
Citation: Wang, J.; Chen, T. A

Multi-Scenario Land Expansion

Simulation Method from Ecosystem

Services Perspective of Coastal Urban

Agglomeration: A Case Study of

GHM-GBA, China. Land 2022, 11,

1934. https://doi.org/10.3390/

land11111934

Academic Editors: Wenze Yue,

Yang Chen and Yang Zhang

Received: 11 October 2022

Accepted: 27 October 2022

Published: 30 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

A Multi-Scenario Land Expansion Simulation Method from
Ecosystem Services Perspective of Coastal Urban
Agglomeration: A Case Study of GHM-GBA, China
Jiayu Wang 1,2 and Tian Chen 1,2,*

1 School of Architecture, Tianjin University, Tianjin 300072, China
2 Institute of Urban Space and Urban Design, School of Architecture, Tianjin University, Tianjin 300072, China
* Correspondence: teec@tju.edu.cn

Abstract: Balancing urban development and ecosystem conservation in the context of natural resource
scarcity can provide scientific guidance for land use planning. We integrated research methods,
such as ecosystem services (ES) assessment, coastal vulnerability assessment, multi-objective linear
planning, and land use change simulation, to develop a new model framework for multi-scenario
urban land expansion simulation based on ecosystem services. In relation to the land use scale and
constraints, we simulated three types of scenarios in 2035, including a status quo continuity scenario
(SCS), economic development scenario (EDS), and ecological protection scenario (EPS), to explore the
ideal land use optimization strategies to enhance ES and land use efficiency. The results indicated
that the scale of construction land under the three scenarios grew, and arable land and grassland had
the largest losses. The continued urban expansion in the Guangdong–Hong Kong–Macao Greater
Bay Area has already had a significant negative impact on ecosystem services and could result in a
total ESV loss of USD 28.1 billion by 2035 if an economic-first development model is adopted. Based
on the hotspots of urban construction land expansion in the ecological–economic priority game, we
proposed a classification and optimization strategy for land use, including proactive restoration of
damaged ecological spaces with high ESVs (Zhaoqing City and Huizhou City), optimization of green
space quality and formation of ecological corridors (Guangzhou City, Shenzhen City, Hong Kong,
and Macao), and implementation of natural resource conservation planning and spatial regulation
in the urban–rural integration area (Foshan City and Dongguan City). This research framework
scientifically allocates the “quality” of ecosystem values and “quantity” of natural resources and
provides a reference for regional “bottom-up” territorial spatial planning.

Keywords: urban land expansion; ecosystem services; Guangdong–Hong Kong–Macao Greater Bay
Area; multi-scenario simulation; coastal vulnerability

1. Introduction

Climate change exacerbates land degradation processes in the form of floods, heat
stress, and sea level rises, causing irreversible impacts on ecosystems [1,2]. Many inter-
national environmental organizations, such as the Food and Agriculture Organization of
the United Nations (FAO) and International Union of Nature Conservation (IUCN), have
proposed the ecosystem approach as a climate change response strategy without nega-
tive effects, and countries worldwide should strive to achieve climate change mitigation
through self-adaptation of ecosystems [3,4]. However, because of its past long-term rough
economic development model, China’s urbanization process has driven rapid expansion of
construction land, and urban agglomerations have become highly sensitive areas for inten-
sification of conflicts between humans and nature [5]. Even in the process of urban cluster
selection and cultivation, disregard for resources and ecological environment carrying
capacity has led to a long-term spatial mismatch between construction land and ecological
land, which has caused a variety of environmental problems. Especially in coastal areas,
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under the influence of industrial development and port and town expansion, ecological
functions, such as the biodiversity and coastal zone nutrient circulation provided by coastal
mangroves, are receding, and coastal cities are facing natural disasters and risks, such as
sea level rise and storm surges [6]. Transmutation of urban form requires establishment of a
new order of ecological civilization. As a new form of transformation and development of
today’s cities from traditional single cities to urban communities, the cultivation and devel-
opment process of urban agglomerations should take into full consideration resource and
environmental bearing factors. Promoting the quality and stability of ecosystem services is
of great significance to the construction of ecological civilization in urban agglomerations.

Urban spatial expansion is closely related to the rapid urbanization and spatial re-
configuration of urban agglomerations. Since the concept of growth management was
proposed in the United States in the 1990s, a look at the 30-year history of urban spatial
expansion and management has been accompanied by urban problems, such as urban
sprawl, ecological space damage, and dependence on motor vehicles for land development,
which have had a series of negative impacts on society, the economy, and ecosystems. In
this context, the study of land expansion characteristics has become the focus of scholars at
the domestic and international level in recent years, and rich results have been achieved
through in-depth research on time sequence, space, and development quality of land expan-
sion [7,8]. With the development of geographic information technology and improvement
in statistical models, more scholars have conducted research on the intensity of land ex-
pansion and urban development factors. Ma et al. measured the urban expansion index
(UEI) and spatial correlation index of 30 cities in five provinces of the Central Plains Urban
Agglomeration, and the results showed that the urban agglomeration has experienced a
process from “jumping discrete expansion” to “ladder circle expansion” since 2006, and the
distribution of construction land in each city is more balanced [9]. Dutta et al. analyzed
the spatial and temporal patterns of impervious surface growth in Delhi and its surround-
ing areas using remote sensing satellite images from 2003 and 2014 and showed a strong
negative correlation between urban impervious surface and UEI [10]. Compared with the
land expansion mechanism of individual cities, the expansion of construction land under
the scale of urban agglomerations is influenced by economic, social, and geographical
factors, and some scholars have turned to the flow of information elements and the spatial
neighborhood effects of urban agglomerations to study the land expansion in recent years.
New features and directions have emerged in the studies of expansion characteristics based
solely on land use changes, but the core demand to solve the ecological problems that arise
in the process of land expansion has not changed significantly.

Ecosystem services (ES) are the bridge between ecosystems and the urban environ-
ment and refer to the benefits that humans derive directly or indirectly from ecosystems.
In other words, ES are the natural environmental conditions and utilities that ecosystems
provide to sustain human existence [11]. Global ecosystem services have been extensively
degraded, leading to irreversible loss of ecosystem service values (ESVs). ESVs estimate
the ES and natural capital created using economic laws and are also an intuitive value for
quantifying ES. Among all human activities, land use/land cover (LULC) change is the
main factor affecting the functional degradation of multiple types of ES [12]. The impact
of LULC on ES varies significantly across ecological, social, and economic environments
and spatiotemporal scales, especially in mega-urbanized areas. In Delhi during the pe-
riod 2003–2010, the net reduction increased to USD 40/ha/year in ecosystem services.
Urban development activities are largely dependent on consumption of ecosystem services
produced [13]. Coastal development and urbanization have led to severe degradation of
about 30% of the mangrove forests in the southeastern coastal urban agglomeration of
Brazil, and the biodiversity conservation, habitat provision, shoreline protection, and
nutrient supply provided by mangroves is deteriorating [14]. In recent years, scholars
have achieved a series of productive results in the study of ES and LULC [15]. At the
research scale, the relationship between land use and ES in watersheds, coastal wetlands,
water-bearing lands, and urbanized areas has been explored [16,17]. In terms of research
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content, ES is used as a basis for constructing ecological resistance surfaces, ecological safety
patterns, and ecological health patterns and for predicting urban land expansion processes.
In terms of simulation methods, urban expansion models (CLUE-S, SLEUTH, FLUS, PLUS)
based on the principle of cellular automata are mostly used, which are compatible with
various types of algorithms and closely integrated with the GIS spatial database and remote
sensing data and can predict the scale and scope of urban land expansion under different
scenarios [18,19]. Valuation of ecosystem services and their values has become one of the
hot research areas in multiple disciplines. Research methods and research tools have been
increasingly improved, but further research is needed on how to integrate ecosystem ser-
vices from an eco-social system perspective into the spatial planning system and constrain
the spatial expansion of land through the spatial heterogeneity of ecosystem services.

