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Abstract: Impervious surfaces (IPS) are the major source of urban heat island effect (UHI), and the 

relationships between IPS and land surface temperature (LST) have been widely studied. Howev-

er, the spatial impact of landscape patterns of patches with different IPS density (IPSD) on the 

thermal environment remains largely unexplored. Based on three Landsat 8 images of the Xuzhou 

built-up area obtained in May and the corresponding ground observations from 2014 to 2020, the 

IPSD and LST maps were inversed through a linear spectral mixture analysis and mono-window 

algorithm, respectively. The landscape patterns of the five IPSD levels were characterized by four 

landscape-level and five class-level metrics. Finally, the spatial correlation between all landscape 

metrics and LST were analyzed using bivariate Moran’s I. The results were as follows: (1) The 

findings revealed that for the landscape-level metrics, LST had significant positive spatial correla-

tions with Shannon’s diversity index (SHDI), Shannon’s evenness index (SHEI), and patch density 

(PD), while showing a significant negative correlation with contagion index (CONTAG), indicat-

ing that increasing the types, even distribution degree, and density of patches, or decreasing the 

aggregation degree of the five IPSD levels will lead to the enhancement of the thermal environ-

ment. (2) Furthermore, the class-level metrics of each IPSD level, percentage of landscape 

(PLAND), largest patch index (LPI), landscape shape index (LSI), aggregation index (AI), and 

patch cohesion index (COHESION) showed significant correlations and LST, which signified that 

the spatial characteristics of patch proportion, predominance degree, shape complexity, aggrega-

tion degree, and natural connectivity degree of each IPSD level are important factors affecting 

UHI. In addition, the spatial correlations between LST and class-level metrics were significantly 

positive for IPSD levels 4 and 5 with an evidently higher Moran’s I value, indicating that land-

scape patterns of IPSD levels 4 and 5 were the key factors in UHI enhancement. Furthermore, the 

impact weights of each class-level metric of IPSD levels 4 and 5 on LST were also analyzed by ap-

plying the principal component analysis and the multivariate regression standardization coeffi-

cient. These results reveal the importance and impact mechanism of the IPSD spatial patterns on 

UHI evolution, which may provide a valuable reference for future urban planning and climate 

management. This study also suggests that regional UHI can be mitigated by reducing the area 

proportion, natural connectivity, and shape complexity of high-density impervious surfaces. 

Keywords: impervious surface density; urban heat island; landscape pattern; land surface tem-

perature; Landsat 8 

 

1. Introduction 

Rapid urbanization has promoted socioeconomic development and infrastructure 

upgrades [1–4], but it is also accompanied by several environmental problems, including 

air pollution [5], vegetation destruction [6], energy crisis [5], agricultural land occupa-

tion [7] and the urban heat island (UHI) effect [8]. UHI is a phenomenon wherein urban 
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areas experience higher temperatures than the surrounding non-urbanized areas [9,10]. 

Rapid urbanization has subjected natural landscapes to great pressure, eventually trans-

forming them into construction zones [11]. Most built-up areas covered by impervious 

surfaces (IPS) can dramatically change the surface radiation, thermal properties, and 

humidity in urban areas, resulting in the UHI phenomena [9,10,12–14]. Elevated temper-

atures in urban areas caused by UHI can aggravate energy and water consumption 

[15,16], urban air pollution [17], and human health risks [18]. Therefore, the urban ther-

mal environment has attracted research interest from the fields of urban ecology, envi-

ronment, and climate [19], and effective methods to mitigate the risks and negative con-

sequences of the UHI effect are urgently needed. 

As a large number of natural surfaces are transformed into IPSs during urbaniza-

tion, the areas and densities of various buildings and structures are increasing [20]. 

Therefore, the area, abundance, landscape pattern, and other spatial characteristics of 

IPS also vary [21]. With the development of remote sensing technology, accurate large-

scale IPS extraction has been realized [22], and the spatial distribution of land surface 

temperature (LST) can also be retrieved using satellite thermal infrared data [23,24]. 

With the support of multi-source remote sensing data, research on the relationship be-

tween the IPS and the UHI effect has become popular. A large number of studies have 

shown that the IPS has a significant correlation with the urban thermal environment, in-

cluding linear and non-linear positive correlations, which signifies that the regional LST 

will rise with an increase in the IPS area [25]. Some case studies have also found that an 

increase in construction density is positively correlated with LST [26–29]. However, 

these studies mainly focused on the numerical relationship between IPS indices and LST 

[30], and rarely involved the perspective of landscape ecology. 

To explore the spatial effect of IPS on the UHI effect, some studies have revealed 

the influence of the IPS landscape patterns on land surface temperature [21,27]. Land-

scape patterns generally refer to the spatial arrangement and combination of landscape 

elements with different sizes and shapes, including the type, number, spatial distribu-

tion, and configuration of landscape constituent units [31], which can be quantified by 

various landscape metrics based on appropriate mathematical algorithms. Landscape 

patterns have always been related to the UHI phenomenon, and each land cover type 

constituting the landscape has unique radiation, thermal, and moisture characteristics, 

thus affecting the regional thermal environment [9]. In recent decades, owing to the in-

crease in available satellite data, the relationship between landscape patterns and the 

UHI effect has been widely discussed from the perspectives of composition and configu-

ration [32–35]. Studies have discovered that landscape features such as the size, shape, 

and spatial distribution of IPS can significantly affect the scale and extent of UHI 

[21,31,36]. However, in most studies, all IPSs are analyzed as a single landscape category 

without detailed classification. Therefore, the impact of the spatial pattern of IPS patches 

with various densities on LST remains unclear. 

In this study, Landsat 8 remote sensing data and meteorological data were selected 

to extract the IPS density (IPSD) and LST of the study area by pixel unmixing and ther-

mal infrared temperature retrieval, respectively. The study area was then classified into 

five levels according to their IPSD values. Finally, the spatial effects of spatial patterns of 

various IPSD levels on the UHI effect were revealed using landscape pattern analysis 

and geospatial analytic approaches. 

