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Abstract: High rates of land conversion due to urbanization are causing fragmented and dispersed 

spatial patterns in the wildland-urban interface (WUI) worldwide. The occurrence of anthropogenic 

fires in the WUI represents an important environmental and social issue, threatening not only veg-

etated areas but also periurban inhabitants, as is the case in many Latin American cities. However, 

research has not focused on the dynamics of the local climate in the WUI. This study analyzes 

whether wildfires contribute to the increase in land surface temperature (LST) in the WUI of the 

metropolitan area of the city of Guanajuato (MACG), a semi-arid Mexican city. We estimated the 

pre- and post-fire LST for 2018–2021. Spatial clusters of high LST were detected using hot spot anal-

ysis and examined using ANOVA and Tukey’s post-hoc statistical tests to assess whether LST is 

related to the spatial distribution of wildfires during our study period. Our results indicate that the 

areas where the wildfires occurred, and their surroundings, show higher LST. This has negative 

implications for the local ecosystem and human population, which lacks adequate infrastructure 

and services to cope with the effects of rising temperatures. This is the first study assessing the 

increase in LST caused by wildfires in a WUI zone in Mexico. 
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1. Introduction 

The global trend of urban migration is characterized by high rates of land conversion. 

Here, the ongoing process of urban expansion produces fragmented spatial patterns as it 

replaces agricultural and forest areas with built-up [1–4]. This process is mainly charac-

terized by dispersed urban development [5–7]. The continuous displacement of the pop-

ulation in recent decades towards periurban areas has encouraged the incorporation, mix-

ing, and interaction of agricultural and/or forest areas with human settlements [1], result-

ing in the configuration of the forest–urban interface [8,9]. In this study, we refer to the 

forest–urban interface as the wildland–urban interface (WUI). The WUI is characterized 

by a combination of residential, productive, recreational, and other uses in a periurban 

area [10], with rural characteristics —such as areas of forest vegetation— along with sea-

sonal and irrigated agriculture. This gives rise to a new and complex spatial configuration 

between urban and rural areas [11]. 

According to the analysis of approximately 400 articles by Bento-Gonçalves and 

Vieira [1], during the last decade, the occurrence of fires in WUIs has increased around 

the world. This increase was first evident in Canada, the United States of America, and 
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Australia, and more recently in southern Europe, including Portugal and Greece. How-

ever, Latin-American countries were excluded from this analysis because there are only a 

few studies on the subject to date, such as the case of Chile [12].  

One of the many impacts of fires that take place in forested areas is the post-fire in-

crease in the land surface temperature (LST), a fact that proves how important vegetation 

as a regulator of the land surface energy flux is [13,14]. On the earth’s surface, LST is the 

main factor influencing the physical processes responsible for balancing energy, water, 

and CO2 [13,15,16]. In the past few decades, LST has been employed to determine the 

surface urban heat island (SUHI) of cities around the world, which corresponds to the 

presence of higher temperatures within cities than in their surroundings [17–21]. The in-

clusion of spatial statistics such as hot and cold spot detection, has contributed to deter-

mining spatially the thermal performance of urban environments [22–24]. Hotspot analy-

sis can show areas of particularly high and low LST. There are several studies that have 

used Landsat imagery to perform this type of analysis [23]. In Mexico, few studies have 

implemented multitemporal hot and cold spot approaches [18].  

According to Kosatsky et al. [25], climate change has currently triggered conditions 

that have caused heat waves which in turn have had an impact on the environment and 

human health. The deaths recorded in Europe in the summer of 2003, mainly in France, 

due to the increase in temperature, or the numerous wildfires that affected air quality in 

the city of Moscow, Russia, in the summer of 2010, are examples of this [26,27]. Such cases 

emphasize the need to develop studies that estimate temperature and heat maps to inform 

on temperature increase. It is important to mention that the study of heat islands has been 

developed mainly in urban areas, but little has been explored about their occurrence in 

the urban peripheries and their possible causes. In this context, the present study focuses 

on the assessment of LST and wildfires in the WUI zone of the metropolitan area of Gua-

najuato (MACG), Mexico. 

