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Abstract: With global warming, arable land in boreal regions is tending to expand into high latitude
regions in the northern hemisphere. This entails certain risks; such that inappropriate management
could result in previously stable carbon sinks becoming sources. Agroecological models are an
important tool for assessing the sustainability of long-term management, yet applications of such
models in boreal zones are scarce. We collated eddy-covariance, soil climate and biomass data to
evaluate the simulation of GHG emissions from grassland in eastern Finland using the process-based
model DNDC. We simulated gross primary production (GPP), net ecosystem exchange (NEE) and
ecosystem respiration (Reco) with fair performance. Soil climate, soil temperature and soil moisture
at 5 cm were excellent, and soil moisture at 20 cm was good. However, the model overestimated
NEE and Reco following crop termination and tillage events. These results indicate that DNDC
can satisfactorily simulate GHG fluxes in a boreal grassland setting, but further work is needed,
particularly in simulated second biomass cuts, the (>20 cm) soil layers and model response to
management transitions between crop types, cultivation, and land use change.

Keywords: ecophysiological modelling; boreal agriculture; greenhouse gases; model evaluation;
DNDC; soil organic carbon; net-zero

1. Introduction

Global temperature rise is placing increased pressure on boreal lands from agricultural
land-use expansion and intensification to meet the needs of a burgeoning population [1].
Boreal regions also present significant opportunities for greenhouse gas (GHG) mitigation
and may have the potential to act as further sinks of atmospheric carbon [2]. United nations
sustainable development goals [3] have identified sustainable agriculture (goal 2) and
protection of ecosystems (goal 15) as key components of the overarching strategy to address
climate change. We are thus at a critical juncture in time in which holistic assessments and
planning decisions regarding management and land-use trade-offs will be key to ensuring
long-term sustainability [4]. Given the risks and opportunities afforded by climate change
in boreal areas, decision making needs to balance the manifold factors involved to balance
increasing societal requirements for the long-term preservation of the natural capital on
which our agri-food systems depend [5–8].

Agroecological models have increasingly been used to simulate the effects of man-
agement [9,10] and land use conversion [11] on biomass production [12–14], canopy-level
physiology [7,8], GHG emissions [15–18], profitability [19] and soil carbon/nitrogen cy-
cling [20]. When properly calibrated, such models have been able to accurately simulate
these agriculturally and environmentally important variables and thus have the potential
to assist in management planning while promoting both production and environmental
protection, including climate change mitigation by reducing GHG emissions [21–23].
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The DeNitrification-DeComposition (DNDC) model [24] has been long in use world-
wide, and has demonstrated sufficient accuracy in modelling crop growth and GHG
emissions in cooler regions [11,25–33]. The extensive use of this model in colder climates
and its successful simulation of relevant outputs would make it seem a sensible choice for
application in Scandinavia, although significant uncertainty remains around the perfor-
mance of DNDC in the challenging boreal environment due to the lack of studies measuring
GHG and other variables for use in model calibration in regions with extensive durations
of sub-zero temperatures [34].

Of the few agroecological modelling studies that have been conducted in boreal zones,
results for DNDC have been promising. For example a study by He et al. [31] modelled the
effects of manuring on N2O emissions in Canadian grasslands, evaluating against measured
data and while most metrics were graded “good” to “fair”, soil water and N simulations
were only “acceptable”, and the authors also recommended improvements to the models
soil freeze-thaw simulations, as well as soil microbial and water processes in grasslands.
Abdalla et al. [27] used DNDC to evaluate soil respiration in the Republic of Ireland from
grassland and conventionally managed arable fields under three climate scenarios: a
baseline of measured climate data and both high and low temperature sensitivity scenarios.
They indicated that DNDC could effectively model soil respiration in both pasture and
arable, underestimating annual CO2 efflux by only 13% and 8% respectively. Another
study in the Republic of Ireland [35] examined management effects on N2O emissions from
grasslands using a two year (2008–2009) dataset. The study showed that flux estimates
tended to be higher than those estimated using IPCC emissions factors, and the authors
suggested that soil parameters needed further calibration for optimum performance. A
study in Northern Ireland [36] used DNDC95 to evaluate SOC density and annual changes
in temperate long-term grassland soils. They found that the model underestimated SOC
by 0.9 t C ha−1, yr−1, a difference which was explained by differences in supplied N
and differences in soil C, rainfall, and air temperature as well as soil physiochemical
variables. Because most of the studies with DNDC have been conducted in temperate or
cool temperate regions with more moderate temperatures, different soils and different land
management, such results may not translate to Scandinavian conditions, hence the need
for a DNDC study in Finland.