2. Materials and Methods 

2.1. Study Area 

The built-up area of Xuzhou City (Figure 1) was selected as the study area, which is 

located in the northwest of Jiangsu Province, China (between 116°22′—118°40′E and 

33°43′—34°58′N). In this study, the built-up area refers to the highly urbanized areas 

dominated by artificial buildings and roads in the main urban area of Xuzhou (including 
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Quanshan District, Gulou District, Yunlong District, Tongshan District, and Jiuli Dis-

trict). Approximately 90% of the area of Xuzhou is dominated by plains, with an average 

altitude of approximately 40 m. Xuzhou is also located in a typical warm temperate zone 

and semi monsoon region, with an annual average temperature of 14 °C and an annual 

average rainfall of 800—930 mm. By the end of 2021, the GDP of Xuzhou reached 127.32 

billion USD, a permanent population of 9.0285 million, and an urbanization rate of 

66.2%. From 1995 to 2019, Xuzhou experienced rapid urbanization, with the scale of the 

urban built-up area increasing from 59 km2 to 274 km2 [37]. Xuzhou is also an important 

transportation hub, coal-producing area, and power-base in eastern China. In addition, 

Xuzhou has a large-scale manufacturing industry. Rapid urbanization and industrializa-

tion have intensified the expansion of the IPS area and enhanced the UHI effect in the 

built-up areas of Xuzhou City. As a typical medium-sized city in China, Xuzhou has a 

high level of urbanization, industrialization, and transportation. It is not only widely 

distributed by impervious surfaces, but also has a significant UHI effect [20]. Therefore, 

the study area is very suitable for exploring the influence of IPS spatial characteristics on 

the heat island effect. 

 

Figure 1. Maps of the study area: (a) Location of the study area in Jiangsu province, China; (b) GF-

1 satellite image of the study area (acquired on 28 April 2020). 

2.2. Data 

Three scenes of Landsat 8 images from 2014 to 2020 were downloaded from the 

United States Geological Survey (USGS) data center (https://glovis.usgs.gov/, accessed 

on 1 September 2022). Their multispectral (bands 1–7) and thermal infrared (band 10) 

bands provide spatial source data for land surface component extraction and LST inver-

sion, respectively. The time interval of the three images is 3 years. During these two pe-

riods, Xuzhou City was in the process of rapid urbanization, and the IPS has experi-

enced obvious evolution, which is conducive to reflecting the effects of different IPS spa-

tial patterns on LST. In addition, the three images are all in May (close to summer), 

which can not only show a significant UHI effect, but also avoid the impact of seasonal 

differences on the research results. Another satellite dataset used in pixel unmixing vali-

dation was the GF-1 high-resolution remote sensing image obtained in April 2020, 

whose spatial resolution reached 2 m with the fusion of panchromatic and multispectral 

bands. It should be noted that there was only a 19-day difference in the acquisition date 

of the GF-1 image and the corresponding Landsat 8 data in 2020. Therefore, the land 

cover change during this period can be ignored. 

In addition, ground observations at the transit time of the Landsat 8 satellite, in-

cluding near-surface temperature (Tair) and air relative humidity (RH), were also neces-
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sary for LST retrieval. The ground observations of May 1, 2014, and May 16, 2017, were 

collected from the Collaborative Observation Test Site of China University of Mining 

and Technology in the study area (data recording frequency of 30 min), and the mete-

orological data of May 17, 2020, were obtained from the NOAA National Centers for 

Environmental Information (NCEI) of USA (https://www.ngdc.noaa.gov/, accessed on 7 

September 2022) (recording frequency of 1 h). All of the satellite data and ground obser-

vations are presented in Table 1. 

Table 1. Remote sensing data information and ground meteorological observation data. 

Sensor 

Type 
Image ID 

Acquisition 

Time (GMT) 

Air 

Temperature 

Tair 

(K) 

Air Relative 

Humidity 

RH 

(%) 

Landsat 8 

OLI: 30 m 

TIRS: 100 m 

LC81210362014121LGN00 
2014-05-01 

02:42:29 
297.42 55.12 

LC81220362017136LGN00 
2017-05-16 

02:48:22 
296.33 39.76 

LC81210362020138LGN00 
2020-05-17 

02:42:10 
299.48 53.19 

GF-1 

PAN: 2 m 

MSS: 8 m 

GF1_PMS1_E117.2_N34.1_20200428_L1A0004767917 2020-04-28 

03:14:21 

 

& 03:14:17 

  

GF1_PMS1_E117.3_N34.4_20200428_L1A0004767915   

2.3. IPS Density Extraction from Mixed Pixels 

2.3.1. Endmember Fraction Extraction 

Urban land cover can be expressed as a combination of three ecological elements 

(vegetation, impervious surface, and soil) at a certain ratio, using the vegetation-

impervious surface-soil (V-I-S) model [36]. In medium- and low-resolution remote sens-

ing images, a single pixel often contains more than two land cover components. The lin-

ear spectral mixture analysis (LSMA) model assumes that the reflectance of each mixed 

pixel in a certain band has a linear relationship with the reflectance of all components in 

the pixel, and the linear coefficient is the area proportion of each component [22]. There-

fore, the least-squares method can be used to solve the component fractions of the mixed 

pixels. However, without any constraints, an endmember fraction extracted by the 

LSMA may be greater than 1 or less than 0, or the sum of all endmember fractions in a 

mixed pixel is not equal to 1. Then, the fully constrained linear spectral mixture analysis 

(FCLS) [38] was developed by considering the two constraints. On this basis, a normal-

ized spectral mixture analysis model (NSMA) was proposed to further solve the nega-

tive impact of shadows on mixed pixel decomposition results [39]. Based on the diversi-

ty of impervious surfaces in the study area, the endmembers in a mixed pixel were di-

vided into grass (including farmland), forest, soil, and high- and low-albedo impervious 

surfaces (water generally exists independently and can be masked). The LSMA algo-

rithms are as follows. 

𝑅𝑏 =
𝑅𝑏

1
𝑁

∑ × 𝑅𝑏
𝑁
𝑏=1

× 100 (1) 

𝑅𝑏 = ∑ 𝑓𝑖

𝑁

𝑖=1

𝑅𝑖,𝑏 + 𝑒𝑏 (2) 
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∑ 𝑓𝑖

𝑁

𝑖=1

= 1,  𝑓𝑖 ≥ 0 (3) 

𝑅𝑀𝑆 = (∑ 𝑒𝑏/𝑁

𝑁

𝑏=1

)0.5 (4) 

where 𝑅𝑏 is the standardized reflectance of a mixed pixel for band b; Rb is the original re-

flectance of the mixed pixel for band b; N is the endmember number of the mixed pixel; fi 

is the fraction of endmember i; 𝑅𝑖,𝑏 is the standardized reflectance of endmember i for 

band b; eb is the model calculation residual for band b; and RMS is the fitting accuracy of 

the LSMA model. 