This analysis aims to provide relevant information on the occurrence of wildfires and 

their consequences in terms of LST increase in the WUI. Our objectives were: (1) to esti-

mate LST; (2) to determine local LST hot spots; and (3) to determine the effect of wildfires 

on LST in the WUI during the period 2018–2021. Our results can spatially explicitly inform 

on the contribution of wildfires to increase LST in the WUI. This effect highlights the need 

to explicitly incorporate the WUI in the regional planning of the study area, where there 

is a high occurrence of wildfires.  

2. Study Area 

Guanajuato is the capital city of the Guanajuato state. The city is located in the south-

western area of the municipality of Guanajuato (21°01′04″N, 101°15′24″ W). Its altitude 

ranges from 1740 to 2959 m above sea level (masl). The municipality presents a semi-arid 

climate, with 650 mm of average rainfall per year. It has a semi-hot climate and an average 

temperature of 25 °C [28].  

The MACG was employed as spatial unit to include the surrounding localities that 

were developed due to the dispersed urban expansion of the city (Figure 1). Therefore, six 

localities in the south of the city were integrated into the MACG, in addition to the poly-

gon of the city of Guanajuato itself. According to the most recent Population and Housing 

Census conducted by the National Institute of Statistics and Geography [29], the MACG 

has an area of 25 km2 and a population of 154,799. By 2030, it is expected to increase to 

211,680 inhabitants. 
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Figure 1. (A) Location of the state of Guanajuato, Mexico. (B) Location of the study area in the mu-

nicipality. (C) Location of the study area, including the localities that comprise the MACG, labeled 

with numbers 1 to 6. 

Definition of the Wildland-Urban Interface of the Metropolitan Area of Guanajuato 

To define the WUI, we used the method proposed by Lampin-Maillet et al. [30,31]. 

First, we established four main categories of WUI based on housing configuration: iso-

lated (I), comprising groups of three or four houses located over 100 m away from the rest; 

scattered (S), for groups of 4 to 80 houses more than 100 m away from the rest; densely 

clustered (DC), comprising clusters of less than 80 houses located less than 30 m apart 

from each other; and very densely clustered (VDC), which included groups of more than 

80 houses 30 m apart from each other. We classified the remaining zones (R) based on 

their land uses and vegetation types. The characterization was carried out using the open 

source Geographical Information System (GIS) QGIS, version 3.16. We included the 

MACG and a 2 km buffer around it, which spatially overlaps very closely with the micro-

basin of the Guanajuato River, enabling us to assess the local ecosystem comprised by the 

WUI of the MACG (Figure 2). 
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Figure 2. Map of the housing spatial patterns categories, land use, and vegetation cover in the WUI 

of the study area. 

The wildland areas were characterized according to the 2014 scale of 1:50,000 vege-

tation and land use map issued by the Secretary of Environment and Territorial Planning 

(Secretaría de Medio Ambiente y Ordenamiento Territorial) [32]. The native vegetation of 

the study area includes xerophytic scrub, dry deciduous forest, and oak forest. This type 

of vegetation is adapted to drought conditions, but not to fire [33]. Non-native land cover 

types include rainfed agriculture, irrigated agriculture, and human-induced grassland, 

which is the predominant vegetation type in the study area (Figure 2). 

The topographic profile shows the altitudinal range in which the previously men-

tioned types of housing spatial patterns were distributed (Figure 3). It is important to note 

that the very dense clustered type is located at 2155 masl, in contrast with the scattered 

and isolated types, which are at 1850 masl. The latter are the result of unplanned urban 

growth in this part of the MACG. The urbanization gradient shows that scattered and 

isolated urban categories represent the nearest zones to the wildland category. 
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Figure 3. Topographic profile of the WUI in the MACG including the housing spatial categories. 

