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Abstract: Land use changes induced by human activities change landscape patterns and ecological
processes, threatening regional and global ecosystems. Terrain gradient and anthropogenic multi-
policy regulation can have a pronounced effect on landscape components. Forecasting the changing
trend of landscape ecological risk (LER) is important for national ecological security and regional
sustainability. The present study assessed changes in LER in the Sichuan-Yunnan Ecological Barrier
over a 20-year period using land use data from 2000, 2010, and 2020. The enhanced Markov-PLUS
(patch-generating land use simulation) model was used to predict and analyze the spatial distribution
pattern of LER under the following three scenarios. These were business-as-usual (BAU), urban
development and construction (UDC), and ecological development priority (EDP) in 2030. The
influence of terrain conditions on LER was also explored. The results showed that over the past
20 years, the LER index increased and then decreased and was dominated by medium and low risk,
accounting for more than 70% of the total risk-rated area. The highest and higher risk areas for the
three future scenarios have increased in spatial extent. The UDC scenario showed the largest increase
of 3341.13 km2 and 2684.85 km2, respectively. The highest-risk level has a strong selectivity for low
gradients, with high-level risks more likely to occur at low gradients. The response of ecological risk
to gradient changes shows a positive correlation distribution for high-gradient areas and a negative
correlation distribution for low-gradient areas. The influence of future topographic gradient changes
on LER remains significant. The value of multiscale geographically weighted regression (MGWR)
for identifying the spatial heterogeneity of terrain gradient and LER is highlighted. It can play an
important role in the formulation of scientific solutions for LER prevention and of an ecological
conservation policy for mountainous areas with complex terrain.

Keywords: ecological restoration; Markov-PLUS model; landscape ecological risk; terrain niche
index; Sichuan-Yunnan ecological barrier

1. Introduction

The expansion of human activities and large-scale aggregation have transformed ter-
restrial ecosystems, intensified climate change, and degraded ecosystem functions. This has
resulted in a loss of biodiversity, profoundly impacting community structure and landscape
patterns [1,2]. Landscape-level ecological risk assessment can be used to integrate the effects
of human disturbance with natural environmental changes and landscape composition,
structure, function, and processes [3–5]. It emphasizes the integrated representation of
multiple ecological risks and spatial visualization. This can help to assess the potential risks
of land use structures and cover changes in the ecological environment according to spatial
patterns [6]. It also provides a basis for decision-making on integrated risk prevention [7–9].
While supporting the functioning of regional ecological systems, the national ecological
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barrier areas are designed to enhance and protect degraded and degrading ecosystems.
This is undertaken through a series of restoration and reorganization measures. These can
reduce the threats to maintaining regional ecological security to varying degrees [10]. After
implementing the UN Convention on Biological Diversity in 2010, countries have made
efforts to proclaim marine, terrestrial and freshwater ecological conservation areas. This
has been undertaken internationally to conserve threatened species and construct over
16,000 “Key Biodiversity Areas” worldwide [11]. China has established mature reserves,
key ecological function areas, and biodiversity reserves to fulfill its global conservation
commitments and reconcile human development in the context of natural resource con-
servation. This encompasses an area of 5,366,000 km2, occupying approximately 56% of
the national territory [12,13]. Nature reserves and protected areas now account for 18% of
the terrestrial national territory. This has marked the achievement of the Convention on
Biological Diversity’s 2020 target for 17% of the land area being incorporated into protected
areas ahead of schedule. Establishing the National Ecological Security Barrier is part of a
major project to protect and restore ecosystems in China. The project also aims to integrate
the restoration and protection of mountains, water, forests, fields, lakes, and grasses at the
regional scale [14].

Human activities profoundly impact ecosystems, mainly through land use change [15],
which is full of uncertainty and complexity. Landscape ecological risk (LER) assessment
with land use change as a causal factor is becoming an important tool to examine corre-
lations between human activities and the regional ecological environment [16,17]. After
Tobler applied cellular automata (CA) to geographical modeling, research on land use
simulation models emerged, and integrated numerical–non-numerical-based models are
becoming the dominant approach to land-use simulation due to their ability to quantify
complex processes of land use change [18]. Zeng et al. (2014) used the Gray-Markov model
to predict the amount of future land use in the agricultural region of the eastern Qinghai
Plateau. Then combined with the CLUE-S model (a spatial land allocation model based
on a combination of logistic regression and elasticity coefficients) [19], simulated the land
use cover status of the region in 2020 under three scenarios and calculated the landscape
ecological risk index under different scenarios [20]. The LER index was also calculated. Li
& Huang (2015) applied the CLUE-S model to simulate and explore land use change in
2030 [21]. The Luan River basin was used as a case study. The ecological risk response of
the landscape to land use change was investigated. W. Li et al. (2020) applied the Future
Land use Simulation (FLUS) model to simulate the spatial pattern of land use and the
ecological risk response in 2025 [22]. This was undertaken according to LER spatial and
temporal variation in Guangzhou.

The terrain is a vital limiting factor in forming land use patterns [23]. It affects
the structure and composition of terrestrial ecosystems through changes in elevation
and slope, reflecting landscape patterns and spatial heterogeneity. Prior studies have
already explored the spatial distribution of landscape patterns based on terrain factors [24].
The correlation between future LER and terrain gradients using the terrain niche index
has also been explored (TNI) [25]. The spatial autocorrelation analysis and topographic
distribution index have also examined the dynamic correlation between the LER and terrain
gradients [26]. These studies have predominantly bridged the gap in exploring the effects
of terrain gradient on landscape stability. However, there is still a degree of limitation.
(1) Emphasis is placed on the horizontal change process in natural landscapes affected
by human activities. The exploration of LER assessment and gradient effects on vertical
gradients is lacking. (2) Most prior studies have been based on global models, ignoring the
regression variation in local spatial terrain gradients with LER in the study area. The current
study analyzed the influence of terrain gradient on the spatial and temporal variability
of LER using TNI. The response of local spatial ecological risk to terrain gradient was
captured using MGWR to explore the relationship between local spatial ecological risk and
terrain gradients. This effectively overcomes the limitations and spatial non-smoothness
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of global models such as OLS and spatial autocorrelation. This technique has thus more
intuitively revealed the local influence of terrain gradients on LER.