In summary, existing studies have focused on exploring the dynamic correlation pat-
terns between historical land use and ESVs or exploring the spatial growth trends of towns
and cities based on historical patterns. However, the impact of ecological space protection
needs, policy regulation, and constraints on urban land expansion is less addressed, result-
ing in the ecological response always taking a passive defense position after major events
in the process of urban development. Research scales are also mostly based on municipal
and provincial perspectives, with fewer studies from the perspective of typical urban
agglomerations. Therefore, this paper proposes a multi-scenario urban land expansion
simulation model based on ES, builds a simulation model of urban land expansion coupled
with the spatial pattern of ecosystem services based on the concept of ecosystem services,
and quantitatively analyzes the spatiotemporal feedback between urban land expansion
and ecosystem services in urban agglomerations. In this paper, the Guangdong–Hong
Kong–Macao Greater Bay Area (GHM-GBA) is used as a case study. The San Francisco Bay
Area and New York Bay Area in the US, the Tokyo Bay Area in Japan, and the GHM-GBA
in China are all major global urban agglomerations [20]. Yang et al. (2021) found that the
GHM Bay Area has the largest sprawl area and sprawl rate among the four major bay areas,
and the crowding of ecological space leads to severe environmental problems [21]. We
propose solutions and urban land planning optimization methods from the perspective of
the binary synergy between urban development and ecological protection to achieve the
goal of carbon peaking and carbon neutrality in China and provide a reference for regional
“bottom-up” spatial planning and high-quality spatial development.

2. Materials and Methods
2.1. Study Area

The Guangdong–Hong Kong–Macao Greater Bay Area (GHM-GBA) is a city ag-
glomeration consisting of nine cities, including Guangzhou, Shenzhen, Zhuhai, Foshan,
Zhongshan, Jiangmen, Zhaoqing, Dongguan, Huizhou, and two special administrative
regions, Hong Kong and Macao; it is one of the most economically developed and densely
populated urban agglomerations in China (Figure 1). Based on the latest figures provided
by Guangdong Province, the Hong Kong Special Administrative Region Government
(SARG), and the Macao SARG, the GDP was USD 1668.8 billion in 2020. The GHM-GBA
has an important strategic position in the overall national development (Figure 2). The
total land area is about 57,000 km2, and the population was over 86 million in 2020. Be-
cause it is the fourth largest bay area in the world, the ecological environment is still the
largest shortcoming of the GHM-GBA compared with New York Bay, Tokyo Bay, and San
Francisco Bay. In the face of rapid urbanization and economic development intensity, the
demand for urban land area is increasing, and problems, such as impaired ES function,
imbalanced land use structure, and frequent occurrence of extreme climate weather, are
increasingly prominent [22,23]. Taking Macao as an example, four serious storm surge
disasters occurred in the past 10 years, causing casualties as well as hundreds of millions
of dollars in economic losses. The Outline Development Plan for the Guangdong–Hong
Kong–Macao Greater Bay Area issued in 2019 proposed that the future GHM-GBA be
built into a world-class city agglomeration and a model of high-quality development for
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livability [24]. Therefore, it is important to deeply analyze the changes in ES patterns in
the GHM-GBA and simulate the development trend of future urban land use to reveal the
ecological benefits of urbanization.
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2.2. Theoretical Framework

This paper proposes constructing a multi-scenario ES-based urban land expansion
simulation model framework, integrating ecological carrying capacity and ES into the
model operation logic. First, we summarized land use change patterns based on historical
data and set the scientific and objective land use scale and morphological constraints.
Second, we predicted simulated urban spatial growth and future land use changes and
identified the relationship between the dynamic evolution characteristics of ES and land
expansion patterns. Finally, we compared ESV spatiotemporal pattern evolution results
under various scenarios and proposed urban agglomeration land use planning optimization
recommendations (Figure 3).
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The first step was to summarize the land use change pattern of the integrated
ecological–artificial dual system. Land use change is effected by a combination of social,
economic, natural, and other internal and external factors in the dual ecological–artificial
system. To filter the driving factors and explore the urban suitability characteristics, current
research has mainly used deep learning models, such as logistic regression (LR), artificial
neural networks (ANNs), and random forest algorithms (RFAs) [25,26]. The RFA method
introduces randomness into the decision tree generation process, which is more toler-
ant to the presence of random factors in urban expansion and explains the evolutionary
mechanism of land expansion by measuring the importance of the input variables [27].
Therefore, based on the historical land use data from 2010 to 2020, we selected the driving
factors with the dual system characteristics of ecological protection and urban development
and finally chose 12 driving factors from the physical environment, spatial accessibility,
socio-economy, and neighborhood effect for the random forest model to generate the land
use conversion pattern.

The second step was to set the land demand, constraint conditions, and restricted areas
for different scenarios. In order to further coordinate development and ecological protection
in urban agglomerations, we set up three land use change simulation scenarios in this study.
The corresponding preconditions were set to determine the scale of land use: S1, status quo
continuity scenario (SCS); S2, economic development scenario (EDS); and S3, ecological
protection scenario (EPS). We also set relevant constraint conditions according to the trend
of land use changes and policy conditions to limit the expansion of land use mainly in
vulnerable coastal areas and high-ESV areas. Since the Intergovernmental Panel on Climate
Change (IPCC) proposed a standard methodology for assessing climate impacts, analytical
methods have been developed to assess coastal zone vulnerability according to the target
and purpose of vulnerability assessment [28,29]. The Coastal Vulnerability Index (CVI) has
been widely used in coastal zone vulnerability assessment studies worldwide because it
does not emphasize the internal causality of indicators and reduces their duplication [30,31].
It pays full attention to the development of social dimensions in coastal areas. The Coastal
Vulnerability model in the Integrated Valuation of Ecosystem Services and Trade-offs
(InVEST) was selected to quantify the coastal zone vulnerability (Figure 4). First, we
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obtained the point data of coastal zone geomorphic attributes along the coastline, vector
graphics characterizing natural habitats, sea level change rate, digital elevation model
of sea level, and storm wind speed. Second, various economic and social data, such as
population density, GDP per capita index, and distribution of medical facilities, were
visualized through the ArcGIS platform. Finally, we calculated the CVI and predicted the
high-risk areas that would be inundated or eroded during storm surges.
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In the third step, we compared the prediction results in response to the characteristics
of land expansion and ecosystem service value change. The current prediction methods for
urban land expansion include forward-driven, reverse-constrained, and integrated devel-
opment types [32]. Among them, the integrated development type can more accurately
predict the interaction process between urban expansion and ecological protection and
realize the simulation of urban land expansion at a larger scale coupled with ES charac-
teristics [33,34]. In this study, the patch-level land use simulation model (PLUS) of the
integrated development type was used to simulate urban land expansion. Compared with
other urban land expansion simulation models, the PLUS model integrates a CA based on
multi-type random patch seeds (CARS), the land expansion rule mining framework (LEAS),
and a multi-type stochastic seed mechanism, which obtain more accurate patch-level land
use type simulation results, especially for natural land use types, such as woodland and
grassland [16,35]. The spatiotemporal dynamic evolution characteristics of land use, ESVs,
and the coupling relationship between them were quantified. Finally, based on the urban
development hotspot map, we identified the critical game spaces for urban spatial growth
and proposed corresponding optimization strategies.

