
 

 
 

 

 
Land 2022, 11, 1905. https://doi.org/10.3390/land11111905 www.mdpi.com/journal/land 

Article 

A Joint Bayesian Optimization for the Classification of Fine 

Spatial Resolution Remotely Sensed Imagery Using  

Object-Based Convolutional Neural Networks 

Omer Saud Azeez 1, Helmi Z. M. Shafri 1,2,*, Aidi Hizami Alias 1 and Nuzul Azam Haron 1 

1 Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM),  

43400 Serdang, Selangor, Malaysia 
2 Geospatial Information Science Research Centre (GISRC), Faculty of Engineering, Universiti Putra Malaysia 

(UPM), 43400 Serdang, Selangor, Malaysia 

* Correspondence: helmi@upm.edu.my 

Abstract: In recent years, deep learning-based image classification has become widespread, espe-

cially in remote sensing applications, due to its automatic and strong feature extraction capability. 

However, as deep learning methods operate on rectangular-shaped image patches, they cannot ac-

curately extract objects’ boundaries, especially in complex urban settings. As a result, combining 

deep learning and object-based image analysis (OBIA) has become a new avenue in remote sensing 

studies. This paper presents a novel approach for combining convolutional neural networks (CNN) 

with OBIA based on joint optimization of segmentation parameters and deep feature extraction. A 

Bayesian technique was used to find the best parameters for the multiresolution segmentation 

(MRS) algorithm while the CNN model learns the image features at different layers, achieving joint 

optimization. The proposed classification model achieved the best accuracy, with 0.96 OA, 0.95 

Kappa, and 0.96 mIoU in the training area and 0.97 OA, 0.96 Kappa, and 0.97 mIoU in the test area, 

outperforming several benchmark methods including Patch CNN, Center OCNN, Random OCNN, 

and Decision Fusion. The analysis of CNN variants within the proposed classification workflow 

showed that the HybridSN model achieved the best results compared to 2D and 3D CNNs. The 3D 

CNN layers and combining 3D and 2D CNN layers (HybridSN) yielded slightly better accuracies 

than the 2D CNN layers regarding geometric fidelity, object boundary extraction, and separation of 

adjacent objects. The Bayesian optimization could find comparable optimal MRS parameters for the 

training and test areas, with excellent quality measured by AFI (0.046, −0.037) and QR (0.945, 0.932). 

In the proposed model, higher accuracies could be obtained with larger patch sizes (e.g., 9 × 9 com-

pared to 3 × 3). Moreover, the proposed model is computationally efficient, with the longest training 

being fewer than 25 s considering all the subprocesses and a single training epoch. As a result, the 

proposed model can be used for urban and environmental applications that rely on VHR satellite 

images and require information about land use. 

Keywords: object-based convolution neural networks; deep learning; Bayesian optimization;  

decision-level fusion; Worldview-3 

 

1. Introduction 

As a source of understanding of socio-economic functions or activities in complex 

urban areas, land-use/land-cover information is critical for effective urban planning and 

management, government policymaking, biodiversity protection, and population activity 

monitoring [1–3]. Urban land-use maps are also commonly used in simulations of urban 

growth and road transportation models [4]. In environmental applications, urban land-

use information is critical for understanding the dynamic interactions between environ-

mental changes and human activities [4]. Modern techniques, such as remote sensing, 

Citation: Azeez, O.S.; Shafri, H.Z.M.; 

Alias, A.H.; Haron, N.A. A Joint 

Bayesian Optimization for the  

Classification of Fine Spatial  

Resolution Remotely Sensed  

Imagery Using Object-Based  

Convolutional Neural Networks. 

Land 2022, 11, 1905. https://doi.org/ 

10.3390/land11111905 

Academic Editor: Chandra Giri 

Received: 25 August 2022 

Accepted: 22 October 2022 

Published: 26 October 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Land 2022, 11, 1905 2 of 32 
 

have opened up new avenues for extracting detailed information on urban land use [5]. 

Remote sensors capture highly complex and heterogeneous urban features that include 

the contrast of anthropogenic urban and semi-natural surfaces. The same urban land-use 

types (e.g., buildings) are frequently distinguished by distinct physical properties or land-

cover materials (e.g., made of different roof tiles), and different land-use categories may 

exhibit the same or similar reflectance spectra and textures (e.g., asphalt roads and park-

ing lots) [6]. 