The Sichuan-Yunnan ecological barrier is regarded as the intersection of the agricul-
tural zone in eastern China and the pastoral zone on the Tibetan Plateau in the north-
west [27]. It has important ecological functions in water conservation, soil conservation,
climate conditions, and biodiversity [14]. Changes in land use structure and the ecological
environment of the region influence economic and social development within the region.
This is also associated with the stability of the national ecosystem and the maintenance
of ecological integrity. However, significant differences in altitude, complex topography,
diverse landscape types, and intensified climate change make the ecological environment
more vulnerable to human activities. This manifests in the overuse of forest resources,
which has led to a substantial decrease in the spatial area of primary forests, glacial retreat,
severe land degradation, and water and soil erosion [28]. It is therefore important to in-
vestigate the spatial and temporal evolution of the LER for the Sichuan-Yunnan ecological
barrier over the last two decades. It is also a priority to study the underlying ecological
risks that the region may face. The present study aimed to simulate and forecast future LER
patterns in the research area, investigate the spatial relationship between terrain gradient
and LER, and present the change patterns of ecological risk associated with the terrain gra-
dient in the local area. This was undertaken to optimize the landscape structure to enhance
ecological functions and actively cope with the uncertainty regarding future ecological
risks caused by complex topography and multi-policy regulation.

2. Materials and Methods
2.1. Study Area

The Sichuan-Yunnan Ecological Barrier Area is one of China’s mountainous, ecologi-
cally fragile areas. It is located at the southeastern edge of China’s Qinghai-Tibet Plateau
(24◦40′ N–34◦55′ N, 98◦40′ E–108◦20′ E) [28] (Figure 1). The region is an important transi-
tional belt for China in the context of natural ecology and socio-economics. It encompasses
more than 140 counties (districts) in the Yunnan, Sichuan, and Shaanxi provinces, with
an area of nearly 34.31 million km2. The Yunnan Province comprises 27.90% of the area,
Sichuan Province comprises 58.93%, and the Shaanxi Province comprises 13.17% of the area.
The territory has complex and diverse landforms rivers, and major hydrological systems.
Examples include the Yunnan-Guizhou Plateau, Hengduan Mountains, Hanzhong Plain,
Sichuan Basin, and the Jinsha, Yalong, Dadu, and Min rivers. It also includes a vital water
conservation area in the middle and lower reaches of the Yangtze River, as well as the east-
ern agricultural ecological barrier area. Due to the influence of the topography, the vertical
distribution of climate features in the territory is highly pronounced, with a temperate
mountain plateau. The cold temperature monsoon climate dominates the area. The main
agricultural areas are predominantly distributed in temperate valleys below 2000–3000 m.
The pastoral areas in the high mountain plain areas are above 3000–3500 m above sea level.
This region plays an important strategic role in China’s ecological security and economic
development [27].
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Figure 1. Location of Sichuan-Yunnan Ecological Barrier in China.

2.2. Data Sources

The land use data used in the current work was sourced from the Globeland30
global surface cover database (http://www.globallandcover.com/, accessed on 2 Au-
gust 2021) [29] for 2000, 2010, and 2020. The data has a spatial resolution of 30 m. The
land cover types in the area include cultivated land, forest, grassland, shrubland, wet-
land, water bodies, artificial surface, bare land, and permanent snow and ice. Elevation
data were derived from the Geospatial Data Cloud (http://www.gscloud.cn, accessed
on 2 August 2021) at a 90 m resolution. Data on annual precipitation, mean annual
temperature, as well as GDP spatial distribution km grid data, were sourced from the
Resource and Environmental Science and Data Centre in the Chinese Academy of Sciences
(http://www.resdc.cn, accessed on 15 August 2021) [30,31]. Spatial population data were
obtained from the World-pop national dataset (https://www.worldpop.org/, accessed on
15 August 2021) [32]. Nocturnal light data were derived from Chen et al. (2021) (Harvard
Dataverse, https://doi.org/10.7910/DVN/YGIVCD, accessed on 15 August 2021) [33]. The
road, lake, and river data were derived from the China National Geographic Information
Resource Directory Service System (https://www.webmap.cn, accessed on 21 July 2021).
To ensure a consistent analysis, all the data were resampled on a 100 m grid.

2.3. Methods
2.3.1. Landscape Ecological Risk Analysis

The division of risk evaluation cells is an important step in evaluating and spatial-
visual representation of ecological risks in the landscape [34]. To analyze the spatial
distribution of the LER, the grid size was set to 15 km × 15 km in accordance with the
study area. The Sichuan-Yunnan ecological barrier area was divided into 1745 evaluation
cells. Fragstats 4.2 software was used to calculate the LER index values for each evaluation
unit. These were assigned to the centroids of each evaluation unit as attribute values.
The landscape loss model was used to quantify the degree of ecological risk for the risk
unit. The model was established under the core model for risk probability and hazard
evaluation, based on the landscape disturbance index (Ei) and the landscape vulnerability
index (Fi) [35]. The degree of landscape disturbance indicates that the risk occurrence
probability and degree of vulnerability represent damage potentially caused by ecological
risk [36].

(1) Landscape disturbance index (Ei)

http://www.globallandcover.com/
http://www.gscloud.cn
http://www.resdc.cn
https://www.worldpop.org/
https://doi.org/10.7910/DVN/YGIVCD
https://www.webmap.cn
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Based on human activities and landscape change in the study area, the landscape
fragmentation index (Ci), landscape separation index (Si) as well as landscape dominance
index (Di) can effectively characterize the relationship between human behavioral activities
and landscape components. These were selected and superimposed with the aim of
obtaining the Ei with the following equations [3,16].