Sample selection of each endmember should be completed in ENVI 5.3 before 

LSMA, as shown in Figure 2. First, the eigenvalues of all bands were calculated using the 

minimum noise fraction rotation (MNF), which can be used to eliminate nonmajor 

bands. The pure pixels of all endmembers were extracted from the major bands of the 

MNF using the pure pixel index (PPI). Finally, the pure pixels were superposed onto the 

major bands of the MNF as a region of interest to generate a scatter plot in the ENVI n-D 

visualizer, and each clustered scatter cloud was marked as the sample of an endmember. 

After the endmember fractions were extracted using the NSMA model, the IPSD was 

calculated as the sum of the fractions of the high- and low-albedo IPS. 

 

Figure 2. Flow chart of impervious surface (IPS) density extraction (data from 17 May 2020). 

2.3.2. Endmember Fraction Validation 

The endmember fractions extracted through the LSMA should be validated using 

high-resolution maps of land cover types. As shown in Figure 1b, all the sample points 

were set at intervals of 900 m along the four directions. Each pixel containing a sample 

point was regarded as the center pixel to create a 90 × 90 m2 sample area. The fractions of 

IPS (including high- and low-albedo) and vegetation (including grass and forest) were 

then extracted from each sample area. All sample areas were superimposed on the GF-1 

image, and manual interpretation was used to extract the proportions of land cover 

types in each sample area, which can be regarded as the true values of the component 

fractions. Although we have only found one phase of high-resolution satellite images 

whose transit time was close to the acquisition date of the Landsat 8 data of 2020, the 

pixel unmixing of the three Landsat 8 images was completely consistent with the rules 

and methods of endmember extraction. Therefore, the validation result of 17 May 2020 

can represent the accuracy of the LSMA in this study. 
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2.4. Landscape Pattern Analysis of IPS Density Levels 

2.4.1. Landscape Metrics Selection for Five ISPD Levels 

According to the IPSD values, the study area was classified into five levels using 

the mean-standard deviation method, including extremely high (LV5), sub high (LV4), 

medium (LV3), sub low (LV2), and low (LV1). The five levels were regarded as patches 

with various IPSDs to explore the effects of their landscape patterns on the UHI effect. 

The proportion, shape complexity, predominance, natural connectivity, and aggre-

gation are the five typical factors that can represent the spatial characteristics of patches, 

and the landscape metric is an effective approach for quantifying these spatial features 

[27]. Therefore, five class-level metrics–percentage of landscape (PLAND), landscape 

shape index (LSI), largest patch index (LPI), patch cohesion index (COHESION), and ag-

gregation index (AI)–were selected to represent these spatial characteristics of each IPSD 

level, respectively. In addition, four landscape-level metrics: Shannon’s diversity index 

(SHDI), patch diversity (PD), Shannon’s evenness index (SHEI), and competition (CON-

TAG), were selected to represent the diversity, number, distribution, and aggregation of 

all IPSD levels in the same region. All of the selected landscape metrics are listed in Ta-

ble 2. 

Table 2. The landscape metrics selected in this study. 

Landscape Metrics Formulas 

Class level 

PLAND (∑ 𝑎𝑖𝑗/𝐴

𝑛

𝑗=1

) × 100 

LPI [𝑚𝑎𝑥(𝑎𝑖𝑗) /𝐴] × 100 

LSI 𝑒𝑖/𝑚𝑖𝑛(𝑒𝑖) 

AI [
𝑔𝑖𝑖

𝑚𝑎𝑥 → 𝑔𝑖𝑖
] × 100 

COHESION {1 − [∑ ∑ 𝑝𝑖𝑗/ ∑ ∑(𝑝𝑖𝑗 × √𝑎𝑖𝑗)

𝑚

𝑘=1

𝑚

𝑖=1

𝑚

𝑘=1

𝑚

𝑖=1

]} × (1 − 1/√𝑍)
−1

× 100 

Landscape level 

SHDI －∑[𝑝𝑖 × 𝑙𝑛 (𝑝𝑖)]

𝑛

𝑖=1

 

SHEI －∑[𝑝𝑖 × ln(𝑝𝑖)]

𝑛

𝑖=1

/𝑙𝑛 (𝑚) 

PD 𝑁/𝐴 

CONTAG {1 + [∑ ∑ (𝑝𝑖 ×
𝑔𝑖𝑘

∑ 𝑔𝑖𝑗
𝑛
𝑗=1

) ×

𝑚

𝑘=1

𝑚

𝑖=1

𝑙𝑛 (𝑝𝑖 × 𝑔𝑖𝑘/ ∑ 𝑔𝑖𝑗

𝑛

𝑗=1

)] /[2𝑙𝑛 (𝑚)]} × 100 

2.4.2. Scale Effect Analysis 

In the assessment of landscape patterns and processes, most landscape metrics are 

highly dependent on the observation scale, particularly in remote sensing-based re-

search, as the scale effect may affect the survey results of landscape structure [40]. The 

scale effect has two aspects: the grain-size effect and spatial-extent effect [41], which rep-

resent the impact of the variations of the size of the smallest spatial analysis unit and the 

analysis extent on landscape structure extraction, respectively. First, the best grain size 

should be analyzed. Each IPSD level map was resampled at 10 m interval from 30–200 m 

to produce 18 images with different spatial resolutions (grain-sizes). FRAGSTATS 4.2 

was used to calculate the class-level metrics of these resized images, and the response 

trend of each metric to the change in grain-size was recorded, as shown in Figure 3a–e 

(taking the data of 17 May 2020 as an example). It can be seen that the inflection points 
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of the response curves of most metrics occur at the position where the grain-size is 50 m. 

In addition, according to the land area information loss index (Figure 3f) calculated us-

ing Equations (5) and (6), the land area accuracy loss at a grain-size of 50 m is relatively 

low. Therefore, 50 m can be selected as the best grain-size for landscape pattern analysis 

of IPSD levels. 

𝐿𝑗 = (𝐴𝑗 − 𝐴𝑏𝑗)/𝐴𝑏𝑗 × 100 (5) 

𝑆𝑗 = √
∑ 𝐿𝑗

2𝑛
𝑗=1

𝑛
 (6) 

where Lj is the relative value of the patch area loss of IPSD level j, Aj is the patch area of 

IPSD level j at a converted grain size, Abj is the patch area of IPSD level j at the original 

grain size, n is the number of IPSD levels, and Sj is the land area loss index. 