The gradient of elevation above sea level ranges from 1858 m to 2155 m. 

3. Methodological Approach 

3.1. Land Surface Temperature Estimation 

To estimate LST values, we used Landsat 8 OLI/TIR images of the pre- and post-fire 

dates covering the areas shown in Table A1 (appendix A). These images have a spatial 

resolution of 30 m (in the case of the thermal band resampled from 100 m) and were free 

of clouds. All subsequent processing steps were performed in Rstudio. The R package 

LSTtools [34,35] was used to process the Landsat bands. Spectral radiance values (Lλ) 

based on the thermal band (TIR; 10) were obtained by applying the rescaling and multi-

plicative factors from the metadata of each image following the equations suggested by 

the United States Geological Survey (USGS) [36]. To calculate LST for each image, we first 

estimated the soil emissivity values for each pixel, according to the modified Normalized 

Difference Vegetation Index (NDVI) threshold technique [37].  

NDVI was calculated using the red and near-infrared (NIR) bands. The modified 

NDVI threshold technique classifies pixels into soil pixels (NDVI < 0.2), totally vegetated 

pixels (NDVI > 0.5), and mixed pixels (pixels with mixed infrastructure and vegetation 

with neither category accounting for > 80% of pixels; NDVI ≥ 0,2 and NDVI ≤ 0,5). Fixed 

emissivity values of 0.97 and 0.99 were set for soil pixels and vegetation pixels respec-

tively. The brightness temperature (BT) was obtained based on the TIR band values. Af-

terward, we applied the Planck function to correct BT based on the estimated per-pixel 

emissivity values. Finally, we converted the Kelvin temperature values to Celsius degrees. 
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3.2. Hot Spots Estimation 

Hot spots were detected using the Getis-Ord Gi* statistics. This technique measures 

the degree of clustering of atypically high or low values for a given study area. Applying 

this method to a given variable allows the application of Tobler’s principle, which states 

that all things are related to each other, but things closer in space have a greater relation-

ship than distant things [38]. Getis and Ord [38] developed such statistics by performing 

an analysis based on the hypothesis that a phenomenon is randomly represented in space. 

For this phenomenon, they estimated z-values which were then validated through a p-

value of confidence to accept the phenomenon or reject it [39]. Depending on the result, 

categories can be established to represent clusters of high or low values. 

Although an entity with a high value is salient, it is not necessarily a statistically sig-

nificant hot spot unless there are other entities with high values in the immediate vicinity, 

thus creating a spatial cluster. The same principle applies to extremely low values (cold 

spots). If the statistical test yields a significant p-value, the cluster is categorized either as 

a hot spot (extremely high values) or as a cold spot (extremely low values), while non-

significant clusters denote areas whose values are near the average of the whole image. 

For this analysis, we assess the presence of LST hot spots in the MACG for the pre- and 

post-fire dates 2018, 2019, 2020, and 2021. For this purpose, we used the R software with 

the R package LSTtools version 0.0.2 [34,35] and the distance parameters of two pixels 

(i.e., 60 m) and a p-value of 0.05.  

3.3. Determination of Burned Area and Assessment of Mapping Accuracy 

For the detection of burned areas in the post-fire years 2019, 2020, and 2021, we em-

ployed the burned area product of the Sentinel Hub EO Browser, which includes different 

spectral products relevant to detect forest fires [40]. The Sentinel Hub EO implementation 

that detects burned areas uses three spectral indexes: the normalized difference moisture 

index (NDMI), NDVI, and a custom index based on bands 12, 11, and 8. SWIR bands 11 

and 12 detect heat, since they cover low-reflectance values where land was recently 

burned and has already cooled, and high-reflectance values in areas that continue to be 

hot. These bands were combined into a normalized SWIR difference index. Since band 8 

also has low reflectance in recently burned areas, we added it to the index to improve its 

accuracy [41]. We complemented our detection of burned areas using the atmospheric 

penetration spectral index, a composite that uses different bands from the non-visible part 

of the spectrum to minimize the impact of atmospheric noise in the image. Short-wave 

infrared bands 11 and 12 represent heated areas with high values, which makes them use-

ful for fire and burned-area mapping [42].  

