost log Iiht3 0.169 *** −0.041 *** −0.209 *
(0.032) (0.011) (0.124)

Labor cost log Iiht4 0.016 −0.040 *** 0.189
(0.032) (0.011) (0.124)

Durable goods of family log Hht1 0.086 *** −0.028 *** −0.180
(0.023) (0.007) (0.130)

If family members have received agricultural
production technology training in the past 3 years Hht2

0.145 *** −0.015 0.190
(0.050) (0.017) (0.258)

Gender of HH head Hht3 0.083 −0.011 1.931 ***
(0.111) (0.035) (0.534)

Education of HH head Hht4 0.022 *** −0.003 −0.075 **
(0.008) (0.002) (0.038)

Farming experience of head Hht5 −0.001 −0.001 * −0.015
(0.002) (0.001) (0.009)

Farmland area Fiht1 0.023 −0.221 *** −0.138
(0.239) (0.067) (0.100)

Farmland types Fiht2 1.551 *** 0.452 *** −0.679 *
(0.182) (0.072) (0.359)

Farmland property Fiht3 −0.110 −0.073 ** 0.418
(0.093) (0.033) (0.407)

If property is loam or not Fiht42 0.256 *** −0.052 *** −0.440
(0.060) (0.018) (0.302)

If property is clay or not Fiht43 0.383 *** −0.083 *** −0.521 *
(0.060) (0.018) (0.294)

Price of agricultural irrigation water Zct
0.257 *** - -
(0.020) - -

Province dummies P YES YES YES
Constant −1.250 *** 2.642 *** 9.767 ***

(0.309) (0.142) (1.013)
σi - 0.407 *** 2.981 ***

- (0.006) (0.142)
ρj - 0.996 *** 0.588 ***

- (0.002) (0.111)
Obs. (plots) 3760 3015 745

Notes: Robust standard errors are in parentheses. *, **, and *** represent significance at the 10%, 5%, and 1% level, respectively.

Based on the above analysis, it may be concluded that a wide range of factors, including
the price of agricultural irrigation water, farmers’ family wealth, production technology
training, and education level of family members, significantly affects farm households’
WST adoption. Therefore, the government should speed up its efforts in establishing and
implementing a reasonable agricultural water price system, properly raise the water price
to strengthen farmers’ water-saving awareness, promote agricultural WSTs, and improve
the efficiency of water resources utilization. In addition, the government should strengthen
education and training in rural areas and find ways to increase farmers’ income.

5.2. Estimation of Mean Crop Yield Function

Table 6 shows the simultaneous results of the decision equation and the mean crop
yield equation used in farmers’ WST adoption. The estimated results for factors affecting
the crop yield of adopters and non-adopters are listed in columns 3 and 4, respectively.

First, the adoption of WSTs can reduce crop yield loss caused by drought. For example,
for non-adopters, drought has a negative impact on mean crop yield (−0.011), while for
adopters, drought has a positive effect on mean crop yield (0.069), which suggests that the
adoption of WSTs mitigates the loss of crop production caused by drought.

Second, the input of production factors can significantly affect the mean crop yield per
unit area. Fertilizers, pesticides, machinery, and labor all have significantly positive effects
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on crop yield per unit area; however, their coefficients are all less than 1, indicating that the
inputs of all factors are inelastic.

Third, among the household characteristics, the education level of the household
heads has a significant role in promoting the mean crop yield per unit area. For example,
for non-adaptors, each additional education year of the heads increases the crop yield per
unit area by 2.4%.

Fourth, among the plot characteristics, land area has a significantly positive effect on the
mean crop yield per unit area. In this regard, the larger the scale of crop growing, the higher
the level of crop yield, that is, the scale of land management can guarantee crop yield.