2.3. Data Source and Processing

Table 1 shows the data used in this study. Socioeconomic data for the study were
obtained from the China Energy Statistical Yearbook, the China Statistical Yearbook, the
Guangdong Provincial Statistical Yearbook, and the statistical yearbooks of cities in the
GHM-GBA; data on land use types were obtained from the global land cover data of the
National Earth System Science Data Center, National Science and Technology Infrastructure
of China; data on coastal vulnerability analysis were mainly obtained from the National
Oceanic and Atmospheric Administration of the United States (NOAA); data on the global
average yield of various crops were obtained from the database of the Food and Agriculture
Organization of the United Nations.
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Table 1. Details of all the data.

Data Type Data Name Year Data Processing Data source

Land use Data

Land use type 2010, 2015, 2020 Classification using 30 m multispectral images.

Department of Natural Resources
Global Land Cover Data

(http://www.globallandcover.com
(accessed on 8 August 2021))

Normalized difference
vegetation index 2020 The annual average NDVI was calculated by inversion of

LANDSAT8 remote sensing impact.

United States Geological Survey
(https://www.usgs.gov/

(accessed on 12 August 2021))

Coastal Vulnerability
Analysis Data

Bathymetric 2017 Generated bathymetric difference maps based on bathymetric
scatter by ArcGIS kriging interpolation.

National Oceanic and Atmospheric
Administration

(https://www.noaa.gov/
(accessed on 7 June 2022))

Continental shelf vector data 2010 Compiled from data provided by the InVEST model dataset. InVEST model dataset

Wave energy, maximum tidal
difference, maximum wind
speed, effective wave height

Predicted value
Based on the numerical wave prediction model (WAVEWATCH
III), wave height and wave energy were calculated based on the

average wind speed in each of the 16 equal-angle domains.

National Oceanic and
Atmospheric Administration

(https://www.noaa.gov/
(accessed on 7 June 2022))

Natural habitat 2018–2020 Extract mangroves and coral clusters as natural habitat
background data and translate them into vector data.

Chinese Academy of Sciences Data
Cloud (www.scidb.cn

(accessed on 22 June 2022))

Socioeconomic Data

Population density
2020

Visualized with QGIS platform based on Guangdong Statistical
Yearbook (2020) using Heatmap tool.

Guangdong Bureau of Statistics
GDP density

Scenic spots 2021 Crawl POI data through the Python language converted to
spatial drop to obtain Geode Map API Interface

Topography
Elevation

2020

Acquisition of DEM data based on SRTM (Shuttle Radar
Topography Mission) radar images.

United States Geological Survey
(https://www.usgs.gov/

(accessed on 17 September 2021))Slope Extraction of slope and slope direction from DEM using ArcGIS.
Slope direction

Spatial accessibility
Night light intensity 2013

Derived from the ArcGIS platform based on the average number
of visible bands for cloud-free light detection multiplied by the

percentage frequency of light detection.

National Geophysical Data Center
(http://www.ngdc.noaa.gov/

(accessed on 27 September 2021))
Distance to main road

2020
The distance of each raster from the main city road and city

center, the European distance calculated in ArcGIS.
OpenStreetMap Open Source Data

Distance to city center

http://www.globallandcover.com
https://www.usgs.gov/
https://www.noaa.gov/
https://www.noaa.gov/
www.scidb.cn
https://www.usgs.gov/
http://www.ngdc.noaa.gov/
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3. Methodology
3.1. Scenario Setting

Considering the future development positioning of the GHM-GBA, we set different
optimal targets and determined the parameters of the objective function in multi-objective
planning (MOP) for three land expansion scenarios (See Section 4.2 for the constraints
of MOP).

SCS maintains the current urban development concept and follows the historical
development law, using historical land use data to forecast the area of each land use type
in 2035.

EDS maximizes the economic benefits of each land use type to satisfy the ecological
and population carrying capacity.

S2(l) =
6

∑
i=1

Ecoi × li (1)

where S2(l) is the sum of economic benefits of each land use type, and index I represents
land use type i = 1, 2, . . . , 6, indicating cropland, woodland, grassland, water, construction
land, and unused land; I is the economic benefits generated per unit area of the different
land use types. The economic efficiency coefficients of the GHM-GBA were set based on
the historical data from the Guangdong Provincial Bureau of Statistics (2001–2016). The
total production value of agriculture, forestry, livestock, and fishery was used to estimate
the economic benefits of cropland, woodland, grassland, and water, respectively. The GDP
of the secondary and tertiary industries can be used as a proxy for the economic benefits of
the construction land. Equation (2) can be rewritten as follows:

S2(l) = 19.44l1 + 1.10l2 + 31.94l3 + 22.76l4 + 1122.87l5 + 0l6 (2)

EPS adopts ecological carrying capacity to measure ecological benefits, maximizes the
ecological benefits provided by different land use types, strictly protects areas with high ES
effectiveness, and appropriately limits economic growth.

S3(l) =
6

∑
i=1

Eci × li × (100 − 12)% =
6

∑
i=1

Qi × Yi × li × 88% (3)

In this paper, the ecological equilibrium factors for cropland, forest, grassland, wa-
tershed, construction land, and unused land were 2.49, 1.28, 0.46, 2.49, 0.37, and 1.28,
respectively [36]. The yield factors were set to 1.94, 1.18, 0.81, 1.66, 1.27, and 0.00, respec-
tively, according to the average yield factor in China. There is a requirement of reserving
12% of land for biodiversity conservation. The adjusted function can be expressed in
Equation (4):

S3(l) = 4.83l1 + 1.51l2 + 0.37l3 + 4.13l4 + 0.47l5 (4)

3.2. Parameter Setting for PLUS Model

The drivers characterize specific land use suitability as influenced by physical and
socioeconomic factors and play a dominant role in modeling future land expansion trends.
First, the study selected 12 drivers to import into a random forest model to extract the
high-level semantics of urban suitability for different land use type transitions (Figure 5).
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Second, the land use conversion rules included the neighborhood parameter and
the land use conversion cost matrix. The neighborhood parameter indicated the ease of
land use type conversion, and higher values indicated that the land use type was less
likely to occur. We defined this parameter based on the land use transfer rate between
2000 and 2020. Therefore, the neighborhood parameters were set as 0.8, 0.6, 0.5, 0.7, 0.9,
and 0.2 for cropland, woodland, grassland, water, construction land, and unused land,
respectively. The conversion cost matrix expressed the conversion cost between land types.
Considering the actual situation and referring to the status quo statistics, the SCS setting
allowed conversion among all land types. In contrast, the EDS and EPS settings did not
allow the conversion of cropland, woodland, and construction land to unused land.

Third, based on a combination of historical data and planning information, we set
separate projections for the future scale of demand for each type of site. SCS used Markov
Chain to predict the quantitative relationship of each type of land in 2035, and the total
land scale of EDS and EPS was consistent. The other constraints were set separately by
combining the planning objectives with the land use economic efficiency (Formula (1)) and
ecological efficiency (Formula (3)). The optimal solution for land demand was obtained by
Python linear programming code calculation. At the same time, we set strict protection
areas for EDS. We set the calculation indexes and classification criteria for ES effectiveness
and vulnerable coastal zone, respectively (Table 2). We extracted high-ESV areas and highly
vulnerable coastal zones with the ArcGIS reclassification function. Then, we realized the
aggregation and integration of two types of restricted areas by overlay analysis. The land
use of these areas was set to not be converted to construction land.