The purpose of this study was to evaluate DNDC performance in simulating soil
microclimate, biomass production and GHG fluxes against eddy-covariance measured
NEE, here defined as the net exchange of CO2 between the ecosystem and atmosphere in
kg C ha−1, and associated soil and plant data in a legume grassland in eastern Finland
with attention to model accuracy in simulating freeze-thaw cycles.

2. Materials and Methods
2.1. Site Description

This study was conducted at the Antilla field site, located in Maaninka, eastern Finland,
(63◦09′ N, 27◦140′ E, 89 m a.s.l.); a location with mean annual temperature (1981–2010)
of 3.2 ◦C and mean annual precipitation of 612 mm year−1. In the study period, mean,
maximum and minimum temperatures were 5.1, 25.0 and –26.5 ◦C, respectively, and annual
rainfall was 613 mm, 515 mm, and 532 mm for 2017, 2018 and 2019, respectively (Figure 1).
The study site was a 6.3 ha agricultural field where the mineral soil is classified as a haplic
cambisol (silt loam: clay 25 ± 7.8%, silt 53 ± 9%, sand 22 ± 7.8%) based on the USDA
classification system (Table 1).

The field was cultivated with a mix of timothy (Phleum pratense L. cv Nuuti), meadow
fescue (Festuca pratensis) and red clover (Trifolium pratense) at a rate of 15 and 5 kg ha−1 for
grasses and legumes respectively in 2015, was reseeded in May 2017, and ploughed in the
autumn of 2018 when glyphosate was also applied. The grassland was renewed in Spring
2019 with a cover crop of barley (Hordeum vulgare L.) in a fresh rotation. Mineral fertilizer
was applied (106 kg N, 28 kg P and 50 kg K/ha−1) divided evenly over two applications at
the start of the growing season and after first cut in 2017 and 2018, with a single application
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in the renewal year of 45 kg N, 20 kg P, 38 kg K/ha−1. Cuts were carried out twice annually
in late June and mid-August for 2017 and 2018, and a single cut in early August in the
renewal year with a disc mower to remove biomass material to 8 cm, which was then
swathed, baled, and removed from the field site.
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Figure 1. Measured air temperature (◦C) and precipitation (mm) per day over the modelled period
(Data obtained from Finnish Meteorological Institute (FMI).

Table 1. Topsoil (0–5cm) measurements in the Antilla site.

Unit Value

Soil pH 5.8 ± 0.19
EC mS m−1 14 ± 2.4
SOM% 5.2 ± 0.9
SOC% 3.0 ± 0.52
C/N ratio 15 ± 0.4
Total N% 0.2 ± 0.03
P mg L−1 5.4 ± 1.28
K mg L−1 104 ± 12.9

2.2. Eddy Covariance Data

An eddy covariance (EC) tower was setup in the centre of the study area in 2017. The
CO2 and H2O measurements were performed by a closed-path EC system with adjacent
weather station providing supporting climate and meteorological data. The EC system was
a Li-7000 infrared gas analyser (IRGA, for CO2 and H2O mixing ratios, Li-COR inc., Lincoln,
NE, USA), a sonic anemometer (wind velocity, sensible heat flux and sonic temperature
components R3-50, Gill Instruments Ltd., Lymington, UK) mounted 2.5 m above the soil
surface on an instrument tower. Air samples pass through a heated intake tube at a flow
rate of 10 L min−1, (a PTFE tube, internal diameter 6 mm, length 8 m) with two 1.0 µm pore
size filters (Gelman®). The IRGA was housed in a climate-controlled cabin and calibrated
monthly during the growing season. Supporting climate data were net radiation, relative
humidity, photosynthetically active radiation, soil temperature, volumetric soil water
content (at 5 and 20 cm depths) and air pressure. A CR3000 (Campbell Scientific Inc., Logan,
UT, USA) 10 Hz data logger collected raw EC data. Missing supporting meteorological
data were gap filled using data from the Maaninka weather station (Finnish Meteorological
Institute), located 6 km southeast of the field site. Eddy covariance data processing was
carried out using EddyUH [37]. Annual EC data for the period of the experiment (20 May
2017 to 31 May 2020) were employed for calibration and evaluation purposes.
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2.3. The DNDC Model