 

Figure 3. Response curves of class level metrics (a–e) and land area accuracy loss (f) to the grain 

size variation. 

The moving-window method was applied to calculate landscape metrics [42,43]. 

The landscape metrics within the spatial-extent of the moving-window window were 

assigned to the center pixel of the window and then moved to the next extent, and the 

spatial distribution map of each landscape metric was produced. The spatial-extent ef-

fect can be analyzed by adjusting the moving window size. To avoid pixel segmentation, 

the tested moving window sizes (spatial-extent) should be set as multiples of the best 

grain-size (n×50 m). Therefore, six moving-window sizes at 250 m intervals from 

250×250 m2 to 1500×1500 m2 were tested. FRAGSTATS 4.2 was applied to calculate the 

spatial distribution maps of four landscape-level metrics for six tested moving-window 

sizes, respectively. The sample points shown in Figure 1b were used to extract these 

metrics, as shown in Figure 4. The fluctuation curves of the four landscape-level metrics 

began to stabilize when the moving-window size increased to 750 × 750 m2, which indi-

cates that 750 × 750 m2 can be set as the best spatial-extent for analyzing the landscape 

patterns of the IPSD levels. 
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Figure 4. The landscape metrics fluctuation curves of the sample points at different spatial-extents: 

(a) SHDI, (b) SHEI, (c) PD, and (d) CONTAG. 

2.5. Landscape Surface Temperature Retrieval 

Landsat 8 has two thermal infrared bands, 10 and 11. Owing to the uncertainty of 

information in band 11 [23,24], band 10 was selected as the thermal radiation data. The 

mono-window algorithm [44,45] based on the thermal radiation transfer equation was 

used for LST inversion. The algorithm requires three parameters: land surface emissivi-

ty(ε), atmospheric transmittance (τ), and effective average atmospheric temperature 

(Tair_e). ε is determined by the thermal physical characteristics of the land cover types and 

is primarily affected by the atmospheric water vapor content (w), and Tair_e is related to 

atmospheric temperature and water vapor distribution. Previous research reported that 

the inversion accuracy of the mono-window algorithm was ± 1.4 °C [45], and the equa-

tions were as follows: 

𝐿𝑆𝑇 = {𝑎(1 − 𝐶 − 𝐷) + [𝑏(1 − 𝐶 − 𝐷) + 𝐶 + 𝐷]𝑇10 − 𝐷𝑇𝑎𝑖𝑟_𝑒}/𝐶 (7) 

𝐶 = 𝜀𝜏 (8) 

𝐷 = (1 − 𝜏)[1 + (1 − 𝜀)𝜏] (9) 

𝑇10 = 1321.08/𝑙𝑛 (1 + 774.89/𝐿10) (10) 

𝜀 = 𝑃𝑣𝑅𝑣𝜀𝑣 + (1 − 𝑃𝑣)𝑅𝑥𝜀𝑥 + 𝑑𝜀 (11) 

where a = −62.7182 and b = 0.4339 are the regression coefficients of the Planck blackbody 

radiation function within 0–70 °C; T10 is the brightness temperature calculated by ther-

mal infrared band 10; L10 is the thermal radiation parameter calculated by the DN value 

of band 10; Pv is the proportion of vegetation area to pixel, which can be calculated by 

the Normalized Difference Vegetation Index (NDVI); Rv and Rx (Rm or Rs) represent the 
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radiation ratios of pure vegetation pixels, building pixels, and soil pixels, respectively; 

and dε is the interference value of the interaction between vegetation and soil on the land 

surface emissivity. 

According to the simulation results of the Modern Resolution Atmospheric Trans-

mission (MODTRAN 4) program, the linear relationships between τ and w for Landsat 8 

TIR band 10 are shown in Table 3 [45]. Although the atmospheric water content data of 

the study area are not directly obtained, they can be calculated according to the empiri-

cal formula fitted from the historical data of the China Meteorological Station. The nec-

essary parameters included the average altitude (HE = 40 m), the latitude (φ = 34.24°), and 

the relative air humidity (RH) of the study area, as shown in Equations (12) and (13) [46]. 

In the mid-latitude summer, the linear relationship between Tair_e and Tair is shown in 

Equation (14) [44]. 

𝑤 = 0.03𝑒𝑥𝑝 (−1.39𝐻𝐸
2 + 2.74𝐻𝐸 + 0.15)𝑒 +

0.066

(𝜑 − 33)2 + 4.41
+ 0.17 (12) 

𝑒 = 0.6112𝑒𝑥𝑝 (
17.67𝑇𝑎𝑖𝑟

𝑇𝑎𝑖𝑟 + 243.5
) × 𝑅𝐻 (13) 

𝑇𝑎𝑖𝑟_𝑒  = 16.0110 + 0.9262𝑇𝑎𝑖𝑟  (14) 

Table 3. Regression functions for Tair_e and τ estimation. 

w (g·cm−2) τ Functions 

0.2–1.6 0.9184–0.0725 w 

1.6–4.4 1.0163–0.1330 w 

4.4–5.4 0.7029–0.0620 w 

2.6. Bivariate Moran’s I Analysis 

Two types of bivariate Moran’s I [47] were applied to explore the spatial correlation 

between landscape metrics of IPSD levels and LST, namely bivariate global Moran’s I 

and bivariate local Moran’s I. Bivariate global Moran’s I indicated whether there is spa-

tial correlation between landscape metrics and LST in the whole region and the degree 

of their spatial correlation, while bivariate local Moran’s I shows the spatial correlations 

in different spatial units. The equations are as follows: 

𝐼 =
∑ ∑ 𝑊𝑖𝑗(𝑥𝑖 − �̅�)(𝑦𝑗 − �̅�)𝑛

𝑗=1
𝑛
𝑖=1

𝑆2 ∑ ∑ 𝑊𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖

 (15) 

𝐼𝑖 = 𝑍𝑖 ∑ 𝑊𝑖𝑗𝑍𝑗

𝑛

𝑗=1
 (16) 

where I and Ii are the bivariate global and local spatial autocorrelation indices, respec-

tively; n is the total number of spatial units; Wij is the spatial weight matrix established 

by K adjacency method; xi and yj are the observed values of independent variable and 

dependent variable in spatial unit i and j respectively; S2 is the variance of all samples; zi 

and zj are the normalized values of the variances of the observations in spatial units i 

and j. 