We independently assessed the accuracy of the burned area mapping product for the 

dates 2019, 2020, and 2021, following Stehman and Foody [43]. We employed a stratified 

random sampling design with 506, 459, and 797 independent samples for the years 2019, 

2020, and 2021, respectively. These points were visually inspected using high-resolution 

images available on Google Earth to determine both burned and non-burned areas. The 

methods proposed by Oloffson et al. [44] were applied in order to estimate overall carto-

graphic accuracy. In addition to this reliability analysis, we also used the freely available 

data from the mobile application IGNIS citizen fire report, which allows citizens to report 

wildfires in real-time in the state of Guanajuato. IGNIS is available at [45].  

3.4. Statistical Analyses 

To assess whether hot spots were related to fire occurrence, we generated a database 

by randomly sampling pre-fire scenes from April and May 2018 and 2020 and post-fire 

scenes from April and May 2019 and 2021 (Table 1). These were the months with the high-

est temperatures in the state of Guanajuato [28]. We compared the same months for each 

selected year. One hundred random points were generated from the pre-fire (not burned) 
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and post-fire (burned) dates, then R software was used to perform an analysis of variance 

(ANOVA) that set LST as the explanatory variable. 

Table 1. Dates used in the study of pre-fire and post-fire dates and their respective randomly sam-

pled points. 

Month/Year Pre-Fire Month/Year Post-Fire Randomly Sampled Points 

April 2018 May 2019 

100 May 2019 May 2020 

April 2020 April 2021 

The null hypothesis considered the equality of the mean values and the groups as 

subsets of the same population. Rejection of the null hypothesis implies that the mean 

values of at least two groups are different. When the ANOVA was significant, a Tukey’s 

HSD post-hoc test was applied to determine pairwise differences between groups. The 

Shapiro–Wilk normality test was also performed. When the p-value was greater than 0.5, 

the normality assumption was not violated, nor was the Bartlett test of homogeneity of 

variances, in which case, given a p-value greater than 0.5, variances are homogeneous. To 

further validate the assessment of the LST differences between burned and unburned ar-

eas, we assessed statistical differences of LST values in three unburned areas, and at dif-

ferent distances from them (i.e., 400 m, 800 m, and 1200 m). Moreover, we monitored the 

LST values in 20 randomly selected pixels of burned and unburned areas over the three-

year period (May 2019, May 2020, and April 2021) to explore their evolution. 

4. Results  

4.1. Burned Areas, Hot Spots, and ANOVA Statistics  

The estimated total burned area in the years following the fire was 444.56 ha in 2019, 

198.95 ha in 2020, and 549.42 ha in 2021. The burned areas were distributed mainly in the 

southern part of the MACG, which exhibited an LST range of 20 °C to 50 °C (Figure 4). 

The accuracy assessment of the burn map showed an overall accuracy above 95% for the 

post-fire years of 2019, 2020, and 2021 (Tables A2, A3, A4, Appendix A). 
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Figure 4. Distribution of burned areas and LST range at the MACG. 

As a result of the Getis & Ord spatial autocorrelation analysis, clusters of hot spots 

and cold spots were obtained (Figure 5). The hot spots in the southern part of the study 

area mainly overlapped with the burned areas, especially in 2021, which was the year with 

the largest burned area. According to the results of the Tukey post-hoc analysis (Table A3, 

Appendix A), there is a significant difference between the mean LST of the non-burned 

areas and the areas identified as hot spots, which also spatially overlap with the burned 

areas for the post-fire years 2019, 2020, and 2021.  
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Figure 5. Maps of burned areas for the post-fire years (top) and hot and cold spots for post-fire (2019, 

2020, and 2021) seasons and burned areas (bottom). 