Ci = ni/Ai (1)

Si =
1
2

√
ni
A
× A

Ai
(2)

Di =
(Qi + Mi)

4
+

Li
2

(3)

Ei = aCi + bSi + cDi (4)

where ni represents the patch number for the landscape i; Ai denotes the area of the
landscape i; A stands for the total area; Qi indicates the ratio of the sampling number for
the landscape i and the total sample number; Mi represents the ratio of the patch number
for the landscape i and the total patch number; Li refers to the ratio of the patch number
area for the landscape i and the sampling area for the landscape i; a, b, and c stand for the
weight of the landscape metrics and a + b + c = 1. a, b, c were allocated the values of 0.5,
0.3, and 0.2, separately [37,38].

(2) Landscape fragility index (Fi)

Landscape vulnerability highlights the fragility of the ecosystem structure within a
variety of land cover types, namely the ecological value of any system loss and the ease of
recovery from external disturbances [36]. Based on the results of current studies [38,39],
the vulnerability values for nine land cover types were calculated from highest to lowest.
The land cover types in the order of highest to lowest vulnerability values were glacier
and permanent snow (9), bare ground (8), wetland (7), water body (6), cultivated land (5),
grassland (4), shrubland (3), forest (2), and artificial surface (1). The normalized Fi values for
each land cover type were 0.20, 0.18, 0.16, 0.13, 0.11, 0.09, 0.07, 0.04, and 0.02, respectively.

(3) Landscape ecological loss degree index (Ri)

Disturbance of the ecological environment by land use change is denoted as the change
in the structure and the role of the landscape pattern [25]. Ri can present the change in the
landscape ecological environment generated by the potential ecological risk because of the
change in structure and function. The formula of Ri is written as follows:

Ri = Ei × Fi (5)

where Ri is the ecological loss degree for landscape i and Ei denotes the landscape distur-
bance index for landscape i with Fi standing for the landscape fragility index for landscape i.

(4) Landscape Ecological Risk Index (LERI)

Based on the landscape structure from a regional ecosystem perspective, the spatial
structure of the land types is transformed into ecological risk variables, with the association
between land use and regional ecological risk being integrated using the formula below:

LERIk =
n

∑
i=1

Aki
Ak

Ri (6)

where Aki is the area for landscape i in the k sample area, Ak refers to the total area in the
k sample, and n stands for the number of landscape types.

2.3.2. Multi-Scenario Simulation

(1) Improved Markov-based land use scenario setting
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Scenario analysis aims to describe and analyze multiple development possibilities [40].
However, the scale of future demand for land use has multiple scenarios. The scale of
demand for each land use type requires forecasting with these different scenarios before
the future distribution of land types in space is modeled [41]. In the current study, the
scale of future demand for each land use type in the research region was predicted using
a modified Markov model [18]. This uses the transition probability matrix Pij of land use
change over two periods to forecast the scale of future land use change. The following
formula was used:

P(n) = P(n− 1)Pij (7)

where P is the transfer probability matrix of the land type; n indicates the number of land
types; Pij is the probability of transferring land type i to land type j, 0 ≤ Pij ≤ 1, and P(n) is
the arrival n times after (n − 1) transfers.

The scenario weight matrix was introduced with reference to the initial state shift
probability model. This was to improve the Markov model applied to forecast the need for
each site under diverse scenarios. The formula is expressed as follows:

P′ij =


P11 P12 . . . P1j
P21 P22 . . . P2j

...
...

. . .
...

Pi1 Pi2 . . . Pij




w1
w2

. . .
wn

 (8)

P′′ij =


1

∑
j
n=1 P′1n

1
∑

j
n=1 P′2n

1
∑

j
n=1 P′in

P′ij (9)

where P′ij is Pij after wn the matrix after changing the land class weights P′ij. The probability
of shifting the land class is not 1. Equation (3) is used to find P′′ij , depending on the
situational weights wn. The improved Markov is P(n) = P(n − 1)P′′ij . Taking the 2010–2020
P′′ij and forecasting land use demand from 2020 to 2030, the sum of the absolute mean error
of each category is less than 0.015 [18]. This indicates that the improved Markov model can
be applied to land use demand forecasting in the research region.

In line with the different development objectives and possible future scenarios for the
study area, three land use simulation scenarios were set up with the improved Markov
model applied (Table 1). These were the business-as-usual (BUA) scenario; the urban
development and construction (UDC) scenario, and the ecological development priority
(EDP) scenario.

Table 1. Values of the weight matrix Wn for different scenarios.

Scenario Description Scenario Weighting Matrix Wn

Business-as-usual

Following current development patterns
and existing land use transfer rates is a

scenario setting that does not place
restrictions on any land type conversions

in the conversion rules.

–
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Table 1. Cont.

Scenario Description Scenario Weighting Matrix Wn

Urban development and construction

This scenario allows for the expansion of
urban land, consequent encroachment on
surrounding arable land and a slowdown

in the growth of forest and grassland,
making the trade-off between

development and ecological conservation
a central issue.

Cultivated land (0.85) Forest (0.9)
Grassland (0.9) Shrubland (0.9) Wetland
(0.9) Water bodies (1) Artificial Surface

(1.2) Bare Land (1) Permanent snow and
ice (1)

Ecological development priority

Restrict the conversion of forest grassland
and Water bodies related to ecological

land to an artificial surface, simulate the
consequences of ecological measures

such as vegetation restoration and return
of farmland to forest, and moderately

increase the expansion of ecological land
under the premise of slowing down the

degradation of cultivated land.