5.3. Estimation of Crop Risk Function

The regression results of the impact of WSTs on variance of crop yield are shown in
Table 7. The estimated results for adopters and non-adopters are listed in columns 3 and 4,
respectively. From the overall results, the estimated values of the correlation coefficients
ρ1µ and ρ2µ of the error terms between the selection equation and the result equation pass
the 1% significance level, indicating that there is sample selection bias. In addition, ρ1µ and
ρ2µ have the same sign, which means that the WST adoption by crop household is based
on hierarchical ranking. The key findings are as follows.

First, the estimated coefficient in the variance function of non-adopters is 0.083, which
is higher than that of the adopters (0.001) with the drought. Although the coefficient is
not significant, it shows that the adoption of WSTs can reduce crop yield variation to a
certain degree.

Second, the production factor input can significantly reduce the risk of crop yield.
Table 7 shows that the costs of chemical fertilizers, pesticides, machinery, and labor all have
a significantly negative impact on the variance of crop yield.

Third, household characteristics such as family wealth, the education of household
heads, and the farming experience also significantly affect the risk of crop yield. For
example, for adopters, every 1% increase in the value of household’s durable goods reduces
the variance of crop yield by 0.028%. For each additional year of farming experience, the
variance of crop yield decreases by 0.1%.

5.4. Estimation of Crop Income Function

Table 8 shows the simultaneous results for farmers’ WST selection equation and net
crop income equation. The factors affecting farmers’ adoption of WSTs are consistent with
the above results and, thus, are not repeated here. According to the estimation results of the
impact on net crop income, the elasticity and sign of factor input have obvious differences in
their impact on crop yield. Specifically, fertilizer and pesticide have a significantly positive
effect on crop yield, while the effects of fertilizer and pesticide on net crop income are not
significant but negative. Possible reasons are the high cost of inputs or the low return from
increased production [35]. In detail, the marginal net income cannot offset the marginal
input cost. The possible reason is that gain price is relatively low compared to the fertilizer
price. Therefore, the government encourages farmers to reduce fertilizer use.

5.5. Effects of WSTs on Crop Yield, Risk, and Net Income

Table 9 presents the expected results and average treatment effects of WST selection
decisions on variances of crop yield and net crop income. Notes (a) and (b) reflect the true
expected values of crop yield, yield risk, and net crop income, while notes (c) and (d) reflect
the counterfactual results of the three.
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Table 8. Farmers’ WST adoption decision and its impact on net crop income.

Variables
WST

Adoption
Decision

Net Crop Income (log)

Adopters Non-
Adopters

If it is drought year Dct −0.023 −0.106 *** −0.057 ***
(0.054) (0.006) (0.017)

Fertilizer cost log Iiht1 0.139 −0.016 0.046 ***
(0.093) (0.017) (0.017)

Pesticide cost log Iiht2 0.000 −0.005 −0.002
(0.070) (0.009) (0.012)

Machinery cost log Iiht3 0.334 *** 0.036 * −0.024
(0.079) (0.022) (0.015)

Labor cost log Iiht4 0.058 0.027 ** −0.018
(0.088) (0.011) (0.021)

Durable goods of family log Hht1 0.114 ** 0.011 * 0.001
(0.054) (0.007) (0.022)

If family members have received agricultural
production technology training in the past 3 years Hht2

0.065 0.013 0.028
(0.121) (0.015) (0.035)

Gender of HH head Hht3 0.036 0.016 −0.196 **
(0.214) (0.032) (0.092)

Education of HH head Hht4 0.034 ** 0.004 * 0.020 ***
(0.017) (0.002) (0.007)

Farming experience of head Hht5 −0.001 0.002 ** 0.001
(0.005) (0.001) (0.002)

Farmland area Fiht1 −0.025 0.135 *** 0.111 ***
(0.295) (0.033) (0.042)

Farmland types Fiht2 0.999 *** −0.008 0.029
(0.243) (0.031) (0.048)

Farmland property Fiht3 0.163 0.022 −0.045
(0.207) (0.023) (0.040)