The mean LST of the unburned areas for the years 2019, 2020 and 2021 is 37 °C, 38 

°C, and 37 °C, respectively, while the burned areas presented a mean LST of 47 °C, 43 °C, 

and 39 °C (Figure 6). LST significantly differs between the unburned and burned areas, 

showing the significant impact of wildfires on the increase in LST in the burned areas 

compared to the unburned areas. As for the Shapiro–Wilk normality test and the Bartlett 

test of homogeneity of variances, the results of both tests show a normal distribution and 

homogeneity of variance, respectively, with p-values greater than 0.5. 
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Figure 6. Mean and distribution of LST values of unburned sites (UB) for the dates April 2018, May 

2019 and April 2020, and burned sites (BU) for the dates May 2019, May 2020 and April 2021 as-

sessed by the ANOVA statistical test (p < 0.05*).  

In Figure A1 (Appendix A), we show the LST monitoring at the pixel level for the 

years 2019, 2020, and 2021 for burned and unburned sites to validate our results. It is pos-

sible to observe that the LST values found in burned and unburned sites are significantly 

different. Although the values of burned pixels decrease again after the post-fire year, they 

are still significantly higher than those of the unburned areas during our study period 

(Figure A1, Appendix A). 

4.2. Wildland–Urban Interface Categories and Hot Spot Distribution 

Based on the classes defined for the WUI, Table 2 shows the surface area in ha of each 

category, the percentage of the total study area, and the estimated pre-fire and post-fire 

LST in Celsius degrees. The area and percentages of the densely and very densely clus-

tered categories are similar to the scattered clustered category, but the estimated average 

post-fire temperatures are ~37 °C for the first category and 40 °C for the second one. More-

over, the average post-fire LST is even higher for the isolated category, reaching 43 °C. 

These results show that the highest LST values are present in the scattered and isolated 

housing categories of the MACG (Figure 7). All the data presented in Figure 6 is described 

in detail in Table A3. 

Table 2. Housing spatial categories, surface area (ha), percentage of the study area, and mean LST 

(°C) of the types of housing spatial patterns and land use and vegetation cover in the WUI of the 

MACG. 

Housing Spatial Pattern Types in the WUI 

(ha and %) 
Year Pre-Fire (°C) Year Post-Fire (°C) 

Very densely clustered (1545 ha, 34.4 %) 

2018 32.23 2019 36.91 

2019 36.91 2020 40.77 

2020 32.09 2021 35.06 

Densely clustered (1164 ha, 25.9 %) 2018 34.27 2019 40.99 



Land 2022, 11, 2105 11 of 19 
 

2019 40.99 2020 41.88 

2020 34.09 2021 37.88 

Scattered (1417 ha, 31.5 %) 

2018 35.29 2019 42.56 

2019 42.56 2020 43.09 

2020 36.35 2021 39.09 

Isolated (361 ha, 8.04 %) 

2018 35.45 2019 43.66 

2019 42.77 2020 43.24 

2020 37.27 2021 41.53 

 

Figure 7. Average LST of the housing spatial patterns categories for the post-fire years of the study 

area evaluated by ANOVA statistical test (p < 0.001 ***). The housing categories are: Very dense (VD) 

May 2019, May 2020, April 2021; Dense (D) May 2019, May 2020, April 2021; Scattered (ST) May 

2019, May 2020, April 2021; and Isolated (I) May 2019, May 2020, and April 2021.  

5. Discussion 

An intensive urbanization process has been active in Latin America since the 1970s. 