The values of I and Ii range from − 1 to 1. A positive value indicates a positive spa-

tial correlation between landscape metrics and LST, meaning that pixels with high land-

scape metric values may be surrounded by pixels with high LST values. By contrast, a 

negative value represents a negative spatial correlation, indicating that pixels with high 

landscape metric values may be surrounded by pixels with low LST values. The larger 

the absolute values of I and Ii, the stronger the spatial correlation between landscape 

metrics and LST. The four quadrants generated based on the local indicators of spatial 
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association (LISA) of Ii represent four types of local spatial autocorrelation [48]. Quad-

rant I, called High-–High (HH) type, represents the high landscape metrics value sur-

rounded by high LST value; Quadrant II is High–Low (HL), indicating the high land-

scape metrics value surrounded by low LST value; Quadrant III is Low–Hight (LH), in-

dicating a low landscape metrics value surrounded by a high LST value; and Quadrant 

IV is Low–Low (LL), indicating the low landscape metrics value surrounded by low LST 

values. 

3. Results 

3.1. Inversion Results of IPSD and LST 

The IPSD maps calculated by LSMA are shown in Figure 5a–c. Compared with the 

high-resolution land cover data extracted from the GF-1 image (Figure 6), the inversed 

fractions (taking the components of IPS and vegetation on May 17, 2020, as an example) 

had a significant and strong linear correlation with the true fractions (with r > 0.90 and 

R2 > 0.82, p < 0.001), which signified that the accuracy of the inversed IPSD was reliable. 

The IPS area of the study area has gradually expanded, and high-density impervious 

patches have significantly increased, which is consistent with the rapid urbanization of 

Xuzhou City during this period. The LST images retrieved by the mono-window algo-

rithm are shown in Figure 5d–f. From 2014 to 2020, the study area also showed an ap-

parent UHI effect, and the LST of the areas covered by IPS was higher than that of the 

surrounding vegetation, soil, and other natural surfaces. IPSD and LST values were ex-

tracted by the sample points shown in Figure 1b. The quantitative relationship between 

IPSD and LST is simulated using linear, quantitative, cubic and empirical regression 

models, respectively. The results are shown in Table 4. It can be seen that the fitting re-

sults of the four regression models are significant at p < 0.001, and the cubic model has 

the highest fitting goodness (with 0.447 < R2 < 0.535) for three phases. Figure 7a–c reveals 

that the LST of three phases generally shows an upward trend with the increase of IPSD, 

with Pearson's correlation coefficients of 0.63, 0.69, and 0.66, respectively. In addition, as 

shown in Figure 7d, the average LST of each IPSD level indicated that the average LST 

also increased with an increase in the IPSD level, which further proved the enhancement 

effect of IPSD on the thermal environment. Therefore, it is valuable to further explore the 

spatial relationship between landscape patterns of IPSD levels and LST. 

Table 4. Regression results between IPSD and LST by applying four models. 

Date 
Regression 

Model 
R2 F Siginficance 

2014-05-01 

Linear 0.403 56.692 0.000 

Quadratic 0.446 33.364 0.000 

Cubic 0.447 22.080 0.000 

Exponential 0.402 56.571 0.000 

2017-05-16 

Linear 0.482 78.297 0.000 

Quadratic 0.534 47.616 0.000 

Cubic 0.535 31.403 0.000 

Exponential 0.482 78.295 0.000 

2020-05-17 

Linear 0.443 66.734 0.000 

Quadratic 0.489 41.132 0.000 

Cubic 0.512 28.699 0.000 

Exponential 0.443 66.894 0.000 
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Figure 5. Inversion images of impervious surface density (ISPD) (left (a–c)) and land surface tem-

perature (LST) (right (d–f)). 

 

Figure 6. The inversed component fraction validation using a GF-1 image (taking the inversed 

vegetation and IPS fractions of 17 May 2020 as an example). 
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Figure 7. (a–c) Cubic regression between IPSD and LST for three phases; (d) average LST statistics 

in five IPSD levels. 

3.2. Spatial Correlation between Landscape Metrics of IPSD Levels and LST 

The bivariate global Moran’s I values between landscape metrics of the five IPSD 

levels and LST are listed in Table 5 Significant spatial correlations were observed be-

tween all the selected landscape metrics and LST. However, these spatial correlations 

show great differences with variations in landscape metrics and IPSD levels. For land-

scape-level metrics, SHDI, SHEI, and PD showed significant positive spatial correlations 

with LST (p < 0.001), indicating that increasing the number of IPSD levels, patch even 

distribution degree, and patch density could enhance the regional thermal environment. 

In contrast, CONTAG showed a significant negative spatial correlation with LST (p < 

0.001), which signified that increasing the aggregation degree of the five IPSD levels 

would alleviate the UHI effect. 

For class-level metrics which represent the independent spatial characteristics of the 

patches of each IPSD level for an area, PLAND, LPI, LSI, AI, and COHESION showed 

significant correlations (p < 0.001) with LST, indicating that the spatial characteristics of 

each IPSD level, such as patch proportion, predominance degree, shape complexity, ag-

gregation degree, and natural connectivity degree, have significant spatial impacts on 

the thermal environment. However, the direction and degree of these spatial impacts 

varied at different IPSD levels. First, the bivariate global Moran’s I between LST and 

class-level metrics of IPSD LV1 or LV2 were negative. Second, the bivariate global Mo-

ran’s I between LST and class-level metrics of IPSD LV3 to LV5 were positive, and the 

value of Moran’s I increased gradually as the level of IPSD increased. 

In addition, LST have an obviously stronger spatial correlation with the class-level 

metrics of IPSD LV4 and LV5 (0.2 < Moran’s I < 0.6) than IPSD LV3 (most Moran’s I < 

0.1). Therefore, the class-level metrics of IPSD LV4 and LV5 are key factors that affect the 

spatial characteristics of the thermal environment and deserve special attention. Based 

on the degree of spatial correlation between the LST and class-level metrics of IPSD LV4 

or LV5, these metrics can be sorted as PLAND (average Moran’s I = 0.57), LSI (average 

Moran’s I = 0.56), COHESION (average Moran’s I = 0.50), LPI (average Moran’s I = 0.46), 
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and AI (average Moran’s I = 0.30). However, the spatial correlation degree cannot fully 

represent the contribution ratio of each class-level metric of IPSD LV4 and LV5 to LST; 

therefore, further discussion on the impact weights of these metrics is necessary. 