Cultivated land (1.1) Forest (1.2)
Grassland (1.2) Shrubland (1.1) Wetland

(1) Water bodies (1) Artificial Surface
(0.85) Bare Land (1) Permanent snow and

ice (1)

(2) PLUS model simulations
The PLUS model can integrate a land expansion analysis strategy and cellular au-

tomata (CA) in line with diverse kinds of random seeds [42]. Under the “top-down”
constraint of land use quantity structure, the current study introduces random seed genera-
tion and a decreasing threshold mechanism. The CA model is combined with a “bottom-up”
land use layout simulation. This can simulate the land use patch-level changes more ac-
curately. The PLUS model can simulate the intrinsic nonlinear relationship of land use
change more accurately at the patch level and improve the accuracy of land use simula-
tion [43,44]. Four physical geographic factors (Digital Elevation Model, slope, temperature,
and precipitation), three socioeconomic factors (GDP density, population density as well as
night-time lighting), and three accessibility factors (distance to towns, roads, and rivers)
were chosen based on the condition of the research region. The LULC transfer rules were
based on the patterns in the nine land use types from 2010–2020 (Table 2). Historical sce-
narios [45,46] were used for setting neighborhood weights for cultivated land (0.1), forest
(0.107), grassland (0.647), shrubland (0.412), wetland (0.426), water bodies (0.609), artificial
surface (1), bare land (0.378), and permanent snow and ice (0.257). The simulation of the
above parameters’ settings yielded a kappa coefficient of 0.72 and an overall accuracy of
0.83. This indicated that the land use change simulation could be improved [47].

Table 2. Parameters of the conversion matrix under the three scenarios (BAU/UDC/EDP) in the
Sichuan-Yunnan Ecological Barrier.

Type of Land Use Cultivated Land Forest Grassland Shrubland Wetland Water
Bodies

Artificial
Surface

Bare
Land

Permanent
Snow and

Ice

Cultivated land 1 1 1 1 1 1 1 0 0
Forest 1 1 1 1 1 0 1 0 0

Grassland 1 1 1 1 1 1 1 0 0
Shrubland 1 1 1 1 1 1 1 0 0
Wetland 1 1 1 1 1 1 0 0 0

Water bodies 0 0 0 0 0 1 0 0 0
Artificial surface 1 1 1 0 1 1 1 0 0

Bare land 1 1 1 1 1 1 1 1 0
Permanent snow

and ice 1 1 1 1 1 1 1 1 1

2.3.3. Influence of Terrain Conditions

The terrain factors point to the possibility of enriching the LER probability repre-
sentation [48]. The land use-based risk probability is closely associated with the terrain.
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Considering the significant vertical zonality of the study area, it is important to study the
vertical spatial heterogeneity associated with ecological risk in the landscape. The terrain
niche index refers to the combination of elevation and slope, reflecting the constraining
effect of topographic conditions on landscape distribution [49]. The GIS spatial distribu-
tion model was used to construct the terrain niche index and for grading to feature the
distribution of LER with diverse terrain position gradients in the study area using the
following equation:

T = lg
[(

E
E
+ 1
)
×
(

S
S
+ 1
)]

(10)

where T refers to the terrain niche index; E indicates the elevation of the pixel; E is the
average elevation in the research region; S refers to the slope of the pixel, and S represents
the average slope in the research region.

To eliminate the different risk levels accounting for different proportions of the total
area and spatial distribution characteristics that cannot be compared, the current study uses
the distribution index (P). This is used to depict the distribution of LER on different terrain
gradients. The concept of standard distribution is introduced to compare the ecological risk
in different terrain areas. When P > 1, it indicates that terrain location e is the dominant
terrain location of ecological risk i. A larger P value represents stronger dominance [25].
The distribution index formula is as follows:

P = (Sie/Si)/(Se/S) (11)

where Sie represents the area of ecological risk i on the terrain niche e; Si refers to the area
of ecological risk i; Se represents the area of the terrain niche e and S stands for the total
area in the research region.

2.3.4. Spatial Regression Analysis

MGWR examines spatial multiscale effects and heterogeneity and reflects the associa-
tion between the dependent and independent variables, varying spatially and at diverse
scales [50,51]. Ecological risk is related to topographic gradients at different scales. The
correlation between them is not constant in space. The present study used MGWR to reflect
the degree of influence of different geographic gradient variables on ecological risk in the
region [52], using the following expressions

yi = β0(ui, vi) +
k

∑
j=1

βbwj(ui, vi)xij + εi (12)

where bwj is the specific optimal bandwidth adopted for calibrating the jth conditional
relationship, (ui, ; vi) are the centroid coordinates at position i, βbwj is the coefficients of jth

explanatory variable with bw bandwidth, and β0 and εi are the intercepts [53].

2.3.5. Spatial Auto-Correlation Analysis

Spatial autocorrelation analysis can be used to measure the degree of aggregation for
the attribute values of spatial units. This contributes to understanding a study object’s
similarity to its neighboring regional objects (LERI in the study). To determine the spatial
autocorrelation of ecological risks in the research region, the global Moran index (Moran’s I)
was used to analyze whether there is a spatial correlation between risk attributes in adjacent
areas for the LER. The value of Moran’s I index is from −1 to 1. A value greater than
0 suggests a positive correlation. A value of less than 0 proves a negative correlation, and a
value equal to 0 denotes no correlation present [5].
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3. Results
3.1. Land Use Change and Multi-Scenario Simulation