Finally, we imported the above parameters and the land use data of the GHM-GBA
into the PLUS model and used the land use data from 2000 to 2020 for historical testing
and optimization. The Kappa coefficient of the model was 0.84, and the overall accuracy
was 89.6%, indicating that the model had high accuracy in simulating land use changes in
urban agglomerations. The simulation results will guide spatial planning decisions.



Land 2022, 11, 1934 10 of 23

Table 2. Indexes and classification criteria for ES effectiveness and vulnerable coastal zones.

Strictly Protected Areas Indicators Calculation Method/Classification Criteria

Ecosystem Services
High Value Area

Regulation Services
Based on the Carbon module of the InVEST model, the carbon stocks
of land ecosystems were assessed by raster calculations based on the
multiple carbon pool data of different land use types.

Support Services
Biodiversity data were collected in county units for species
distribution data. They were compiled from the 2010 China
Ecosystem Services Spatial Dataset.

Supply
Services

The sum of calories of food produced in kcal/a was calculated for
each county through the food production expression, compiled from
the 2010 China Ecosystem Services Spatial Dataset.

Cultural Services Crawling “scenic spots” POI data to spatial drop by Python language.

Coastal Vulnerable Zone

Wave Exposure

WWIII was used as input data to calculate the relative exposure index
of storm waves reaching the shoreline based on the results of the
calculation with 20%, 40%, 60%, and 80% thresholds, in order of very
low (1 point), low (2 points), medium (3 points), high (4 points), and
very high (5 points).

Wind Exposure

WWIII was used as input data to calculate the exposure index of
wave surges easily formed by strong wind motion according to the
calculation results of 20%, 40%, 60%, and 80% of the critical value, in
order of very low (1 point), low (2 points), medium (3 points), high
(4 points), very high (5 points).

Natural Habitat
According to the vulnerability grading of natural habitat categories,
mangroves and coral reefs were very low (1 point) and no habitat
was very high (5 points).

Terrain
When facing marine hazard erosion, high-elevation areas were at
lower risk compared to low-elevation areas. Surface relief was
calculated and graded according to DEM.

3.3. Methods for Quantifying Land Use Change Patterns

The urban expansion index (UEI) can reflect the degree and speed of land expansion
within a specific time interval [37]. This study used UEI to measure the temporal changes
in land expansion in the GHM-GBA. The calculation formula is as follows:

UEI =
An1 − An2

An1 × ∆n
× 100% (5)

where UEI represents the intensity of urban land expansion; An1 and An2 represent the
area of urban land in years n1 and n2, respectively; ∆n is the interval time in years.

In addition, the land expansion trend of each city varied depending on the spatial
elements, positioning, and development context. In order to exclude the influence of city
size and further clarify the differences in expansion intensity among cities in the GHM-GBA,
the Urban Expansion Difference Index (UEDI) was used to characterize the differences in
land expansion. The formula is:

UEDI =
(An2 − An1)× UAn1

(UAn2 − UAn1)× An1
× 100% (6)

where UEDI represents the land expansion disparity index; An1 and An2 represent the
construction land area of individual cities in years n1 and n2, respectively; UAn1 and UAn2
represent the total construction land area of urban agglomerations in years n1 and n2,
respectively.

3.4. Methods for Analyzing Spatial Patterns of ES and ESV

We used the Chinese terrestrial ES unit area service value equivalent to calculate ESVs
to quantify ES effects in the three scenarios. Since the unit ESV equivalents estimated in de-
veloped countries do not reflect the “willingness to pay” of people in developing countries
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for ecosystems, Xie et al. improved the Costanza et al. ESV unit cost coefficients [12,38].
After combining two surveys of 700 Chinese ecologists, they developed a Chinese ESV
equivalent scale. We followed that data and corrected it with the spatial heterogeneity of ES.
To visualize the spatial pattern of ESVs, ES in this study were calculated using a spatial
resolution of 90 m × 90 m.

Evaluation of ES at the spatial scale should also consider the spatial heterogeneity of
ES in different land use types [39]. Established studies have shown that ES is positively
correlated with vegetation cover type and biomass. Hence, the study chose to reflect
the spatial heterogeneity of ES by calculating the carbon sink value in terms of carbon
storage [40]. Carbon stock (CS) is the sum of aboveground organic carbon (Cabove), be-
lowground biomass organic carbon (Cbelow), soil organic carbon stock (Csoil), and organic
carbon in apoplastic matter (Cdead) in an ecosystem [41,42]. Therefore, this paper adopted
the Carbon Storage and Sequestration: Climate Regulation module in the InVEST model
to calculate the ecosystem carbon storage and used the first carbon trading price in China
(CNY 52.78/ton) as the unit price to calculate the carbon sink value, and finally measured
the comprehensive ESV results. The calculation formula is as follows:

ESV =
6

∑
j=1

a × Eij × CSi × 52.78 (7)

where ESV is the integrated ecosystem service value, index i represents land use type
i = 1, 2, . . . , 6, indicating cropland, woodland, grassland, water, construction land, and
unused land; Eij is the economic benefit derived from the unit area of the different land use
types. CSi represents the total carbon stock and is calculated by the formula:

CSi = Cabove + Cbelow + Csoil + Cdead (8)

where Cabove, Cbelow, Csoil, Cdead represent aboveground carbon stock, belowground car-
bon stock, soil carbon stock, and dead biological carbon stock, respectively.

4. Results
4.1. Step 1: Summary of Land Use Change Pattern

Figure 6 shows that, since 2010, the urbanization development of the GHM-GBA has
accelerated significantly. From 2000 to 2010, Zhongshan had the highest UEI at 5.41%,
followed by Zhuhai and Dongguan with 5.08% and 2.54%, respectively. From 2010 to 2020,
Jiangmen City, Huizhou City, and Zhaoqing City and other node cities showed urban
development with UEI values of 15.25%, 11.78%, and 11.43%, respectively. As the ge-
ometric center of the GHM-GBA and the important transportation hub in the future,
Zhongshan City has risen rapidly with the help of the construction of major regional
transportation infrastructures, such as the Hong Kong–Zhuhai–Macao Bridge and the
Shenzhen–Maoming Railway.