The DeNitrification-DeComposition (DNDC) model is a process-based biogeochemical
model developed for quantifying C sequestration as well as emissions of C and N gases
from agricultural ecosystems [38–40]. The model is comprised of six sub-models: soil climate,
plant growth, decomposition, nitrification, denitrification, and fermentation. The soil climate,
plant growth, and decomposition sub-models convert the primary model drivers, such as
climate, soil properties, vegetation, and anthropogenic activity, into soil environmental factors
(e.g., soil temperature and moisture, pH, redox potential) and concentrations of substrates
of relevant biogeochemical processes. The nitrification, denitrification, and fermentation sub-
models simulate C and N transformations that are mediated by soil microbes and controlled by
soil environmental factors and concentrations of relevant substrates [40,41]. The DNDC model
adopted in this study was further improved to simulate surface energy exchange, soil frost and
thaw dynamics, and C gas fluxes in cold regions [42–44].

The DNDC model requires daily climate data, including minimum and maximum
temperatures (◦C) and rainfall (mm), as well as humidity (%), windspeed (m/s), and
solar radiation (MJ/m2). The model also requires rainfall N concentrations, atmospheric
NH3 and CO2 concentrations, and annual increases of atmospheric CO2, although model
default values can be used when such information is not available. In addition, we used
measurements of actual snow depth to drive the model [43]. Using measured snow depth
in this way improves the surface energy balance and hence the simulated soil temperature
and water filled pore space (WFPS cm3/cm3). Soil input data include soil properties
according to the USDA soil classification system, as well as information on initial soil
organic carbon (SOC), pH and other soil physiochemical factors. The input parameters of
farming management practices, including crop types, planting and harvest dates, tillage,
fertilization, residue return, and irrigation, were taken from Li et al. (unpublished). The
Antilla site using soil data from Lind et al. [45]. Initial model output evaluations were
carried out against EC data for net ecosystem exchange (NEE), gross primary production
(GPP, defined as the total CO2 taken up by the ecosystem in photosynthesis in kg C ha−1)
and ecosystem respiration (Reco, defined here as the total ecosystem respiration (sum of
aboveground plant and root (autotrophic) and heterotrophic respiration) in kg C ha−1).
Output data assessment and analysis was conducted in R version 4.1.1 (R development
core team 2021) and RStudio (version 1.4.1106).

2.4. Model Initialisation Calibration and Evaluation

The model was calibrated using data in 2017 and 2018 and then ran continuously
from 2017 to 2019, with 2019 used to evaluate the model. The calibration process included
optimisation of crop phenological parameters (thermal days to maturity, biomass fraction,
root: shoot ratios, stem: leaf: grain fraction, water demand, N fixation index, and optimum
temperature, Table 2). For modelling purposes, a 16-year spin-up period was introduced to
allow time for simulated soil carbon stocks to stabilise.

The crop setup consisted of two systems, the first consisted of a perennial grass
ley (land put down to grass and/or clover for a limited period) calibrated to simulate a
grass/legume mixture. The second system simulated the same, with the addition of a barley
cover crop, though no cuts were carried out in 2020 (Table 3). Input parameters for soil and
management are as described in Section 2.1, though fertiliser applied (106 kg N/ha/year)
was divided equally among the number of fertilisation events for that year.

Both calibration and evaluation were conducted using base R and the package ‘Hydro-
GOF’ [46]. Four evaluation metrics were used to evaluate model performance against
measured GHG fluxes. These were Spearman’s rho (ρ, Equation (1)), where ρ is the Spear-
man’s rank correlation coefficient, di is the difference between the two ranks of individual
measured and corresponding simulated data pairs, and n is the number of observations.
Mean absolute error (MAE, Equation (2)) which assesses the size of prediction errors at the
individual level, but does not allow comparison between positive and negative predictors.
Root mean square error (RMSE, Equation (3)) measures absolute quadratic prediction error.
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Si is the simulated, and Mi are the measured variables. Percent bias (pBIAS, Equation (4))
gives a relative bias estimation to determine over or underestimation in the simulation.