If soil is loam or not Fiht42 0.068 0.053 *** 0.081
(0.169) (0.017) (0.057)

If soil is clay or not Fiht43 0.017 0.053 *** 0.073
(0.175) (0.017) (0.065)

Price of agricultural irrigation water Zct
0.495 *** - -
(0.056) - -

Province dummies P YES YES YES
Constant −4.034 *** 3.120 *** 2.946 ***

(0.695) (0.266) (0.369)
σi - 0.209 *** 0.276 **

- (0.055) (0.121)
ρj - 0.165 −0.525

- (0.125) (0.515)
Obs. (plots) 3760 3015 745

Notes: Robust standard errors are in parentheses. *, **, and *** represent significance at the 10%, 5%, and 1%
level, respectively.

Table 9. Average treatment effects of WST adopters.

Subsamples
WST Decision Treatment

Effects
Change Rate

(%)To Adopt Not to Adopt

Average crop yield per
unit area (log):

Plots that adopt WST (a) 9.373 (c)8.156 ATT = 1.218 *** 14.920
Plots that did not

adopt WST (d) 8.690 (b)8.396 ATU = 0.294
*** 3.500

Average variance of
crop yield (log):

Plots that adopt WST (a) 0.198 (c) 0.224 ATT = −0.026
*** −11.610

Plots that do not
adopt WST (d) 0.231 (b)0.249 ATU = −0.018

*** −7.230

Average net crop
income (log):

Plots that adopt WST (a) 3.434 (c)3.027 ATT = 0.407 *** 13.450
Plots that do not

adopt WST (d) 3.270 (b)3.196 ATU = 0.073
*** 2.320

Notes: *** denote significance at the 1% level. ATT represents the effect of the treatment (i.e., adaptation) on the
treated (i.e., farmers adopted WST), while ATU represents the effect of the treatment (i.e., adoption of WST) on
the untreated (i.e., farmers that did not adopt WST).
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The estimation results for ATT show that the adoption of WSTs significantly decreases
crop yield loss and net income loss. Specifically, compared with the counterfactual case
where farmers do not adopt WSTs, farmers who adopt decrease the loss of mean crop
yield and net crop income by 14.92% and 13.45% per hectare, respectively. Furthermore,
the adoption of WSTs reduces crop yield variation by 11.61% per hectare. The estimation
results for ATU reveal that if non-adopters have the opportunity to adopt WSTs, their crop
yield and net crop income decrease the loss of mean crop yield and net crop income by
3.50% and 2.32%, respectively, and crop yield variation can be reduced by 7.23%.

In Table 10, the plots are classified according to the adoption situations of different
WST measures and then the treatment effects of traditional WSTs, household-based WSTs,
and community-based WSTs are calculated. Compared with the counterfactual results,
the crop yield per unit area increases by 10.22% for traditional WST adopters, 14.09% for
household-based WST adopters, and 14% for community-based WST adopters. Compared
with the counterfactual results, the net crop income increases by 4.59%, 12.18%, and 14.52%,
respectively, for the HHs which adopt the traditional WSTs, household-based WSTs, and
community-based WSTs. The above results show that no matter what kind of WST farmers
adopt, their crop yield and the net crop income are significantly improved. Furthermore,
compared with traditional WST adopters, there is a large increase in crop yield and net
income for household-based WST adopters and community-based WST adopters.

The mixed-effects model (POOL-OLS) that explains the effects of different WSTs on
crop yield and net income also gives similar results (Table 11). The adoption of traditional
WSTs has no significant impact on crop yield per unit area, while the adoption of household-
based WSTs and community-based WSTs has a significant effect. Specifically, when other
conditions remain unchanged, the adoption of household-based WSTs and community-
based WSTs can increase the crop yield by 8.5% and 6.6%, respectively. As to the net crop
income, the adoption of the traditional WSTs can increase the net crop income by 10.7%,
and the adoption of the household-based WSTs and community-based WSTs can greatly
increase it, by 16.6% and 14.3%, respectively.