The land use change over the last 20 years has shown a reduction in forests, cultivated
land, and grassland, at 1939.71 km2 and 1598.09 km2, respectively. This accounts for 16.54%
and 13.63% of the total change, respectively. The artificial surface showed a substantial
increase of 145.86% in comparison with 2654.71 km2 in 2000. The areas of wetland, bare
land and permanent snow and ice on other land types continued to decrease, with a
reduction of 1.17%, 0.7%, and 9.98%, respectively. The areas of shrubland and water bodies
increased slightly (Figure 2, Table 3). Based on the simulation of the BAU scenario, the
major national project plan for ecosystem protection and restoration and urban construction
in the western region are integrated. The UDC scenario and the EDP scenario are set. The
land use changes under diverse scenarios in 2030 can be simulated using the PLUS model
(Figure 2, Table 4). In comparison with current land use in 2020, the area of forest and
cultivated land under the BAU scenario reduced the most to 1393.18 km2 and 1653.56 km2.
Wetlands permanent snow, and ice decreased the most, with 27.82% and 46.41%, compared
to 2020, respectively. The areas of water bodies, artificial surfaces, bare land, and grassland
all increased by 18.43%, 40.03%, 20.36%, and 0.22%, respectively. The cultivated land area
under the UDC scenario decreased by 2262.34 km2, and the forest land by 570.57 km2. In
comparison with the other two scenarios, the area of cultivated land, forest, glacier, and
permanent snow and ice decreased the most under the UDC scenario. This has the most
substantial expansion of artificial surface, with continuous encroachment on cultivated
land and forest, with an increase of 3169.47 km2 compared to 2020. Under the EDP scenario,
the forest area decreased, but the reduction was lower than for the BAU and the UDC
scenarios. The increase in the artificial surface in the EDP is much lower than for the BAU
and the UDC scenario. The pressure on ecological lands such as forests, grasslands, glaciers,
and permanent snow is reduced in the EDP scenario.

Table 3. Land use changes in the study area from 2000–2020 (km2/%).

Land Area and Share Change and the Percentage of Change

2000 2010 2020 2000–2010 2010–2020 2000–2020
2000–2020

Percentage of
Change

Cultivated land 78,743.92 79,265.81 76,804.21 521.89 −2461.60 −1939.71 0.17
Forest 203,607.33 203,853.20 202,009.24 245.87 −1843.96 −1598.09 0.14

Grassland 41,328.85 39,117.55 40,394.01 −2211.30 1276.46 −934.84 0.08
Shrubland 12,089.15 13,126.16 13,042.91 1037.01 −83.25 953.76 0.08
Wetland 241.30 104.97 104.48 −136.33 −0.49 −136.82 0.01

Water bodies 2120.12 2100.91 3156.79 −19.21 1055.88 1036.67 0.09
Artificial surface 2654.71 3214.91 6526.80 560.20 3311.89 3872.09 0.33

Bare land 586.40 781.41 503.77 195.01 −277.64 −82.63 0.01
Permanent snow and ice 1754.56 1561.42 584.13 −193.14 −977.29 −1170.43 0.10

Table 4. Projected land area in 2030 for the three scenarios and the area of change compared to 2020 (km2).

Type of Land Use 2020 BAU UDC EDP 2020-BAU 2020-UDC 2020-EDP

Cultivated land 76,804.21 75,411.03 74,541.87 75,380.93 −1393.18 −2262.34 −1423.28
Forest 202,009.24 200,355.68 199,438.67 201,560.1 −1653.56 −2570.57 −449.14

Grassland 40,394.01 40,483.11 41,460.23 41,022.2 89.1 1066.22 628.19
Shrubland 13,042.91 13,003.84 13,597.06 12,919.32 −39.07 554.15 −123.59
Wetland 104.48 75.41 111.14 87.72 −29.07 6.66 −16.76

Water bodies 3156.79 3738.67 3379.96 3262.05 581.88 223.17 105.26
Artificial surface 6526.8 9139.25 9696.27 7881.41 2612.45 3169.47 1354.61

Bare land 503.77 606.34 599.19 665.79 102.57 95.42 162.02
Permanent snow and ice 584.13 313.01 301.95 346.82 −271.12 −282.18 −237.31

BAU: business-as-usual; UDC: urban development and construction; EDP: ecological development priority.
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3.2. Land Use Change and Multi-Scenario Simulation

In the present study, the spatial interpolation of the LER index, based on the ordinary
kriging interpolation method, was used to generate a 6-period LER distribution map [3,54].
The natural breakpoint method was adopted for classifying the LER values in 2020 into five
types [55,56], namely low-risk areas (ERI ≤ 0.089), lower-risk areas (0.089 < ERI ≤ 0.097),
medium-risk areas (0.097 < ERI ≤ 0.106), high-risk areas (0.106 < ERI ≤ 0.117), and the
highest risk areas (ERI > 0.117).

Figure 3 shows how the Sichuan-Yunnan ecological barrier is dominated by medium
ecological risk, lower ecological risk as well as the lowest ecological risk during 2000–2020.
The total area of the three represents over 70% of the total area for this risk level. The
highest risk and lowest risk areas are in the northeastern and northwestern parts of the
research region. The medium risk level is widely distributed and is predominantly in the
southern part of the research region. The higher risk section is in the southeastern part of
the research region, distributed around the highest risk area of the Chengdu Plain. The
associated lower-risk area is distributed around the lowest-risk area. The dynamic transfer
pattern of risk levels is manifested by the shift of lower risk to lowest risk, medium risk
to lower risk, and higher risk to medium risk. This contributes to the reduction in the
ecological risk level. In accordance with the three set scenarios, the spatial distribution
patterns of LER levels from the simulations are mapped with the spatial distribution of
LER levels being plotted (Figure 4). Compared to 2020, the highest risk area and higher
risk area enhanced for all three scenarios. The UDC scenario had the highest growth, with
3341.13 km2 and 2684.85 km2, respectively. The lowest risk area and lower risk area in the
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BAU and EDP scenarios decreased compared with 2020. The EDP scenario had the highest
reduction. Encompassing the three scenarios, the spatial distribution patterns for risk levels
in the BAU and EDP scenarios are the most similar. The lowest ecological risk areas in
Ya’an City and Aba Tibetan and Qiang Autonomous Prefecture in the northwest are more
extensive than in the UDC scenario. The medium-risk areas in the central and southern
parts become lower, higher, and highest-risk areas in the UDC scenario for smaller areas.
In comparison with the EDP scenario in the BAU scenario, the highest risk level and higher
risk level areas are in the Chengdu Plain. These are mainly artificial surfaces, which are
reduced compared to the natural development scenario, with the lowest risk area in the
north. This has expanded, accompanied by the reduction in the lower risk area.