Table 2. Crop calibration parameters used in this study. Figures in grey are automatically produced
model outputs in response to calibration, and not directly subject to manipulation.

Perennial Grass Grain Leaf Stem Root

Max. biomass production (kg C/ha/yr) 400
Biomass fraction 0.04 0.28 0.28 0.4

Biomass C/N ratio 35
Annual N demand (kg N/ha/yr) 143
Thermal degree days to maturity 1500

Water demand (g water/g dry matter (DM)) 150
N fixation index (crop N/N from soil) 1.5

Optimum temperature (◦C) 18

Barley

Max. biomass production (kg C/ha/yr) 2496
Biomass fraction 0.3 0.23 0.23 0.23

Biomass C/N ratio 45 75 75 85
Annual N demand (kg N/ha/yr) 129
Thermal degree days to maturity 1500
Water demand (g water/g DM) 150

N fixation index (crop N/N from soil) 1
Optimum temperature for crop growth (◦C) 18

Table 3. Management details used in DNDC simulations in the present paper based on Li et al.
(unpublished). ‘Model setup’ indicates the division between calibration and evaluation datasets. The
full model was run until May 2020, although that year was not used in model evaluation and is
shown in grey to reflect this.

Year 1 (2017) 2 (2018) 3 (2019) 4 (2020)
Model setup Calibration dataset Evaluation dataset NA
Crop: perennial grass 18 May 2017–30 October 2018 4 June 2019–31 May 2020
Cover crop: barley NA NA 4 June 2019–31 May 2020
Cuts 29 June

16 August
26 June

7 August
6 August -

Overseeding/reseeding 18 May NA 16 August -
Fertilisation 22 May & 3 July 22 May & 2 July 2 July * 22 May & 2 July
Tillage NA 30 September (crop

killing till), 30 October
3 June -

ρ = 1− 6 ∑ d2
i

n(n2 − 1)
(1)

MAE =
∑n

i=1|Si − Mi|
n

(2)

RMSE =

√
∑n

i=1 (Si −Mi)
2

(n)
(3)

pBIAS = 100
∑n

i=1(Si −Mi)

∑n
i=1 Mi

(4)

Following setup and calibration we again ran the model continuously from 2000 to
2020 and used 2019 for model evaluation against gross primary production (GPP kg C ha−1),
net ecosystem exchange (NEE kg C ha−1) and ecosystem respiration (Reco kg C ha−1), soil
temperature (◦C) at 5 cm, and soil moisture (WFPS cm3/cm3) at 5 cm and 20 cm according
to a pre-determined criteria (Table 4).
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Table 4. Model evaluation based on classifications as per [27,31,34]. Overall scores are calculated as
the mean performance of variables across all four metrics.

Evaluation Method Poor Fair Good Excellent

Spearman’s rank correlation (ρ) 0.30 0.50 0.70 1.00
MAE 4.0+ 3.0–3.9 2.0–2.9 1.0–1.9
RMSE ≥40 20–39 10–19 0–10
pBias% >20% 15–20% 11–15% <10%

3. Results

Greenhouse gas exchange (Figure 2), soil climate simulations (Figure 3) and crop
biomass simulations (Figure 4) were generally in agreement with measurements through
most of the modelled timeframe. For GPP, there was a good correlation ρ between simu-
lated and measured data, though MAE was poor, RMSE was fair, and the model pBias%
underestimated and scored poor. For NEE, there was a good ρ correlation between simu-
lated and measured data, though MAE was poor, RMSE was fair, and the model scored
good overall, with a small pBias% underestimate. For Reco, there was a good ρ correlation
between simulated and measured data, though MAE was poor, RMSE was good, but model
pBias% underestimated and scored poor (Table 5).

Table 5. Evaluation results for simulated versus measured GHG exchange and soil microclimate. The
‘Mean score’ column represents the overall assessment when all four measures are accounted for.