Table 10. Average treatment effects of farmers adopting different types of WST.

Subsamples
WST Decision to Treatment

Effects
Change Rate

(%)Adopt Not Adopt

Average crop yield per
hectare (log):

Plots that adopt
traditional WST 9.418 8.545 ATT = 0.873 *** 10.22

Plots that adopt
household-based WST 9.379 8.221 ATT = 1.158 *** 14.09

Plots that adopt
community-based WST 9.558 8.384 ATT = 1.174 *** 14.00

Average net crop
income (log):

Plots that adopt
traditional WST 3.437 3.302 ATT = 0.136 *** 4.090

Plots that adopt
household-based WST 3.436 3.063 ATT = 0.373 *** 12.18

Plots that adopt
community-based WST 3.573 3.120 ATT = 0.453 *** 14.52

Notes: *** denote significance at the 1% level. ATT represents the effect of the treatment (i.e., adoption of WST) on
the treated (i.e., farmers that adopted different types of WST).
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Table 11. The effect of different WST on crop yield and net crop income per hectare (POOL-OLS).

Explanatory Variables Crop Yield (Log) Net Crop Income (Log)

If traditional WST is adopted −0.002 - - 0.107 *** - -
(0.019) - - (0.011) - -

If household-based WST is adopted - 0.085 *** - - 0.166 *** -
- (0.022) - - (0.013) -

If community-based WST is adopted - - 0.066 ** - - 0.143 ***
- - (0.032) - - (0.019)

If it is a drought year −0.054 *** −0.054 *** −0.053 *** −0.112 *** −0.114 *** −0.112 ***
(0.015) (0.015) (0.015) (0.009) (0.009) (0.009)

Fertilizer cost log 0.666 *** 0.666 *** 0.666 *** 0.214 *** 0.213 *** 0.212 ***
(0.011) (0.011) (0.011) (0.007) (0.006) (0.007)

Pesticide cost log 0.078 *** 0.078 *** 0.079 *** 0.033 *** 0.032 *** 0.035 ***
(0.009) (0.009) (0.009) (0.005) (0.005) (0.005)

Machinery cost log 0.118 *** 0.112 *** 0.117 *** 0.081 *** 0.075 *** 0.085 ***
(0.007) (0.007) (0.007) (0.004) (0.004) (0.004)

Labor cost log 0.167 *** 0.167 *** 0.165 *** 0.015 ** 0.021 *** 0.017 **
(0.011) (0.011) (0.011) (0.007) (0.007) (0.007)

Durable goods of HH log 0.014 * 0.012 0.013 0.013 *** 0.009 * 0.012 **
(0.008) (0.008) (0.008) (0.005) (0.005) (0.005)

If family members have received
agricultural production technologies

training in the past 3 years
0.029 0.029 0.028 0.017 0.021 * 0.019 *

(0.019) (0.019) (0.019) (0.011) (0.011) (0.011)
Gender of HH head 0.027 0.019 0.022 0.012 −0.003 0.002

(0.037) (0.037) (0.037) (0.022) (0.022) (0.022)
Education of HH head 0.005 * 0.005 ** 0.005 ** 0.003 ** 0.004 *** 0.004 **

(0.003) (0.003) (0.003) (0.001) (0.001) (0.001)
Farming experience of head 0.002 *** 0.002 *** 0.002 *** 0.001 *** 0.001 *** 0.001 ***

(0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
Farmland area 0.284 *** 0.284 *** 0.284 *** 0.156 *** 0.167 *** 0.168 ***

(0.044) (0.044) (0.044) (0.026) (0.025) (0.026)
Farmland types −0.223 *** −0.255 *** −0.225 *** 0.252 *** 0.223 *** 0.281 ***

(0.036) (0.036) (0.035) (0.021) (0.021) (0.021)
Farmland property −0.013 −0.017 −0.016 0.006 −0.004 −0.002