3.3. Spatial Auto-Correlation Analysis of Landscape Ecological Risk

The Moran’s I index of LER in 2000, 2010, 2020, and 2030 in the Sichuan-Yunnan
ecological barrier area were 0.685, 0.656, 0.625, 0.616, 0.619, and 0.628, respectively. They
were all greater than 0 (Figures 5 and 6). This also indicates that the values of the LER
attributes for the neighboring spatial units in the study area have a high degree of similarity
and a strong positive correlation. There is a strong spatial clustering effect. The Moran’s
I index showed a reducing trend over the last 20 years. This suggests that the degree of
spatial aggregation for ecological risks and the degree of spatial similarity in the research
region progressively reduced with changing land use. The Moran’s I value for all three
scenarios in 2030 are lower than for the historical period. This suggests that the degree of
ecological risk clustering in the research region landscape will be further reduced over the
next ten years. The Moran’s I index of the EDP scenario has the highest correlation and the
strongest spatial clustering of future ecological risks. The BAU scenario has the lowest and
the least pronounced spatial clustering.
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3.4. Effect of Terrain Gradient on Ecological Risk in the Landscape

To reveal the spatial heterogeneity of the LER under the influence of terrain gradient,
the LER was superimposed with the terrain position. The area of LER classes was then
counted for different terrain gradients and their distribution index. The equal spacing
grading method (0.3) was used to classify the TNI values into five categories for analysis [57].
The results are shown in Figure 7. The highest risk classes for the three periods had a
clear peak for the first gradient and were dominant. This also indicates that the higher-risk
classes are more selective for the lowest terrain and are more likely to occur on the lowest
gradients [49]. Lower-risk classes and medium-risk classes dominate for the fourth and
fifth gradients. The lower-risk classes shift to low gradients over time, decreasing from the
fifth to the second gradient. Higher risk classes dominate on the first gradient in 2000 and
2020. The higher-risk classes also dominated the third gradient in 2010. The higher-risk
level dominated the level-three gradient in 2010. The trends in LER levels with the terrain
gradients are similar for the three future scenarios. The lowest, lower, and highest risk
levels dominate the 4th, 2nd, and 1st gradients, respectively. When compared with the
BAU and UDC scenarios, the distribution index for the intermediate-risk level for the EDP
scenario increased with the terrain gradient and became dominant on the fifth level. The
intermediate risk for the BAU and the UDC scenario became dominant on the fourth level
gradient but started to decrease at the fifth level gradient. The dominant distribution of the
higher risk levels on the gradients of the three scenarios significantly differed. The UDC
scenario dominated the fifth gradient. The BAU scenario dominated the first gradient, and
the EDP scenario dominated the second gradient.

3.5. Response of Landscape Ecological Risk to Terrain Gradients

The MGWR model was used for analyzing the LER spatial response with the change
in terrain gradient. Figure 8 shows that the response of LER to gradient changes in the
Sichuan-Yunnan ecological barrier has apparent spatial variability and shows both positive
and negative correlations in space. Regions with high positive correlations are concentrated
in the high-gradient areas of Ganzi, Aba, and northeastern Liangshan. Regions with high
negative correlations are concentrated in the low-gradient areas of Hanzhong, Dehong,
and the Chengdu Plain. The degree of correlation between the two changed with time in
the local areas. The positive correlation coefficient increased from 0 ~ 0.2 to 0.2 ~ 0.4 in the
western region of Aba from 2000 to 2010. The positive correlation coefficient in northern
Ganzi was enhanced by one interval. The correlation in northern Lijiang, at the junction
with Liangshan and Diqing, changed from negative to positive and low to high. The
correlation in northwestern Baoshan at the junction with Nujiang changed from negative to
significantly positive. The regions with the highest positive and negative correlations from
2010 to 2020 both decreased. Regions with the highest reduction in positive correlations
are concentrated in northeastern Lijiang and the junction with Diqing in Liangshan in the
higher gradient terrain. The regions with the highest reduction in negative correlations are
concentrated in Hanzhong and Chengdu Plain in the lower gradient terrain t. Compared
with the three scenarios for 2030, the spatial patterns of ecological risk response to gradients
were similar for the UDC and EDP scenarios. The differences were mostly in the central and
northern parts of the research region. Under the EDP scenario, there is a small expansion
in the negatively correlated area at the periphery. There is also a small contraction in the
positively correlated area. There are significant spatial differences between the BAU and the
other two scenarios, with a significant expansion of the negative correlation area under the
BAU scenario in the Aba region. The positive correlation area shrinks, and the correlation
weakens in the Ganzi region.
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4. Discussion
4.1. Reasons for Changes in Landscape Ecological Risk

In the research region, the level of ecological risk for the Sichuan-Yunnan ecological
barrier showed little change. The ecological risk for the Sichuan-Yunnan ecological barrier
is in line with the following two stages: From 2000 to 2010, the overall risk index for the
study area has been enhanced. The highest risk index was observed in 2010, with the
high-risk areas concentrated in the Chengdu plain area (Figure 3). This is due to large-
scale urban sprawl from high-intensity human activities. The expansion of urban land
is mostly based on the encroachment of cultivated and forest land [58–60]. This has led
to the fragmentation of the landscape. The construction of high-density transportation
networks, low-density urban development, and agricultural production activities will lead
to the fragmentation of urban space [61]. The excessive expansion of built-up areas will
severely damage the urban fringe farmland, forests, and protected areas. This reduces the
natural ecosystem stability of the urban periphery and increases the LER [62,63]. The LER
caused by transforming ecological land, such as cultivated land, forest, and grassland, to
artificial surface during urban development cannot be avoided and eliminated [64]. With
the further promotion of national ecological civilization construction, the average risk for
the study area from 2010 to 2020 has decreased. The project of Natural Forest Protection
(NFP) (launched in 1988) and the Returning Farmland to Forest Program (RFFP) (launched
in 2000), the comprehensive management of soil erosion and stone desertification, and a
series of other projects have been implemented effectively [65,66]. The ecological stability of
the Sichuan-Yunnan ecological barrier, with a landscape structure of forest, grassland, and
cultivated land, has improved. The rapid increase in the urbanization level and intensive
urban developments have made urban land denser. Urban planning gradually improves
sustainable development landscape, reducing the ecological risk index.