Table 5. Bivariate Global Moran’s I between landscape metrics of IPSD levels and LST. 

Landscape Metrics of IPSD Levels 
2014-05-01 2017-05-16 2020-05-17 

Moran’s I z-Value Moran’s I z-Value Moran’s I z-Value 

PLAND_LV1 −0.4104 *** −484.3881 −0.3640 *** −445.4438 −0.5860 *** −624.7005 

PLAND_LV2 −0.6232 *** −685.0685 −0.575 −650.749 −0.5059 *** −570.771 

PLAND_LV3 0.1072 *** 137.3938 0.0677 *** 87.2685 0.1210 *** 151.1338 

PLAND_LV4 0.5383 *** 614.4767 0.5590 *** 643.6663 0.5756 *** 631.9944 

PLAND_LV5 0.5694 *** 620.9965 0.6040 *** 676.2391 0.5970 *** 644.6729 

LPI_LV1 −0.3197 *** −393.3837 −0.3121 *** −389.215 −0.5315 *** −583.4593 

LPI_LV2 −0.5868 *** −654.7533 −0.5346 −614.5225 −0.4395 *** −505.6169 

LPI_LV3 0.0647 *** 81.7962 0.0180 *** 23.9672 0.0641 *** 82.5256 

LPI_LV4 0.4297 *** 488.2168 0.3920 *** 478.9052 0.4547 *** 523.3753 

LPI_LV5 0.4673 *** 559.9899 0.5190 *** 585.9848 0.4871 *** 544.9192 

LSI_LV1 −0.4573 *** −532.3214 −0.3848 *** −461.4945 −0.4999 *** −563.362 

LSI_LV2 −0.4002 *** −476.3153 −0.3055 *** −392.9659 −0.4857 *** −540.3122 

LSI_LV3 0.1536 *** 195.9282 0.1254 *** 158.7598 0.1820 *** 220.0359 

LSI_LV4 0.5388 *** 606.2473 0.5350 *** 626.5211 0.5551 *** 609.7773 

LSI_LV5 0.5870 *** 648.4811 0.5832 *** 656.4933 0.5881 *** 636.8686 

COHESION_LV1 −0.3765 *** −448.9476 −0.3388 *** −412.4622 −0.5433 *** −599.7174 

COHESION_LV2 −0.5047 *** −576.0259 −0.4572 *** −529.8952 −0.4486 *** −522.592 

COHESION_LV3 0.0579 *** 73.9933 0.0410 *** 53.2148 0.0860 *** 113.1896 

COHESION_LV4 0.4797 *** 537.8656 0.4602 *** 542.6128 0.5117 *** 564.794 

COHESION_LV5 0.4883 *** 578.6784 0.5277 *** 597.2353 0.5227 *** 579.8648 

AI_LV1 −0.2701 *** −331.9032 −0.2186 *** −275.91 −0.4366 *** −511.5759 

AI _LV2 −0.4040 *** −474.7578 −0.3443 *** −421.8647 −0.2690 *** −329.8153 

AI _LV3 0.0114 *** 14.3478 0.0210 *** 27.7116 0.0382 *** 49.9856 

AI _LV4 0.2148 *** 256.5564 0.2014 *** 254.5295 0.2943 *** 340.0671 

AI _LV5 0.3271 *** 411.6849 0.3711 *** 444.3869 0.3693 *** 437.643 

SHDI 0.0444 *** 57.7489 0.1342 *** 176.6873 0.0123 *** 15.8512 

SHEI 0.2120 *** 275.7464 0.2885 *** 366.9209 0.1894 *** 240.8287 

PD 0.1598 *** 203.1749 0.1885 *** 248.4368 0.1525 *** 192.6977 

CONTAG −0.2891 *** −366.797 −0.3494 *** −432.5666 −0.2885 *** −356.5613 

*** Statistically significant p < 0.001. 

The bivariate local Moran’s I between the class-level metrics of IPSD LV4 or LV5 

and LST are represented as LISA maps (Figure 8), which show the spatial distributions 

of the correlation between the two variables. The spatial clustering mode between the 

class-level metrics (PLAND, LSI, COHESION, LPI, and AI) and LST were mostly HH 

and LL. The superposition results of LISA maps and land cover classification maps (Fig-

ure A1 in Appendix A) showed that most of the HH areas were distributed in urban 

built-up areas with IPS coverage, whereas LL areas were mainly distributed in urban 

forests and parks with vegetation coverage, as well as farmland in the suburbs. 



Land 2022, 11, 2135 14 of 21 
 

 

Figure 8. LISA maps between landscape metrics of IPSD LV4 or LV5 and LST (HH refers to the 

spatial aggregation of high landscape metrics and high LST; LL refers to the spatial aggregation of 

low landscape metrics and low LST; HL refers to the spatial aggregation of high landscape metrics 

and low LST; and LH refers to the spatial aggregation of low landscape metrics and high LST). (a) 

2014-05-01; (b) 2017-05-16; (c) 2020-05-17. 

3.3. The Impact Weights of Class-Level Metrics of IPSD LV4 and LV5 on LST 

The spatial correlation analysis in the previous sections proved that class-level met-

rics of IPSD LV4 and LV5 have significant negative spatial effects on LST. However, the 

contribution of each metric to the spatial impact on LST still needs to be discussed fur-

ther. In general, the standardized coefficients of multiple linear regression (MRA) can be 

used to express the contribution weight of each independent variable (class-level metrics 

of IPSD LV4 and LV5) to the dependent variable (LST). However, the multicollinearity 

among these metrics was revealed during testing, which prevented the direct use of 

MRA. The principal component analysis (PCA) can recombine multiple original highly 

correlated independent variables into a group of unrelated comprehensive variables, 

which are called major component variables (Fi) [49]. As collinearity was eliminated 

among the principal component variables, MRA could be directly used to extract stand-

ardized regression coefficients (βi) between Fi and LST. Finally, the impact weights of 

each class-level metric of IPSD LV4 and LV5 on LST were calculated using the eigenval-

ue (ηi) of the major component variables, the PCA component matrix, and the standard-

ized regression coefficients. 
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All independent and dependent variables were standardized before PCA. The total 

variance explained by PCA (Table 6) showed that the Kaiser–Meyer–Olkin measure of 

sampling adequacy (KMO) values were all above 0.73, indicating that the PCA method 

was applicable to the independent variables of the class-level metrics of IPSD LV4 and 

LV5. Two principal components (F1 and F2) were extracted from the independent varia-

bles of the three phases, and all cumulative proportions of variance were more than 78%, 

indicating that F1 and F2 could effectively represent all independent variables. 