ρ MAE RMSE pBias% Mean Score

GPP (kg C ha−1) 0.80 (p < 0.001) 21.3 35.1 –20.7% Fair
NEE (kg C ha−1) 0.72 (p < 0.001) 16.6 26.7 –14.2% Fair
Reco (kg C ha−1) 0.85 (p < 0.001) 10.9 14.2 –22.8% Fair

Soil Temp (◦C) 1.00 (p < 0.001) 0.1 1.2 18.2% Excellent
WFPS (cm3/cm3) 5 cm 0.73 (p < 0.001) 0.1 0.1 –11.2% Excellent
WFPS (cm3/cm3) 20 cm 0.25 (p < 0.001) 0.1 0.1 –5.0% Good

For soil temperature there was a correlation ρ score of excellent, MAE was excellent,
RMSE was excellent and pBias% scored fair, and showed that the model overestimated
compared to measured data. Soil water (WFPS) at 5 cm scored “good” ρ for Spearman’s
correlation, MAE was excellent, and RMSE was also excellent, while there was a small,
but good underestimation for pBias%. For WFPS at 20 cm there was a poor ρ correlation,
whereas MAE was excellent and RMSE was excellent, whilst there was only a small pBias%
underestimation, which scored excellent (Table 5).

The DNDC model simulated seasonal patterns of GHG exchange (Figure 2) and soil
climate (Figure 3) well. Seasonally, GHG’s tended to be close to 0 between October and
April, although in the evaluation year eddy covariance did not show the simulated uptick in
ecosystem respiration and NEE (Figure 2b,c) until six weeks later in mid-June, and DNDC
did not pick up on this and also did not pick up on wintertime ecosystem respiration
(Figure 2c).

Soil temperature at 5cm (Figure 3a) was very similar to measured data, although WFPS
at 5 cm (Figure 3b) showed less accuracy in January and May, and in the 20 cm layer DNDC
overestimated in May 2018 and underestimated between December 2018 and May 2019
(Figure 3c).

Biomass (DM kg/ha−1) simulation were compared with measured cuts using an
independent sample t-test. Measured DM (mean = 3117, sd = 915) was compared to
simulated DM (mean = 4517, sd = 926) and there was a significant difference between the
two t (8) = −2.4, p < 0.05.
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Total annual GHG exchange was measured for the calibration and evaluation years
2018 and 2019 (Table 6) indicating that DNDC simulated GPP, NEE and Reco followed
a similar pattern to measured eddy-covariance figures and both field measurement and
simulations showed reduced respiration in 2019 compared to 2018.
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The DNDC model predicted that the Antilla site would be an overall sink of atmo-
spheric C by an average of –1.17 T C ha−1 yr−1, although eddy covariance indicated that
in 2019 the field site was a small source of C, but still an overall sink.
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Figure 4. Comparison of simulated (—) and measured (×) biomass production (DM kg/ha–1) for
growing seasons 2017 to 2019. For 2017, the difference for cut 1 was 5.6% and cut 2 was 21.3%. For
2018 cut 1 was 4.0% and cut 2 was 30.5%, and for 2019 the simulated cut was 8.7% higher than
measured DM and the black arrows (‘ploughing event’ and ‘tillage and spring sowing’).

Table 6. Comparison of total annual GHG exchanges for calibration (2018) and evaluation (2019)
years. The 2017 year is omitted as measurement did not begin until May.

Calibration/Evaluation Years Measured Simulated Difference

GPP (T C ha–1 yr–1)

2018 14.79 10.09 4.70
2019 4.15 5.19 1.04
Mean 9.47 7.64 –1.83

NEE (T C ha–1 yr–1)

2018 –3.64 –1.97 1.68
2019 0.22 –0.35 –0.57
Mean –1.71 –1.17 0.55

Reco (T C ha–1 yr–1)

2018 11.15 8.12 –3.03
2019 4.58 4.84 0.26
Mean 7.87 6.48 –1.38

4. Discussion

This study begins to address the dearth of model evaluations for boreal managed grass-
lands by presenting a comparison of model simulations for DNDC with eddy-covariance
GHG flux, soil climate and biomass dry-matter production data. There are relatively few
papers containing model evaluations for grasslands in boreal areas, but since model testing
during their creation is necessarily limited to regions available to the model creators, it
does not follow that they are applicable elsewhere and a careful assessment of regional
conditions is necessary to understand how a model might behave in novel environments.