Applying the UEDI index to measure the difference in urban spatial expansion in the
GHM-GBA showed a significant difference in the expansion intensity of different cities
and an uneven pattern of urban spatial expansion in the study area (Figure 7). During
2000–2010, from the overall spatial distribution, the cities with high urban spatial expan-
sion were concentrated in the central part of the urban agglomeration. The urban spatial
expansion difference indices of Zhongshan, Zhuhai, and Dongguan were significantly
higher than the urban agglomeration average of 1.16, especially the UEDI index of Zhong-
shan, which was 2.69. The urban construction land increased from 235.22 km2 in 2000 to
362.58 km2, experiencing a rapid urbanization development higher than the overall level
of the GHM-GBA. Other cities’ urban land expansion rates were lower than the average
of urban agglomerations, with values ranging from 0.1 to 1.04. During 2010–2020, the
overall spatial distribution differed from the previous period, with the distribution of cities
with high urban space expansion gradually expanding from coastal to inland; Jiangmen,
Huizhou, and Zhaoqing showed strong urban land expansion, with UEDI indices of 1.92,
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1.48, and 1.44, respectively. Jiangmen City had the most noticeable increase in construc-
tion land, from 315.79 km2 in 2010 to 797.34 km2 in 2020, with nearly 1.5 times the new
construction land area. The construction land area of Zhaoqing increased from 268.31 km2

in 2010 to 575.09 km2 in 2020. The average level of urban agglomeration was also lower
than the previous period, with a UEDI index of only 0.98. The UEDI of Foshan coincided
with the average level of urban agglomeration, and the UEDIs of Dongguan, Huizhou, and
Jiangmen were all lower than the average urban agglomeration level.
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4.2. Step 2: Land Demand and Constraints Set for EDS and EPS
4.2.1. Land Demand, Demand Analysis, and Formula

The total area did not change, and we set the sum of land use area types in the three
scenarios equal to the total land use area of the GHM-GBA (56,972 km2). Based on the
population growth rate from 2015 to 2020, the upper limit of the population number in 2035
was set to 120 million people. Other land demands are shown in Table 3.
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Table 3. Land demand and formula.

Land Demand Demand Analysis Formula

Landscape diversity

Between 2010 and 2020, the proportion of grassland and
unused land in the GHM-GBA decreased from 6.43% to
5.35%. In order to maintain landscape diversity and
reserve space for urban development, we assumed that
at least 5% of the total land area should be grassland and
unused land by 2035.

l3 + l6 > 5% × 56,972 km2

Cropland area
We set cropland area constraints based on per capita
food demand, food production per unit of cropland area,
and the proportion.

l1 × f2 × f3 × f4 > P × f0 × f12, where
P is the projected total population; f0 is
the quantitative per capita demand for
cereals, which is expected to reach
406 kg/person by 2035; f1 is the food
self-sufficiency rate (24%); f2 is the food
production (5749 kg/ha); f3 is the
proportion of food crops grown (49.6%);
and f4 is the replanting index (3.27)

Woodland area

From 2000 to 2020, the area of forest land in Guangdong,
Hong Kong, and Macao decreased from 28,656 to
27,580 km2. Considering the policy of returning
farmland to forest in Guangdong Province, we set the
current area as the upper limit and the predicted area
according to the historical development trend as the
lower limit.

25,908 km2 6 l2 6 27,580 km2

Grassland

Since the 1990s, large areas of grassland have been
converted to construction land and water, with the area
of grassland decreasing from 3748 to 3122 km2 from
2000 to 2020. Therefore, 2567 km2 is predicted as the
upper limit of grassland in 2035 based on historical data.

0 6 l3 6 2567 km2

Water area

Considering the low possibility of conversion of other
land uses to waters, and assuming that the decreasing
trend in water area will slow down, the water area
in 2020 was set as the upper limit and the projected area
was used as the lower limit for waters.

4386 km2 6 l4 6 4939 km2

Construction land area

According to the current trend of construction land
growth, the urban agglomeration will remain high in
order to ensure normal socioeconomic development.
Therefore, we predict that the construction land area
will be between 9445 km2 and 14,700 km2 in 2035.

9445 km2 6 l5 6 14,700 km2

Unused land area
In order to achieve efficient land use, the GHM-GBA will
further develop unused land so that the area of unused
land in 2035 will be lower than the 8 km2 in 2020.

0 6 l6 6 8 km2

4.2.2. Restricted Area

The construction land has expanded greatly, increasing by about 115% in the last
20 years. The spatial distribution of ESV variation showed a “high center, low periphery”
pattern of loss. The regions where a higher degree of ESV gains occurred were mainly
located in Jinwan District, Zhuhai, and Dinghu District, Zhaoqing, where higher values
of regulation and supply services were obtained owing to the transfer of a small amount
of cropland to the water (Figure 8). The high-value areas of ESV loss were concentrated
in Foshan City and Shunde District, the coast of Jiaoyi Bay in the Pearl River Estuary, the
Cotai Reclamation Area in Macau, and the Gaolan Port Economic Zone in Zhuhai. It was
not difficult to determine that these areas were in the water-rich land and water ecological
transition zone. During the 20 years of rapid urban development, urban construction
activities in these areas encroached on ecological lands, such as high-intensity lake enclosure
and land reclamation, resulting in conversion of a large amount of ecological land with high
ESVs to construction land. Larger areas of medium to low ESV loss occurred in Guangzhou
and Dongguan, where the transfer out of forest and water areas and the transfer in of
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cropland and construction land were the leading causes of ESV loss. It is worth noting that,
as one of the most densely populated regions in the world, Hong Kong has scarce land
resources. However, its total loss in the last two decades has been minimal, and some areas
have even experienced ESV gains. This was due to the strict legislative protection policy
for ecological space in effect since the 1970s. Its vegetation cover and biomass were much
higher than those of other cities of the GHM-GBA. Nearly 40% of the land still belonged to
forest parks, where ES were fully utilized within the limited land resources. We extracted
high ES areas and coastal high vulnerability areas through the ArcGIS reclassification
function, and set this area as restricted area (Figure 9).

Land 2022, 11, 1934 14 of 24 
 

biomass were much higher than those of other cities of the GHM-GBA. Nearly 40% of the 
land still belonged to forest parks, where ES were fully utilized within the limited land 
resources. We extracted high ES areas and coastal high vulnerability areas through the 
ArcGIS reclassification function, and set this area as restricted area (Figure 9). 

 
Figure 8. ESV gains and losses for the GHM-GBA from 2000 to 2020. 

 
Figure 9. ES efficiency and coastal vulnerability spatial distribution. 

4.3. Step 3: Land Expansion Simulation 
4.3.1. The Pattern of Land Expansion of Predicted Scenarios 

The land use type of the GHM-GBA was dominated by forest, followed by cropland 
and construction land. In 2020, the area of forest had the highest proportion (48.1%), fol-
lowed by cropland (18.8%) and construction land (16.9%). The simulation results indicate 
that forest, cropland, and grassland area all showed a decreasing trend from 2020 to 2035 
(Table 4). A comparison of land use changes under the three scenarios showed a signifi-
cant increase in construction land between 2020 and 2035, with EDS showing a much 
higher rate of construction land expansion than SCS and EPS (25% increase relative to 
2020). Since construction land expansion comes at the expense of other land types, 
cropland and grassland were the land types with the most extensive area loss of all sce-
narios. Comparing the EDS and EPS scenarios indicated the importance of ecological con-
servation policies in controlling urban sprawl: the EPS scenario had a relatively stable area 

Figure 8. ESV gains and losses for the GHM-GBA from 2000 to 2020.

Land 2022, 11, 1934 14 of 24 
 

biomass were much higher than those of other cities of the GHM-GBA. Nearly 40% of the 
land still belonged to forest parks, where ES were fully utilized within the limited land 
resources. We extracted high ES areas and coastal high vulnerability areas through the 
ArcGIS reclassification function, and set this area as restricted area (Figure 9). 

 
Figure 8. ESV gains and losses for the GHM-GBA from 2000 to 2020. 

 
Figure 9. ES efficiency and coastal vulnerability spatial distribution. 