This process has been characterized by a scattered spatial pattern since the advent of the 

articulation of a capitalist development model [46] and has produced one of the most ur-

banized regions in the world [47]. However, this urban expansion has not been sufficiently 

characterized by policies and planning instruments to match the complexity of this phe-

nomenon [3]. Our results confirm this spatial pattern, showing that the southern zone of 

the MACG presents a fragmented and isolated pattern of urbanization in the WUI. This 

type of urban development not only creates environmental conditions that are not sus-

tainable but also implies wildfire risks and heat hazard conditions for the population [48]. 

Further research complemented by air temperatures is necessary to assess whether the 

exposure of the inhabitants of the WUI to high temperatures increases with wildfires. 



Land 2022, 11, 2105 12 of 19 
 

The burned area estimates for 2021 showed a maximum area of 1096.34 ha, followed 

by 444.66 ha for 2019, and 198.95 ha for 2020. It is important to mention that the estimated 

burned area in 2020 is related to the lockdown due to the COVID-19 outbreak. The 

COVID-19 restrictions in Mexico prevented people from attending work centers, public 

spaces, and other crowded places. The temporary suspension of school activities at all 

levels also meant fewer people on the streets. This lockdown situation potentially reduced 

the burned area in 2020. This suggests that the fires in the southern zone of the MACG are 

the result of anthropogenic activities that were suspended at that time by the lockdown. 

Other studies, such as the work of Lampin-Mailleta et al. [30], have also documented 

the relationship between high wildfire risk in the WUI, especially present in the isolated 

and dispersed WUI categories. Their work in southern France showed that isolated and 

scattered urban housing spatial patterns imply the highest wildfire risk. Some crucial 

characteristics of these WUI (low housing density, high rural road density, and availabil-

ity of combustible vegetation, such as forests and shrublands) are factors of high wildfire 

risk. Another example is the study conducted by Bouillon [49], who mapped the WUI in 

the Province of Oristano, Sardinia, Italy. This research concluded that among the different 

types of WUI, isolated and scattered housing incurs the highest safety costs as there is a 

larger surface area prone to fire risk and they are more difficult to access. Our results are 

also in line with those of previous studies, providing further evidence that dispersed and 

isolated WUI housing categories are associated with higher risks of fire occurrence. 

It is important to mention that although it is possible to find studies in which wild-

fires are linked to WUI categories, there are no studies that have so far established the 

relationship between their occurrence and the formation of heat islands. In this context, 

our results show that there is an LST increase of at least 5.6 °C in the areas where wildfires 

occurred in the WUI. This pattern of high temperatures was observed in the south of the 

MACG during the three-year period of this study. Particularly, the hotspot analysis de-

veloped with a final resolution of 30 × 30 m as in the study employed by Mavrakou [50], 

allowed us to successfully identify the spatial overlap between burned areas and hotspots. 

It is important to mention that the hotspots are distributed in scattered and isolated areas 

of the WUI, especially in the year 2021, in which there was a total spatial overlap between 

the burned areas and the detected hotspots. Moreover, according to Farfan et al. [28], the 

study area constitutes a zone with a high probability of wildfire occurrence under the 

climatic conditions of the ENSO phases El Niño and La Niña. This increase in post-fire 

temperature, along with the occurrence of wildfires, generates conditions of vulnerability 

for the established population. It is important to mention that, as stated by Inostroza et al. 

[51], due to factors such as high temperatures that generate environmental stress in urban 

areas coupled with climate change, social heat vulnerability levels in Latin American cities 

will increase. Moreover, the low-income population is more exposed to these risk condi-

tions, as they tend to settle in suburban environments with low access to proper infra-

structure and services [51], high levels of urban informality, and in housing areas gener-

ally facing climate stressors that affect public health. On the other hand, Shaposhnikov et 

al. [26] suggest that although there is no evidence of air pollution or mortality derived 

from forest fires, these two events usually converge, mainly affecting people over 65 years 

old with cardiovascular, respiratory, and nervous diseases.  