A number of papers have assessed the DNDC model in cool weather regions in
Canada [29,31] and Northern Europe [27,43,44], making it an ideal candidate for evaluation
with a view to using in the boreal agricultural landscapes of Scandinavia. Furthermore, the
present study adds to this by demonstrating that the model can produce fair estimations
of the key GHG fluxes and good estimations of soil climate conditions when compared to
measured field data, but that there remain a number of uncertainties that would benefit from
further elucidation, for example crop parameterisation and root processes, soil moisture
simulations and GHG responses to changes in management.
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4.1. GHG Exchange

In general, the DNDC model simulated GHG exchange fairly well, there was a ten-
dency to underestimate GPP and Reco compared to measured data. This may be linked to
the model simulating little or no respiration during the colder months, and to both increase
more slowly and decrease more rapidly at the commencement and ending of the growing
season compared to measured data. Using the improved DNDC model [42] improved
model performance which was able to simulate GHG satisfactorily.

In the evaluation dataset, spikes of GPP and Reco in August 2018 and 2018 were
probably related to increased rainfall noted in those periods (Figure 1), and a simulated
increase in NEE and Reco beginning in May 2019 was not matched by observed data
(Figure 2b,c). This may reflect a modelled increased soil respiration since the model
simulated a ‘crop terminating till’ in October 2018, followed by a ‘light mulching till’
and seeding on 3 and 4 June respectively (Table 3). The residue incorporation following
crop termination and tillage event increased the modelled soil respiration. However, they
simulated an increase in soil respiration before crop germination in contrast to the findings
of Oertel et al. [47] who found that bare soils tended to have lower GHG flux than other
land-cover types.

The June 2019 sowing also included a cover crop of barley that was absent from
previous years, although the use of cover crops has been shown to increase soil micro-
bial activity [48]. However, there we no observed differences related to barley addition
(Figure 2), and in the 2019 (evaluation period) growing season there was a month-long
difference between observed and simulated uptick of NEE and Reco (Figure 2b,c), which
was not observed in the 2018 (calibration) season and requires some explanation. According
to Khan, [49], tillage, which is the standout feature of the 2019 (evaluation) period, can
stimulate soil microbial activity and thus respiration. Nevertheless, simulated NEE was not
significantly different from observed (–14%), in line with the findings of Deng et al. [42] who
also reported a good match for NEE, and of Abdalla et al. [27] who reported a corelation of
R = 0.6 for NEE simulations compared to measured data on permanent grassland in the
Republic of Ireland.

4.2. Soil Climate

Model performance in terms of simulating temperature at the soil surface (5 cm) was
exceptional, which was perhaps to be expected given the version of the DNDC model
we used was aimed specifically at improving surface exchange of energy fluxes and soil
frost/thaw dynamic simulations [41,42], as is evident from the close correlation between
simulated and measured outputs (Table 5). Soil moisture (WFPS) at 5cm followed a similar,
though less striking trend and tended to underestimate by 11.2%, (Table 5). On the other
hand, at 20 cm WFPS simulation quality was much lower, and although the two datasets
matched closely the spread of the data was such that it was not possible to make a strong
correlation. This discrepancy may be due to the model sensitivity to the soil water/ice
status to changes in soil temperature when this was close to zero since a variation of ±1 ◦C
above or below freezing is small for soil temperature but makes the difference between
liquid water and ice in the soil.

4.3. Biomass

The DNDC model was able to simulate biomass production accurately for the first
cut in the two-cut system used in Finnish pastures although the second cut tended to
underestimate. Model performance in the first cut was closer to measured figures than in
the second (2.8 ± 0.008% and 25.9 ± 0.05% respectively, Figure 4) and tended to assume
higher growth rates after the first cut than were observed in the field. Testing across all
years indicated that there was a significant difference between simulated and measured
biomass, meaning that the model underperformed as a grass biomass prediction tool when
calibrated to greenhouse gas fluxes.
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5. Conclusions

This study demonstrated that the DNDC model is able to simulate GHG fluxes, soil
climate conditions in a boreal grassland on a mineral soil within reasonable levels of
accuracy, albeit at a trade-off in accuracy of crop biomass prediction. Future work using
DNDC could be aimed at improving crop phenology (accounting for accurate onset and end
of the growing seasons), interactions among plant species and potential benefits of legume
crops in legume grassland systems, and improving the characterization of heat and water
exchange at the soil surface layer to determine key factors influencing simulated GHG
exchanges. Overall, however, our results suggest that the model is suitable for modelling
crop, soil and GHG exchange from boreal grasslands.
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