Table 6. Total variance explained by principal component analysis. 

Date KMO Sums of Squared Loadings F1 
① F2 

① 

2014-05-01 0.7596 
Eigenvalue (ηi) 4.076 3.836 

Cumulative Percent (%) 79.119 

2017-05-16 0.7335 
Eigenvalue (ηi) 3.942 3.928 

Cumulative Percent (%) 78.706 

2020-05-17 0.7387 
Eigenvalue (ηi) 4.030 3.868 

Cumulative Percent (%) 78.985 
① F1 and F2 are components 1 and 2 extracted through PCA, respectively. 

The component matrix of PCA represents the correlation coefficient (θ1 and θ2) of all 

the original independent variables (V1 to V10) with each principal component variable 

(F1 and F2), which are shown in Table 7 (where θi < 0.2 was considered to be too low and 

was rejected). As shown in Equations (18) and (19) [49], F1 and F2 can be calculated as the 

weighted sum of the original variables and their contribution coefficient αij (calculated 

using Equation (17)). 

Table 7. Component matrix of principal component analysis (PCA) ①. 

Normalized Original Variables 

(Class-Level VFLM) 

2014-05-01 2017-05-16 2020-05-17 

F1 (θ1) F2 (θ2) F1 (θ1) F2 (θ1) F1 (θ1) F2 (θ2) 

(V1) PLAND_LV5 0.449 0.836 0.886 0.240 0.722 0.525 

(V2) PLAND_LV4 0.209 0.855 0.902 0.278 / 0.882 

(V3) LSI_LV5 0.624 0.635 0.835 / 0.877 0.358 

(V4) LSI_LV4 0.871 0.282 0.623 0.630 0.233 0.888 

(V5) LPI _LV5 0.897 0.300 0.873 / 0.320 0.888 

(V6) LPI_LV4 0.809 / 0.522 0.719 / 0.815 

(V7) COHESION_LV5 0.619 0.659 / 0.874 0.635 0.599 

(V8) COHESION_LV4 0.861 / 0.240 0.905 0.874 / 

(V9) AI _LV5 0.304 0.893 / 0.732 0.901 0.270 

(V10) AI_LV4 / 0.764 0.377 0.870 0.767 / 
① Rotation Method: Varimax with Kaiser Normalization. 

𝛼𝑖𝑗 =
𝜃𝑖𝑗

√𝜂𝑖

 (17) 

𝐹1 = 𝛼11𝑉1 + 𝛼12𝑉2 + 𝛼13𝑉3 + 𝛼14𝑉4 + 𝛼15𝑉5 + 𝛼16𝑉6 + 𝛼17𝑉7 + 𝛼18𝑉8 + 𝛼19𝑉9 + 𝛼110𝑉10 (18) 

𝐹2 = 𝛼21𝑉1 + 𝛼22𝑉2 + 𝛼23𝑉3 + 𝛼24𝑉4 + 𝛼25𝑉5 + 𝛼26𝑉6 + 𝛼27𝑉7 + 𝛼28𝑉8 + 𝛼29𝑉9 + 𝛼210𝑉10 (19) 

Table 8 presents the multivariate linear regression results between the dependent 

variable normalized LST and independent variables F1 and F2. The significant and strong 

linear relationship between independent variables and dependent variables for each 

phase is evident ((with p < 0.001 and r > 0.59). Here, the impact weights (βi) of F1 and F2 

on the LST were obtained. Then, by combining βi with the contribution coefficient αij of 
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the original variables to F1 and F2, the impact weights of the class-level metrics of IPSD 

LV4 and LV5 on LST were calculated using Equation (20). Figure 9 shows that the im-

pact weights of the class-level metrics of IPSD LV5 are higher than those of LV4. For the 

LV5 patches, the impact weights of the metrics were ranked from high to low as 

PLAND, COHESION, LSI, LPI, and AI. In addition, the impact weights of the first four 

metrics were similar, indicating that the spatial characteristics of IPSD LV5, such as area 

proportion, natural connectivity, shape complexity, and predominance degree have sim-

ilar regulatory effects on the thermal environment. For the LV4 patches, the impact 

weights of the class-level metrics on LST were ranked differently from those of LV5, that 

is, LSI, PLAND, COHESION, LPI, and AI from high to low. 

Table 8. Multiple linear regression coefficients between normalized LST and principal variables 

(F1 and F2). 

Regression Coefficients  2014-05-01 2017-05-16 2020-05-17 

r  0.599 *** 0.640 *** 0.650 *** 

R2  0.359 *** 0.410 *** 0.422 *** 

Standardized Coefficients (βi) 
F1 0.317 *** 0.430 *** 0.345 *** 

F2 0.303 *** 0.245 *** 0.340 *** 

*** Significant at p < 0.001 

𝑊𝑗 = 𝛼1𝑗 × 𝛽1 + 𝛼2𝑗 × 𝛽2 (20) 

 

Figure 9. The impact weight of the class level landscape metrics of IPSD LV4 or LV5 on LST. 

4. Discussion 

In recent studies on the relationship between the IPS spatial pattern and UHI, IPS is 

generally regarded as a single land cover type (such as a building or built-up area) in the 

calculation of landscape pattern metrics [8,49], without considering the impact caused 

by the difference of IPS density in the patches. Since the positive correlation between IPS 

and UHI has been proved by many studies [21,27], our study explored an innovative 
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method to incorporate IPS density into landscape pattern analysis. According to the 

component fraction value of IPS, the land surface of the study area is classified into five 

levels (or can be regarded as five patch types), which corresponds to the land cover 

types in general landscape pattern analysis. Although the density index used for simple 

classification cannot completely simulate the urban IPS with high heterogeneous, it is 

still helpful to reveal the impact of the spatial pattern of the patches with various IPS 

densities on UHI. 