In this context, the development of detailed information on vulnerability at the scale 

of cities and neighborhoods is an urgent step to implement specific strategies to adapt to 

climate change [51]. We suggest that, to provide solutions to mitigate the negative effects 

of the occurrence of wildfires and the formation of heat islands, it is necessary to develop 

a regional planning instrument that specifically recognizes the urbanization gradient of 

the WUI and the vulnerability of the population living in these complex areas. This would 

ease the implementation of prevention strategies such as fire breaks, fuel management 

and fire management plans, ideally involving the participation of the population settled 

in the scattered and isolated urban areas located in the WUI, which in our case study are 

the inhabitants of the southern MACG zone.  
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6. Conclusions 

This is the first study that assess the increase in LST caused by wildfires in a WUI 

area in Mexico. In this research, we describe the characteristics of the WUI in which LST 

differences occur during a three-year period (2019, 2020, and 2021), as well as the distri-

bution of burned areas that significantly contribute to the formation of hot spots in the 

MACG. We explored the relationships between wildfire occurrence and LST increase 

through the estimation of LST under pre-fire and post-fire conditions in the WUI. The 

results of this research show an average increase of 5.6 °C in the areas that presented wild-

fires in this three-year period. Among the different types of housing spatial pattern cate-

gories, the isolated and dispersed ones are the most affected by the increase in LST due to 

the high occurrence of forest fires. This means that the population settled in these two 

types of spatial categories is potentially more vulnerable to increasing temperatures due 

to the existing urban informality, which can be translated as precariousness in housing 

infrastructure and public services. Additionally, the negative effects on health due to the 

particles in the air derived from combustion are an important threat to the elderly and 

people with cardiovascular or respiratory diseases. We suggest that regional planning 

should incorporate the characterization of the WUI as an urbanization gradient in a spa-

tially explicit manner. In the case of the MACG, the development of a fire management 

plan focused on the southern area of the city, which we detected as the most prone to the 

occurrence of wildfires and increasing LST, is necessary. This measure should include the 

participation of the inhabitants of the city’s WUI. In order to further validate our findings 

and detect if the LST increasing trends are persistent in the WUI, it is necessary to further 

monitor this area in the coming years. A spatially explicit fire risk and social vulnerability 

study integrating the population's socioeconomic conditions and ignition sources for the 

MACG area is already planned to be developed as a next step after this research. 
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Appendix A 

Table A1. Landsat 8 OLI/TIR images for the different dates of pre- and post-fires. 

Mission Date 
Acquisition 

Time (GMT) 

Sun Azimuth 

(Degrees) 

Sun Elevation 

(Degrees) 
Path/Row 

 14 April 2018 17:11:09 114.11 64.07 028/045 

 19 May 2019 17:11:27 90.81 68.55 028/045 

Landsat 8 21 May 2020 17:11:16 89.25 68.56 028/045 

 03 April 2020 17:11:30 120.43 61.40 028/045 

 01 April 2021 17:11:39 127.11 57.40 028/045 

Table A2. Confusion matrices for 2019. BU: burned, UN: unburned. 

C
la

ss
if

ic
at

io
n

 2
01

9
 

Reference 2019 Area Distribution Estimated Error Area 

 BU BU  Sum  Weights Pixels - + 

BU 39 8  47 BU 0.02 44473 44,171 44,775 

UB 10 449  459 UB 0.98 1855085 1,857,495 1,867,675 

  Sum 1.00 1,899,558.00  

Sum 49 457  506  

PA  Producer’s accuracy Not adjusted 

UA 
 

User’s accuracy 

Overall accuracy = 96.443% 

+- 

0.007 

O  Error of comission Khat = 0.7929 +- 0.007 

C  Error of omission  Area-adjusted 

 Overall accuracy = 97.439%  

 PA UA O C Si Khat = 0.9747  

BU 78.59% 82.98% 20.41% 17.02% 0.40  

UB 98.25% 97.82% 1.75% 2.18% 0.13 

  



Land 2022, 11, 2105 15 of 19 
 

Table A3. Confusion matrices for 2020. BU: burned, UN: unburned. 