4.3. Step 3: Land Expansion Simulation 
4.3.1. The Pattern of Land Expansion of Predicted Scenarios 

The land use type of the GHM-GBA was dominated by forest, followed by cropland 
and construction land. In 2020, the area of forest had the highest proportion (48.1%), fol-
lowed by cropland (18.8%) and construction land (16.9%). The simulation results indicate 
that forest, cropland, and grassland area all showed a decreasing trend from 2020 to 2035 
(Table 4). A comparison of land use changes under the three scenarios showed a signifi-
cant increase in construction land between 2020 and 2035, with EDS showing a much 
higher rate of construction land expansion than SCS and EPS (25% increase relative to 
2020). Since construction land expansion comes at the expense of other land types, 
cropland and grassland were the land types with the most extensive area loss of all sce-
narios. Comparing the EDS and EPS scenarios indicated the importance of ecological con-
servation policies in controlling urban sprawl: the EPS scenario had a relatively stable area 

Figure 9. ES efficiency and coastal vulnerability spatial distribution.

4.3. Step 3: Land Expansion Simulation
4.3.1. The Pattern of Land Expansion of Predicted Scenarios

The land use type of the GHM-GBA was dominated by forest, followed by cropland
and construction land. In 2020, the area of forest had the highest proportion (48.1%),
followed by cropland (18.8%) and construction land (16.9%). The simulation results indicate
that forest, cropland, and grassland area all showed a decreasing trend from 2020 to 2035
(Table 4). A comparison of land use changes under the three scenarios showed a significant
increase in construction land between 2020 and 2035, with EDS showing a much higher
rate of construction land expansion than SCS and EPS (25% increase relative to 2020).
Since construction land expansion comes at the expense of other land types, cropland and
grassland were the land types with the most extensive area loss of all scenarios. Comparing
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the EDS and EPS scenarios indicated the importance of ecological conservation policies in
controlling urban sprawl: the EPS scenario had a relatively stable area of grassland and
forest and a low rate of cropland contraction. The EDS showed a significant loss of water
area and cropland area, with the extensive loss of water area occurring around the East
China Sea waterway and the Xijiang River fork of Zhongshan City, and the immense loss
of cropland area occurring mainly in Nansha District, Guangzhou City, and Boluo County,
Huizhou City (Figure 10).

Table 4. Land use area and relative change rate under multiple scenarios from 2020 to 2035.

Type of Land Use Percentage of Land Use (%) Relative Rate of Change (%)
2020 S1 S2 S3 2020-S1 2020-S2 2020-S3

Cropland 18.807 17.11 17.022 17.24 −9.023 −9.491 −8.332
Woodland 48.075 46.019 46.014 47.015 −4.277 −4.287 −2.205
Grassland 7.688 7.490 7.210 7.545 −2.575 −6.217 −1.860

Water 8.499 8.418 8.048 8.537 −0.953 −5.307 0.447
Construction land 16.917 20.952 21.704 19.658 23.852 28.297 16.203

Unused land 0.014 0.011 0.002 0.005 −21.429 −85.714 −64.286
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4.3.2. Ecosystem Services Characteristics of Predicted Scenarios

The ESV changes from 2020 to 2035 were calculated based on land use types and
the ecosystem service equivalent value per unit area (Table 5). The results showed that
climate regulation and hydrological regulation were the two dominant ES in the GHM-GBA,
accounting for 24% and 37% of the total ESVs in 2020, respectively (Table 6). Between 2020
and 2035, all the ESVs exhibited different degrees of loss, except for water supply, with the
food supply function declining the most (−4.07%). A cross-sectional comparison of the
three scenarios showed that EDS had the highest ESV loss, with a 3.05% decrease compared
to 2020, followed by SCS (2.89%) and EPS (1.33%). The continued urban expansion in the
GHM-GBA has already had a profound negative impact on ES, which could lead to a total
ESV loss of USD 28.1 billion in 2035 if an economic-first development model is adopted.
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Table 5. Ecosystem service equivalent value per unit area of the GHM-GBA.

ES Classification Type of Land Use

Primary Service Secondary
Service Cropland Construction

Land Woodland Water Grassland Unused land

Regulation
Services

Gas regulation 2348.58 15.15 13,160.52 1629.20 13,160.52 42.32
Climate

regulation 1206.03 0 39,354.62 4845.27 20,248.59 0

Hydrological
regulation 5755.06 30.31 24,522.59 216,323.48 14,832.04 63.48

Waste regulation 32.76 0 1204.47 990.44 3.75 50.48

Support Services
Soil Support 21.16 0 16,016.91 1967.73 9330.85 42.32
Biodiversity 444.33 15.15 14,578.14 5395.39 8484.52 42.32

Nutrient Cycling 402.01 0 1227.19 148.11 719.39 0

Supply Services Water Supply −5564.66 0 2073.52 17,540.31 1206.03 0
Food Supply 2877.54 0 1734.99 1692.67 1481.09 0

Cultural Services Recreation and
Culture 190.43 0 6389.84 3998.94 3745.04 21.16

Table 6. Changes in ESVs of the GHM-GBA under three scenarios.

ES Classification
ESV (CNY 104) Relative Rate of Change (%)

2020 S1 S2 S3 S1-2020 S2-2020 S3-2020Primary
Service Secondary Service

Regulation
Services

Gas regulation 450.19 432.18 429.96 440.26 −4.00% −4.50% −2.21%
Climate regulation 1199.12 1153.47 1150.15 1176.64 −3.81% −4.08% −1.87%

Hydrological regulation 1844.11 1812.44 1813.78 1832.08 −1.72% −1.64% −0.65%
Waste regulation 38.04 36.72 36.73 37.43 −3.46% −3.42% −1.60%

Support
Services

Soil Support 487.70 469.50 468.00 478.93 −3.73% −4.04% −1.80%
Biodiversity 466.05 449.11 447.81 457.79 −3.64% −3.91% −1.77%

Nutrient Cycling 41.70 39.88 39.77 40.63 −4.37% −4.65% −2.57%

Supply
Services

Water Supply 86.61 90.38 90.49 91.58 4.35% 4.47% 5.73%
Food Supply 93.15 88.07 87.86 89.35 −5.45% −5.67% −4.07%

Cultural
Services Recreation and Culture 212.19 204.77 204.23 208.62 −3.50% −3.75% −1.68%

Total 4918.86 4776.52 4768.78 4853.32 −2.89% −3.05% −1.33%

In terms of spatial layout, Figure 11a–c shows the carbon sink values of SCS, EDS,
and EPS, among which the carbon sink values of EPS were generally higher and more
compactly distributed in the region, which is essential for protecting the overall carbon
balance and ecosystem stability of the construction area. In areas such as Baiyunshan Scenic
Area in Guangzhou, Dalingshan Forest Park in Dongguan, and woodlands on both sides of
Provincial Road 262 in northern Zhaoqing, the carbon sink values of EPS were significantly
higher than those of other scenarios, indicating that the EPS helped to maintain the carbon
stocks of different land uses at a high level. It is worth noting that, although the land
area of Hong Kong is small, accounting for only 2% of the area of the GHM-GBA, its
carbon storage per unit area is much higher than that of Guangzhou, Shenzhen, Dongguan,
and other cities. This is due to the fact that Hong Kong has protected about 40% of the
total forest park area through legislation since the 1970s. The vegetation coverage and
biomass are much higher than those of other cities, so the advantage of carbon storage is
obvious. ESV distribution generally showed a more apparent spatial heterogeneity, with
relatively high ESVs in the ecological barrier areas in the northeast and west wings of the
GHM-GBA, corresponding to the vital node cities of Zhaoqing, Jiangmen, and Huizhou
(Figure 11d–f). The spatial layout characteristics of the integrated ESV gains and losses
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of the three scenarios differed significantly: SCS showed a large area of low to moderate
ESV loss attributed to the transformation of some woodland to cropland and construction
land. In addition, because of physical geography and forest age structure, the carbon
initially stored in woodland was released into the atmosphere, and forest carbon stocks
were significantly reduced, resulting in a total ESV loss. Figure 11g–i indicates the spatial
agglomerations with severe ESV losses in the EDS scenario distributed along the highways
or urban fringe areas in Boro County, Huizhou City, eastern Taishan City, and Foshan City.
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4.4. Analysis of the Interaction between Urban Land Expansion and Ecosystem Services
4.4.1. Correlation of Urban Land Expansion Drivers with ESVs