It should be noted that landscape-level metrics represent the comprehensive spatial 

characteristics of the patches of all spatial elements in an area. The patches of the five 

IPSD levels have different ratios of natural surface and impervious surface (for example, 

level 1 contains higher natural surface and lower IPS ratios, while level 5 has the oppo-

site ratios). Therefore, landscape-level metrics can be regarded as comprehensive spatial 

pattern indicators of vegetation and IPS patches with various proportions. This further 

indicates that the relationship between landscape-level metrics and LST results from the 

interaction between the IPS and natural patches in the region, including the enhance-

ment effect of high IPS density patches (LV4 and LV5) on thermal environment and the 

mitigation effect of low IPS density patches (LV1 and LV2 with higher vegetation or soil 

density) on UHI. 

In previous studies, IPS is generally regarded as one of the land cover types, and its 

class-level metrics PLAND, LPI, LSI, COHESION, and AI have been proved to have sig-

nificant positive correlations with LST [50,51]. This is consistent with our results that 

these class-level metrics of IPSD LV3 to LV5 (with higher IPS proportion) show positive 

bivariate global Moran’s I with LST (p < 0.001). 

From IPSD LV1 to LV2, the spatial patterns of the patches are negatively correlated 

with LST, which because these patches are mainly covered by natural surfaces (vegeta-

tion and soil) with low IPS proportions, resulting in that the mitigation effect of vegeta-

tion on the thermal environment is dominant. On the contrary, from IPSD LV3 to LV5, 

the spatial patterns of the patches began to be positively correlated with LST, which ow-

ing to the increase in IPSD is accompanied by the enhancement of surface thermal radia-

tion and anthropogenic heat emissions, and the heating effect of IPS thermal completely 

offsets the cooling effect of natural surfaces. With the gradual increase of IPS density, 

Moran’s I tends to increase. In addition, the land cover type in IPSD LV5 patches are 

mostly IPS. However, IPSD LV4 patches are still mixed with more natural surfaces. This 

is an important reason for the difference in the impact weight rankings between the 

class-level metrics of LV4 and LV5. Previous research  found that the landscape metric 

PLAND of building or built-up patches has the strongest correlation with LST [8], and 

the correlation between LPI and LST is stronger than that between AI and LST [51], 

which are also the same as our results. According to our research, priority should be 

given to reducing the area proportion, natural connectivity degree and shape complexity 

degree of high-density IPS regions, which could be one of the effective approaches to al-

leviate the regional thermal environment. 

5. Conclusions 

Based on three Landsat 8 images of the study area from 2014 to 2020, the LSMA and 

mono-window algorithms were used to extract the IPSD and LST, respectively. Land-

scape and geospatial analyses were applied to explore the spatial correlation between 

the landscape metrics of various IPSD levels and LST. It was revealed that the four land-

scape-level metrics, SHDI, SHEI, and PD all showed significant positive spatial correla-

tions with LST, while CONTAG showed a significant negative correlation, indicating 

that increasing the regional number of IPSD levels, patch even distribution degree, and 

patch density, or reducing the aggregation degree between the five IPSD levels will lead 

to the enhancement of the thermal environment. It should be noted that the relationships 

between landscape-level metrics and LST reflect the comprehensive spatial effects of all 

IPSD level patches, which means that natural patches (mainly covered vegetation and 
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soil) also contribute to these spatial effects on LST. For the five class-level metrics of each 

IPSD level, PLAND, LPI, LSI, AI, and COHESION, all showed significant correlations 

with LST. This means that the spatial characteristics of each IPSD level, such as patch 

proportion, predominance degree, shape complexity, aggregation degree, and natural 

connectivity degree, were all regulatory factors for the UHI effect. In particular, the de-

gree of positive spatial correlation of the class-level metrics of IPSD LV4 and LV5 with 

LST were the highest. The impact weight of each class-level metric of IPSD LV4 and LV5 

on LST was also obtained using PCA and MRA standardization coefficients, which can 

be sorted as PLAND_LV5 > COHESION_LV5 > LSI_LV5 > LPI_LV5 > AI_LV5 > LSI_LV4 

> PLAND_LV4 > COHESION_LV4 > LPI_LV4 > AI_LV4. This study has revealed the 

importance of and differences in the spatial patterns of patches with various IPSDs in 

UHI effect regulation. It is suggested that in urban planning and environmental man-

agement, approaches to reduce the area proportion, natural connectivity degree, and 

shape complexity of regional high-density IPS are preferred to alleviate the UHI effect. 

Considering the size, geographical location and industrial structure of the study ar-

ea in this paper, our conclusions may be limited with regard to the applicability to me-

dium-sized cities dominated by industry in central China. For other city types, such as 

agriculture-dominated cities, commerce-dominated cities, and super large cities, the im-

pact of IPS spatial pattern on the UHI effect needs to be discussed further. In addition, 

owing to the fact that the transit time of Landsat 8 images are basically fixed, the inver-

sion time of UHI effect in this paper is limited to noon (around 11:00 AM, Beijing time), 

which cannot further reveal whether the impact of the IPS’s spatial pattern on UHI var-

ies with time. Another issue worth detailed study is the use of unmanned aerial vehicles 

(UAV) equipped with multispectral and thermal infrared sensors to obtain urban LST 

data at different times in one day, and to explore the temporal characteristics of the im-

pact of IPS spatial patterns on the UHI effect. 

Author Contributions: Conceptualization, Y.Z. and Y.W.; methodology, Y.Z.; software, N.D.; val-

idation, Y.W.; formal analysis, Y.Z.; data curation, Y.Z.; writing—original draft preparation, Y.Z.; 

writing—review and editing, Y.W.; visualization, N.D. and X.Y.; supervision, X.Y.; funding acqui-

sition, Y.Z. and Y.W. All authors have read and agreed to the published version of the manuscript. 

Funding: Please add: This research was funded by the National Natural Science Foundation of 

China, Grant Nos. 42101256 and 42101049, and A Project Funded by the Priority Academic Pro-

gram Development of Jiangsu Higher Education Institutions (PAPD) (The Fourth Phase). 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors would like to thank the United States Geological Survey for sup-

porting Landsat 8 data. Further, we thank China University of Mining and Technology the NOAA 

National Centers for Environmental Information of USA for providing meteorological data. The 

comments and suggestions of the editor and the anonymous reviewers are gratefully acknowl-

edged. 

Conflicts of Interest: The authors declare that they have no conflict of interest. 

  



Land 2022, 11, 2135 19 of 21 
 

Appendix A 

 

Figure A1. Land cover classification maps (resampled to 50 m): (a) 2014-05-01; (b) 2017-05-16; and 

(c) 2020-05-17. 
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