For future LER prediction, the land conversion probability is higher under the UDC
scenario. Further changes in land use patterns enhance the risk level for multiple categories
under this scenario. This increases the areas that are categorized as highest risk and higher
risk. The volatility of ecological risk from urban development is of substantial concern.
The potential for ecological risk may obtain the lowest values after urban development has
reached a mature stage. Ecological connectivity and ecological resilience are progressively
enhanced, with the impact of ecological risk from changes in ecosystem function needing to
be further investigated [67]. The BAU scenario should mitigate the loss of soil nutrients and
water due to the high erosion potential of the complex mountain environment. This should
further mitigate the destruction of biodiversity, and the uneven distribution of water and
heat resources, due to vertical zonality [68]. The development of cultivated land resources
in ecologically fragile areas is conducted by adjusting the agricultural production methods
to alleviate the pressure of ecological risks in the landscape. The structure and function of
the ecosystem are therefore optimized. With the EDP scenario, the area of lowest risk and
lower risk areas is reduced the most. The expansion of land in built-up areas slows down
significantly, reducing the pressure on all types of land. Effective protection of cultivated
land and ecological roles are important issues to be addressed under the EDP scenario.
The ecological development model under this scenario is consistent with the functional
positioning of the Sichuan-Yunnan ecological barrier.

4.2. Effects of Terrain Gradient on Landscape Ecological Risk

Different terrain features determine land use patterns and vegetation community
distribution, as highlighted in the heterogeneous characteristics of landscape spatial pat-
terns [69]. The Sichuan-Yunnan ecological barrier has high terrain undulation, rich veg-
etation resources, and clear vertical zonation [28]. This makes the LER present a more
complex distribution, characteristic of the terrain change. The highest risk and higher risk
class distribution indices dominate on the first terrain gradient (Figure 7). This reflects
the human activities in the Sichuan-Yunnan ecological barrier area, which function as the
main external factor for the change in LER with the terrain. To satisfy the demands of
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production, the land use pattern and landscape pattern for the research region have been
substantially altered. The most prominent is the large increase in the artificial surface area
in 2020 (Table 3). This has substantially reduced grassland and cultivation landscapes on
the most human-inhabitable low terrain gradient. There has been a substantial transfor-
mation in the native landscape type and a deterioration in the landscape structure and
stability. This has resulted in an abnormal increase in the ecological risk index for the first
terrain gradient. The lowest risk level dominated the fourth gradient, and the distribution
index was greater than one. Since the area has a relatively high elevation and is not easily
disturbed by human activities, the transformation between landscape types is infrequent.
It is also dominated by forest and grassland, making the landscape structure more stable.
The strong investment in ecological engineering for the national ecological barrier area
has effectively restored the vegetation cover in the high-altitude region. The study area
belongs to a typical agropastoral interlacing zone and has had long-term deforestation,
steep slope reclamation, overgrazing, and other unsustainable land development methods,
combined with the fragility of the ecological mountain environment [70]. The cumulative
hazardous effects on the ecological components gradually emerge over time, making the
medium ecological risk distribution index rise with the gradient and dominate the 5th
gradient. There are possible dramatic changes for this gradient for ecological risk at high
elevations due to global warming and the reduction in glaciers with different degrees of
surface runoff [71]. The medium-risk area has the largest proportion (Figures 3 and 4) and
is less ecologically stable. This can have a pronounced effect on the overall ecological risk.
The ecological risk for the landscape in the future for the research region is progressively
lowered by human activities. The abandonment of cultivated land, the reduction in biodi-
versity, and the restoration and management of vegetation after the return of farmland to
forest become the key factors affecting ecological risk. Under the UDC scenario, attention
should be focused on the adjustment and optimization of the vegetation structure on the
fourth gradient, where forest and grassland are concentrated. In the EDP scenario, the
focus should be on the elevated risk of a glacier and permanent snow recession for the
fifth gradient.

The response of ecological risk for the different terrain gradients was spatially variable
(Figure 8). In highland areas such as Ganzi and Aba, with a more concentrated distribution
of forests and grasslands, there are significant gradient changes in vegetation due to
large vertical height differences. This indicates a significant positive correlation between
ecological risk with the increasing gradient. The occurrence of ecological risk is closely
related to human activities in Hanzhong, Dehong, and the Chengdu plain areas, which
experience extensive economic activities owing to a larger population compared with that
prevailing in rugged terrain with large vertical height differences. Since 2000, development
has attracted a large amount of capital, several experts, and much technology in the western
region. This has made urban expansion in the western region faster than that observed in
the eastern region thus, speeding up the expansion of construction land [72]. The sensitivity
of the ecological risk is influenced by terrain gradient increases during 2000–2010. In this
period, which represents the early stages of the RFFP [73], the forested landscape was
developed without sufficient natural renewal [74]. This influenced the ecological risk more
significantly due to the terrain. During 2010–2020, the ecological risk was reduced by
the terrain gradient, as well as in the northeast of Lijiang and the junction of Diqing in
Liangshan, where the positive correlation is weakened. Likely due to the RFFP project, the
natural landscape has reached a stable state and is weakened by the influence of complex
terrain. Ecosystem function has improved and gradually weakened by the influence of
the complex terrain. In the Hanzhong and Chengdu plains, where the negative correlation
has become less pronounced, the land use structure has further improved due to the
stable development of urbanization and the urban development pattern focusing more
on green development [75], making the ecological risks in the plains weakened by terrain.
The influence of terrain gradient on LER in the future Sichuan-Yunnan barrier remains
important. The shift in the association of ecological risk for diverse scenarios in local
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areas reflects the importance of adjusting the land use structure in mountainous areas in
accordance with the local conditions, as well as optimizing the allocation of land resources.