Table 7 illustrates that gas regulation and climate regulation services were significantly
correlated with various factors. The value of areas with lower population density, far from
roads and gentle terrain, tended to be higher. Areas with a high value of soil support were
usually located in areas with low population density and far from main roads. Areas with
a high value of biodiversity and recreation culture were located in areas with high soil
quality, good vegetation cover, and far from main roads. Areas with high values of water
supply and food supply were located in areas with high soil quality and far from main
roads and city centers. High-value areas for biodiversity and recreation were located in
areas with high soil quality, good vegetation cover, and far from main roads. High-value
areas for water supply and food supply were located in areas with high soil quality and far
from main roads and city centers. The urbanization element showed the most apparent
depletion of ESVs and became the main driver of the decline in each individual ESV.

Table 7. Correlation analysis of urban agglomeration land expansion factors and individual ESVs.
* Statistically significant at 10%; ** Statistically significant at 1%.

ES Classification Elevation Slope Slope
Direction NDVI Soil

Erosion

Distance
from Main

Road

Distance
from City

Center

Scenic
Spots

Gas regulation 0.545 * 0.501 ** −0.031 * 0.230 ** −0.232 ** 0.230 ** −0.255 ** 0.302 *
Climate regulation 0.538 ** 0.495 ** −0.031 * 0.220 ** −0.220 ** 0.225 * −0.241 ** 0.286 *

Hydrological
regulation 0.289 ** 0.293 ** −0.019 * 0.088 ** −0.205 ** 0.128 ** −0.200 * 0.229 *
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Table 7. Cont.

ES Classification Elevation Slope Slope
Direction NDVI Soil

Erosion

Distance
from Main

Road

Distance
from City

Center

Scenic
Spots

Waste regulation 0.525 * 0.484 ** −0.030 ** 0.209 ** −0.219 0.219 * −0.238 * 0.282
Soil support 0.539 ** 0.496 ** −0.031 ** 0.219 ** −0.219 ** 0.225 ** −0.239 ** 0.285 **
Biodiversity 0.537 ** 0.495 ** −0.031 ** 0.219 ** −0.222 ** 0.225 ** −0.242 ** 0.288 **

Nutrient cycling 0.540 ** 0.495 ** −0.030 ** 0.232 ** −0.237 ** 0.231 ** −0.261 ** 0.309 **
Water supply 0.312 ** 0.312 ** −0.024 ** 0.048 ** −0.092 ** 0.105 * −0.077 * 0.095 *
Food supply 0.475 * 0.430 * −0.022 * 0.263 ** −0.307 ** 0.233 * −0.344 ** 0.398 *
Recreation
and culture 0.534 ** 0.493 ** −0.031 ** 0.216 ** −0.223 ** 0.224 ** −0.243 ** 0.288 **

4.4.2. Analysis of Urban Land Expansion Hotspots and ESV Correlation

Based on the simulation results under different land use scale conditions, the priority
expansion directions and locations of future urban land development in the GHM-GBA
were analyzed (Figure 12). By extracting the overlapping areas of construction land under
the three scenarios to identify hotspots of urban land expansion, the results indicated that
urban construction land showed a trend of expansion to the southeast. These areas will
experience rapid urbanization in 2020–2035. By 2035, Shenzhen’s Guangming District
and Futian District will have expanded significantly, followed by Jiangmen’s Pengjiang
District, Dongguan City, and Zhuhai’s Xiangzhou District. New construction land often
appears at the edge of urban and rural residential areas, converted from cropland and
forest to construction land. Owing to differences in geographic, natural, and socioeconomic
conditions, the expansion hotspots showed different patterns of construction and expansion,
such as “infill expansion” in Shunde District in Foshan City; “outward expansion” in
Yuexiu District in Guangzhou City and Futian District in Shenzhen City; and “leapfrog
expansion” in Dongguan City. In addition, overlaying the spatial pattern of construction
land expansion hotspots and ESVs, we found that the construction land expansion hotspots
in Shatin, Zhaoqing City, and the Xiangzhou District of Zhuhai are likely to encroach on
high-ESV land. For such critical areas of the economic–ecological game, it is important to
promote renewal of urban stock resources, such as the redevelopment of shantytowns and
abandoned factories, to avoid the disorderly spread of urban construction land encroaching
on high-quality cropland and woodland.
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5. Discussion and Conclusions
5.1. Discussion

In the last two decades, the ecological land area in the Greater Bay Area has expe-
rienced significant declines, with the highest decline in cropland (−22.5%), followed by
grassland and forest at −14.98% and −3.7%, respectively. Most of these ecological lands
were converted to urban construction land, thus leading to a significant loss in ecosystem
services. Compared with S1, the loss of cropland and forest land in S2 is not significant;
however, a large area of grassland and water is converted to urban construction land, and
these two types of land also provide considerable ESV. Therefore, the focus should be on
protecting grassland and water areas in the GMH-GBA construction hotspot. Specifically,
ideal land use planning should be addressed in the following discussion, with methods,
results, and optimization strategies.

5.1.1. Simulation of Land Expansion from the Ecosystem Services Perspective Provides a
Unified Perspective

The ES-perspective-based land expansion simulation method provided a unified per-
spective on natural resource status, spatiotemporal trade-offs and synergistic effects, and
human welfare for the ecological spatial classification system, optimizing land develop-
ment patterns and regulating spatial order. The multi-scenario land expansion simulation
model constructed in this paper can provide a basis for preparation of spatial planning in
ecological civilization construction and strengthen the consensus on the ecological bottom
line in urban planning. In the GHM-GBA case study, the modified ES equivalent and
carbon sink values can effectively reflect the integrated ESV spatial heterogeneity, which
can be used as an entry point to realize the multidisciplinary cross-coupling of ecosystems
and social systems. In current ES quantification studies, ESVs are primarily measured
based on the equivalent coefficients of land use types. Talukdar et al. (2020) classified
LULCs in the lower Gangetic plain of India into six categories and calculated ESV values
by multiplying the sum of land use area with the ESV of that LULC type, showing that the
area of water decreased by 15% and the ES provided by water have decreased accordingly.
Land use has changed over the last decade, so the ecosystem service values have also
changed [43]. Mendoza-González et al. (2012) used a benefit transfer approach to calculate
ESV using land use changes and found that land use changes increased economic benefits
but lost ES, such as coastal protection or scenic values [44]. However, the same land use
type often carries multiple ES, and quantification of ESVs by land use type alone ignores
the spatial heterogeneity and is prone to ES measurement homogenization. Compared with
other studies, this study adopted the carbon storage module of the InVEST platform, which
combines the traditional ESV calculation method with carbon sink value. It comprehen-
sively evaluated the ESV distribution spatial pattern under different urban development
scenarios. The technical approach can build a comprehensive data platform for ecological
structures, processes, services, and benefits, enhance the monitoring technology of ecologi-
cal environment and socioeconomic attributes, help to achieve China’s carbon peaking and
carbon neutrality goals, and provide a reference for regional “bottom-up” spatial planning
and high-quality urban development.