(0.034) (0.034) (0.034) (0.020) (0.020) (0.020)
If soil is loam or not 0.033 0.035 * 0.027 0.047 *** 0.054 *** 0.037 ***

(0.021) (0.021) (0.021) (0.012) (0.012) (0.012)
If soil is clay or not 0.009 0.014 0.004 0.027 ** 0.036 *** 0.016

(0.020) (0.020) (0.020) (0.012) (0.012) (0.012)
Province dummies YES YES YES YES YES YES

Constant 1.644 *** 1.647 *** 1.650 *** 0.180 *** 0.174 *** 0.180 ***
(0.092) (0.092) (0.092) (0.054) (0.053) (0.054)

Notes: Robust standard errors are appeared in parentheses. *, **, and *** represent significance at 10%, 5%, and 1%
level, respectively.

6. Conclusions and Discussion

This paper constructed a decision-making model and an effect model based on ex-
pected utility maximization to study how farm households cope with drought by adopting
WSTs. Using the micro field survey data of farm households in five provinces across
the Huang-Huai-Hai region, endogenous switching regression was used to identify the
influencing factors of farm households’ adoption of WSTs and its impact on crop yield,
yield variation, and net crop income. Further, the treatment effects of traditional WSTs,
household-based WSTs, and community-based WSTs were analyzed.

6.1. Conclusions

First, the adoption of WSTs significantly reduces crop yield loss caused by drought. In
detail, adopting WSTs significantly decreases crop yield loss and net crop income loss by
14.92% and 13.45%, respectively. Meanwhile, adopting WSTs reduces crop yield variation
by 11.61% per hectare. Therefore, in the context of the increasing frequency of drought in the
Huang-Huai-Hai region, WSTs effectively cope with drought and ensure crop production.

Second, WSTs are different in terms of adoption frequency and drought resistance
effects. Traditional WSTs and household-based WSTs are much more frequently adopted
than community-based WSTs. This result might be due to the fact that traditional WSTs
and household-based WSTs have lower investment costs and are easier to popularize
than community-based WSTs. In addition, community-based WSTs may need more
group cooperation.
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Third, various WSTs can be adopted to suit different household production functions.
Compared with traditional WSTs, for example, adopting household-based and community-
based WST can be more effective for saving crop yield and net crop income.

Finally, raising the price of irrigation can play a significant role in promoting the
adoption of WSTs by farmers. This finding indicates that water price can encourage farm
households to improve water use efficiency by adopting WSTs.

6.2. Discussion

In dialogue with the existing literature, we responded to and confirmed the scholarly
view that the WSTs can help farmers to effectively cope with drought and save crop
production. Therefore, application of WSTs is certainly important for this major, irrigated
crop-planting area in China.

First, increasing fertilizer input can increase the possibility of adopting WSTs. This
finding is more feasible for yield-induced farmers. Therefore, currently, land circulation
and scale management may be one of the priorities for Chinese crop production sector.

Second, agricultural irrigation is closely correlated with land consolidation. The
application of WSTs can increase crop production cost, which may make it infeasible for
farmers to adopt more advanced WSTs. The preparation of high-standard farmland can be
another capital construction project for China’s future agriculture.

Third, institutional reform is also important for the adoption of WSTs by farm households.
For example, raising the water price can make farmers more likely to adopt WSTs. Similarly,
increasing machinery input can also make farmers likely to adopt WSTs, and, therefore,
increasing agricultural machinery subsidies could be another policy option. Therefore, it
would be useful for the government to conduct some agricultural institutional reforms.

As usual, this study still has some limitations. Our classification of WSTs was very
general and did not consider the types of technologies in detail. For example, the adaptation
measures did not take into consideration the adjusting of crop varieties and the use of
drought-resistant varieties. In addition, the data need to be updated, and the results should
be used with caution.
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