4.3. Policy Impact of Regional Development

In the past 20 years, the Chinese government has established a national ecological
space control system focusing on nature reserves and ecological protection red lines, supple-
mented by key ecological function areas, and important ecological spaces have been strictly
protected, during which the national ecological security barrier zone has been constructed
to effectively maintain and safeguard ecological security [76]. However, it is found that,
as an important area for national ecological security maintenance, the expansion of urban
built-up areas in the Chuan-Yunnan ecological barrier zone poses a certain threat to the
stability of the natural ecosystem in the surrounding areas, which makes the landscape
ecological risk rise subsequently, and both high risk and higher risk levels are dominated in
the low terrain gradient most suitable for human habitation, and human activities become
the main disturbing factor for the change of landscape ecological risk with topography.
Therefore, it becomes imperative to adhere to the principle of ecological priority, optimize
the landscape structure, and promote the coordinated development of the economy and
ecology [77]. In the “Outline of planning for national key ecological function reserves”,
it is proposed that strengthening the construction of ecological function reserves is an
effective way to promote the coordinated economic, social, and environmental develop-
ment of important ecological function areas in China. The “National main functional area
planning” also further clarifies that development must be based on protecting good natural
ecology, and development must be based on environmental capacity to achieve harmonious
coexistence between humans and nature.

In future research area development and policy formulation, the complexity of nat-
ural geographic units and the comprehensive characteristics of ecological and economic
elements should be combined, and based on safeguarding the ecological functions of ecolog-
ical barrier areas, effective monitoring should be implemented for high-risk areas subject to
obvious human activities, ecosystem management, and restoration should be continuously
promoted, and ecosystem management strategies should be proposed according to local
conditions. In maintaining the synchronization of environmental protection and economic
development, we focus on optimizing the regional development pattern, reasonably allocat-
ing ecological, living, and production spaces, and reducing the negative effects of human
development on the ecological environment [78]. On the other hand, the landscape ecologi-
cal risk assessment with land use change as the causal factor is incorporated into the land
use planning process, the unique natural conditions and landscape pattern characteristics
of mountainous areas are recognized, land macro-control is strengthened, land use opti-
mization and improvement are systematically carried out, the level of land protection and
intensive use is improved [79], and different ecological restoration measures and intensities
are applied to different vegetation areas to achieve ecosystem function Maximization [80],
to attenuate the sensitivity of topographic gradients to ecological risk impacts.

4.4. Limitations and Future Research

In line with the specificity of the terrain in the research region, the effect of terrain gradi-
ent on ecological risk evolution is explored [81]. The response of LER to the terrain gradient is
further examined in risk evolution and future prediction. This is more likely to portray the
spatial heterogeneity of ecological risk in the research region landscape in a multidimensional
way [82]. However, there are still some limitations. The ecological risk can be analyzed accord-
ing to land use change. This emphasizes the influence of human factors using the “landscape
loss and risk probability” assessment paradigm. It constructs a comprehensive index of LER
based on landscape disturbance and vulnerability. The ecological risk construction takes
into account the area ratio of landscape types, ignoring the tolerance of ecological loss and
the possibility of future ecological risk [7,48]. In future studies, it is necessary to introduce a
more extensive characterization of the anthropogenic disturbance factors, such as pesticide
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use, fertilizer input, water pollution, and soil quality, for evaluation [83]. It is essential to
integrate the value of ecosystem services into the quantitative characterization of risk loss
and determine the risk threshold in combination with ecological models. This is necessary
to achieve the goal of LER prevention and mitigation, integrating human activities as well
as natural processes. The study combined multi-contextual simulations aimed to provide
support for the accuracy of LER probability prediction under different governmental decisions.
However, there is a possibility of uncertainty in the evaluation results due to the potential
variation in governmental decision-making.

5. Conclusions

The research assessed and explored the spatial and temporal patterns of LER for the
Sichuan-Yunnan ecological barrier from 2000 to 2020, based on a landscape ecological
assessment model. Using a combination of the improved Markov and PLUS model, the
dynamic evolution of LER were predicted under three scenarios in 2030. Spatial auto-
correlation was used for identifying the spatial agglomeration state of ecological risks.
The effects of the topographic gradient on LER were explored by further considering the
constraining effect of topographic conditions on landscape distribution. The findings of the
study are shown below:

(1) The characteristics of land use change in the study area are the reduction in cultivated
land, forests, and grasslands and the continuous increase in the artificial land surface.
The future landscape types of forest, grassland, and cultivated land are relatively
stable. The continued increase in artificial land surface under the UDC scenario comes
from the encroachment of cultivated land and forest.

(2) The overall risk index increased from 2000 to 2010. The highest-risk areas were
concentrated in the Chengdu Plain, where human activities are concentrated on a
large scale. The period between 2010–2020 saw a gradual improvement in ecological
stability. The increasing highest risk and higher risk areas under the UDC scenario,
and the resulting fluctuations in ecological risk, require urgent attention. The EDP
scenario development pattern is more in line with the functional positioning of the
ecological barrier of Sichuan and Yunnan.

(3) The distribution index of high-risk classes on low-terrain gradients is greater than
4.9. The high-risk level has a strong selectivity for low terrain gradients, and human
activity interference becomes the main external factor. The response of the LER
to gradient changes is shown as follows: Areas with high positive correlation are
concentrated in high-gradient areas, and areas with a high negative association are
focused in low-gradient areas. The influence of terrain gradient change on the LER
remains significant for the future. In addition, the response of the LER to terrain
gradient change is stronger under the UDC scenario and EDP scenarios.

This study not only helps to actively address the uncertainty caused by complex
topography and multi-policy regulation on the occurrence of future ecological risks but
also provides important support for ecological restoration and sustainable development of
important ecological functions, especially the conservation and management of ecosystems
and effective prevention of ecological risks in other similar regions of the world.
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