5.1.2. Multiple Scenario Simulation Results: A possible Optimal Path to Realizing
Ecological Civilization

The coupling of multi-objective linear planning of land scale prediction and the PLUS
model of urban land expansion simulation analysis scientifically allocated the “quality”
value of ecosystems and the “quantity” of natural resources. Previous studies on land
expansion have mainly set constraints and predicted land use scale based on historical
data or empirical values. In contrast with other studies, Das et al. (2022) used CA-Markov
models to predict land use land cover and the causes of ecosystem service change in the
Kolkata urban agglomeration by 2040 [45]. Barred and Demicheli (2003) proposed a bottom-
up approach that combines land use factors with a dynamic approach to simulate land use
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scenarios in Lagos, offering the possibility of exploring future spatial patterns of land use
under specific assumptions [46]. Chang and Ko (2014) developed an interactive dynamic
multi-objective planning (IDMOP) model to derive compromising quantitative land use
optimization solutions that balance the conflicting objectives of various stakeholders [47].
However, GHM-GBA is in the stage of rapid land use expansion, and the guidance of its
land use planning should not be limited to a single aspect of the land use scale quantitative
optimization or land use spatial pattern. In other words, focusing only on the quantity of
land use type cannot allocate land use to the ideal location, and focusing only on the spatial
pattern may lead to a land use scale that cannot meet the needs of ecological protection and
economic development. Therefore, the coupled model constructed in this study integrated
the “top-down” and “bottom-up” perspectives, which optimized the scale and spatial
pattern of various land uses from the ES perspective. First, the essence of the MOP algorithm
was to seek the optimal structural effect of land use. Simulating a top-down macroscopic
decision-making process optimized allocation of various land use scales under a series of
socioeconomic and ecological constraints to achieve the specific purpose of maximizing
economic or ecological objectives under three scenarios of constraints. Second, the PLUS
model allocated the predicted land use demand to the most appropriate spatial location and
participated in the spatial development and restriction policies according to a bottom-up
process to achieve an intersection of land use scale and spatial pattern. According to the
prediction results of the coupled model, EPS improved the spatial agglomeration of ESVs
and construction land in urban agglomerations. It promoted the “win–win” situation of
high-quality economic development and high-level ecological environment protection.
In addition, the research results provided various simulation scenarios for urban land
expansion by combining climate change and ES as the basis for delineating the control lines
of ecology, agriculture, and urban function space. Based on the relationship between ES
and urban land expansion, we explored the framework of spatial planning methods from
the perspective of ES and the preferred path to realize ecological civilization.

5.1.3. Land Use Optimization Strategies for Urban Agglomeration in the GHM-GBA Based
on Simulation Results

China’s territorial spatial control focuses on strategic (conceptual) content, with a
preference for top-down decomposition and transmission of indicators, such as target
goals and policy content. One of the strengths of ES is representation of ESV variation
patterns on spatial and temporal scales, thus revealing the dual role of constraints and
guidance between ES and land resource allocation. Therefore, the coupled model provided
a research basis for realizing multidimensional, multi-objective, and multi-level urban
growth management. The research results revealed the hotspots of urban construction
land expansion in the ecological–economic game process, and we proposed corresponding
optimization strategies, including focusing on efficient use of urban stock resources in high-
ESV areas, such as Zhaoqing City and Xiangzhou District, promoting transformation of
traditional passive defenses of ecological space into active restraint, and, finally, realizing a
comprehensive management path of land use. In terms of planning strategies, Guangdong
has launched several new ecological protection plans, including the Guangdong Province
Climate Change Response Program and the Pearl River Delta National Forest City Cluster
Construction Plan, effectively restoring degraded ecosystems. However, the proposed
target of carbon emission intensity reduction in the GHM-GBA brings enormous pressure
and challenges. Thus, predicting future land use changes and their possible impacts on
ecosystems under different development scenarios can help to address the challenges.
Based on the above background, differentiated planning optimization suggestions were
made for each city in the GHM-GBA: (1) an adjustment-type policy was proposed for the
three high-quality ES areas of Zhaoqing, Jiangmen, and Huizhou. As the ecological barrier
of the study area, it has high forest cover and carbon storage levels and should adjust
the boundary line of cropland protection and ecological protection. It should adopt strict
protection policies according to the ES prediction results and control urban expansion to
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guarantee the primary source of carbon storage in the GHM-GBA. (2) Guideline policies
should be formulated for the highly urbanized areas of Guangzhou, Shenzhen, Hong Kong,
and Macao. This study found that high-ESV areas easily encroached on by urban land were
mostly located in and around urban built-up areas. We recommend optimizing the quality
of green areas in built-up areas based on safeguarding the existing ecological environment
quality to enhance ES and guide formation of ecological corridors within a limited area.
(3) A controlled policy should be formulated for Foshan, Zhongshan, Zhuhai, and Dong-
guan regions. They must improve the construction of multi-level green space systems
within the cities, strengthen the implementation of natural resource protection planning
and spatial regulations in the urban–rural combination areas, and strictly control cropland
conversion to other land types.

5.1.4. Study Limitations

The present study still has the following shortcomings, which need to be explored
more deeply in the future: this study focuses on land use planning theories, methods, and
optimization strategies at the macro urban agglomeration scale. In the future, we should
continue to promote multi-scale land use spatial evolution processes and mechanisms,
form a multi-spatial-scale integrated decision-making toolbox, and improve the land use
planning and optimization system under the perspective of ecosystem services.

5.2. Conclusions

Against the background of natural resource scarcity, a consensus to explore the balance
between urban development and ecological protection has been reached. This paper
integrated the research methods of ES assessment, coastal vulnerability evaluation, multi-
objective linear planning, and land use change simulation and constructed a multi-scenario
urban land expansion simulation model framework from the perspective of ecosystem
services. Using the Guangdong–Hong Kong–Macao Greater Bay Area as the research
object, the framework was applied to simulate the spatial and temporal evolutionary
characteristics of land use changes and ecosystem service values under the three scenarios
of status quo continuation, economic development, and ecological protection. The results
of the land use simulation indicated that the scale of construction land under the three
scenarios will grow significantly. Cropland and grassland were the types of land with
the most significant losses. The continued urban expansion in the GHM-GBA has already
had a profound negative impact on ecosystem services. If an economic-first development
model is adopted, it could result in a total ESV loss of CNY 28.1 billion by 2035. Shenzhen
Guangming District and Futian District, Jiangmen Pengjiang District, Dongguan City, and
Zhuhai Xiangzhou District will become hotspots for land expansion in 2035. Because of
differences in geographic, natural, and socioeconomic conditions, the expansion hotspots
showed different patterns of built-up expansion, such as “infill expansion” in the Shunde
District of Foshan City, “outward expansion” in the Yuexiu District of Guangzhou City, and,
in Dongguan City, “leapfrog expansion”. In addition, new construction land often appeared
at the edge of urban and rural residential areas, converted from cropland and woodland,
for which spatial regulation of land use should be enforced to prevent potential disorderly
urban expansion. The multi-scenario urban land expansion simulation framework from the
perspective of ecosystem services scientifically allocates the “quality” value classification
of ecosystems and “quantity” stock allocation of natural resources and provides a reference
for regional “bottom-up” territorial spatial planning.
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