C
la

ss
if

ic
a

ti
o

n
 2

02
0

 Reference 2020 Area Distribution Estimated Error Area 

 BU BU 

 Su

m 

 Weight

s 

Pixels - + 

BU 27 8  35 BU 0.0150 28521 28,344 28,698 

UB 7 417 

 

424 

UB 0.9850 1869792 1,858,20

4 

1,881,380 

  Sum 1.00 1,898,313.00  

Sum 34 425  459  

PA  Producer’s accuracy Not adjusted 

UA 
 

User’s accuracy 

Overall accuracy = 96.732% 

+- 

0.006 

O  Error of comission Khat = 0.7649 +- 0.006 

C  Error of omission  Area-adjusted 

 Overall accuracy = 98.0304

% 

 

 PA UA O C Si Khat = 0.9803  

BU 79.41% 77.14% 20.59% 22.86% 0.40  

UB 98.12% 98.35% 1.88% 1.65% 0.14 

Table A4. Confusion matrices for 2021. BU: burned, UN: unburned. 

Table A5. Significance parameters of post-hoc Tukey analysis, UB = Unburned, BU = Burned. 

 diff lwr upr p adj 

May2019BU – April2018UB 
10.3145700

3 
8.4607244 12.1684157 0.0000000 

May2019UB – April2018UB 1.95186898 0.4630105 3.44407275 0.0027394 

C
la

ss
if

ic
at

io
n

 2
02

1
 

Reference 2021 Area Distribution Estimated Error Area 

 BU BU  Sum  Weights Pixels - + 

BU 73 19 

 

92 

BU 0.0690 132510 131,613 133,

407 

UB 22 683 

 

705 

UB 0.9310 1787843 1,775,744 1,79

9,94

2 

  Sum 1.00 1,920,353.00  

Sum 95 702  797  

PA  Producer’s accuracy Not adjusted 

UA  User’s accuracy Overall accuracy = 94.856% +- 0.007 

O  Error of comission Khat = 0.7516 +- 0.007 

C  Error of omission  Area-adjusted 

 Overall accuracy = 95.6697%  

 PA UA O C Si Khat = 0.9567  

BU 76.84% 79.35% 23.16% 20.65% 0.42  

UB 97.29% 96.88% 2.71% 3.12% 0.16  
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May2020BU – April2018UB 6.05490308 4.5660446 7.5437616 0.0000000 

April2020UB – April2018UB 1.23945043 -0.3528130 2.8317138 0.2265601 

April2021BU – April2018UB 2.02704873 0.4347853 3.6193121 0.0040812 

May2019UB – May2019BU 
-

8.36270105 
-9.8515595 -6.8738425 0.0000000 

May2020BU – May2019BU 
-

4.25966695 
-5.7485255 -2.7708084 0.0000000 

April2020UB – May2019BU 
-

9.07511960 

-

10.6673830 
-7.4828562 0.0000000 

April2021BU – May2019BU 
-

8.28752130 
-9.8797847 -6.6952579 0.0000000 

May2020BU – May2019UB 4.10303410 3.1047077 5.1013605 0.0000000 

April2020UB – May2019UB 
-

0.71241856 
-1.8592658 0.4344287 0.4803158 

April2021BU – May2019UB 0.07517974 -1.0716675 1.2220270 0.9999676 

April2020UB – May2020BU 
-

4.81545265 
-5.9622999 -3.668054 0.0000000 

April2021BU – May2020BU 
-

4.02785435 
-5.1747016 -2.8810071 0.0000000 

April2021BU – April2020UB 0.78759830 -0.4906277 2.0658243 0.4897306 



Land 2022, 11, 2105 17 of 19 
 

 

Figure A1. Pixel-level LST of burned and unburned sites for the years 2019, 2020, and 2021 (upper 

figure) and box-plot including the level of statistical significance (bottom; p < 0.001 ***). 
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