Urban land-use information is presented as patterns or high-level semantic functions 

in satellite images [7]. Some low-level ground features are frequently shared by various 

land-use categories. As a result, classifying satellite images into different land-use classes 

is regarded as a difficult task. A large number of previous studies have presented methods 

for classifying urban land use [4,8–12]. The methods are mostly based on accurately rep-

resenting spatial patterns or structures in remote sensing data. 

Pixels, objects, patches, and scenes are the four types of spatial unit representation 

used in urban land-use classification methods. Pixel-level methods are solely based on 

spectral information. They can classify land cover, but their use in urban settings is lim-

ited. These methods induce uncertainty and “salt-and-pepper” effects in classification re-

sults, especially in high-spectral-heterogeneity regions [13]. Spatial and textural infor-

mation can be extracted through moving kernel windows [14]. The problem with this 

method is that it requires the predefinition of arbitrary image structures, whereas actual 

objects in the real world may be irregularly shaped [15]. As a result, object-level methods 

are preferable to moving kernel windows because they allow image objects to be defined 

spatially in the real world [16]. Objects are created by segmenting image pixels based on 

spectral, spatial, and contextual information. Object-based methods make use of both 

within-object (spectral, texture, and shape) and between-object (connectivity, contiguity, 

distances) information. Due to the inability to use low-level features in semantic feature 

representation, methods that use only within-object information tend to overlook seman-

tic functions or spatial configurations. As a result, other researchers have used both 

within-object and between-object information to address the issues raised [3]. Land-use 

units, such as cadastral fields or street blocks, are used to group objects based on their 

spatial context (derived using spatial metrics). The issue with these methods is that the 

land-use units may be inaccessible in some areas. Another difficulty is describing and 

characterizing the spatial context as a set of rules. Complex structures or patterns can be 

recognized and distinguished by human experts. Rule-based methods, on the other hand, 

are incapable of learning effective high-level features. As a result, methods capable of 

learning land-use semantics via high-level feature representations are currently being 

used in land-use mapping from remote sensing data. The most common approach to 

achieving that is deep learning. However, recent studies showed that combining OBIA 

with deep learning achieves the best classification accuracy, with consistent semantic re-

sults [17–21]. 

The main objective of this study is to develop a novel object-based convolutional neu-

ral network (OCNN) model for extracting land use and land cover from fine spatial reso-

lution satellite imagery using a joint Bayesian optimization approach for learning the best 

segmentation parameters and classifying the image data employing deep learning meth-

ods. The following sub-objectives are addressed to achieve the main objective: 

1. Establish an image segmentation using the multiresolution segmentation (MRS) tech-

nique to help classification tasks by providing additional spatial and contextual features. 

2. Construct a CNN model to extract low- and high-level features. 

3. Employing joint Bayesian optimization to find the best segmentation parameters and 

updating the CNN’s network weights by transfer learning. 

4. Apply decision-level fusion based on best segmentation output, using Gaussian fil-

tering to further improve the quality of classification results. 
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The organization of this paper is as follows: in Section 2, the related works are re-

viewed and discussed. Section 3 presents the study area, datasets, and adapted method-

ologies. Section 4 presents the results from this research and discussions. Section 5 sum-

marizes the research’s conclusions and potential directions for future work. 

2. Related Work 

Object-based and deep learning methods have been considered the dominant para-

digm for remote sensing image classification over the last decade [22]. OBIA methods re-

quire manual selection of object attributes, which is subjective. On the other hand, deep 

learning methods, due to their hierarchical abstract nature, lack capturing of the precise 

outline of different objects at the pixel level. As a result, there are several ways to integrate 

them for land-use and land-cover classification which are discussed in previous works. 

They can be categorized into the following techniques. 

2.1. Deep Learning Based on Object-Level Features 

Pixels are the fundamental spatial unit representation in many remote sensing appli-

cations. However, many recent studies have found that OBIA methods perform better due 

to the additional spatial and contextual features generated by segmenting the image data 

into several homogeneous regions [23]. The features extracted at the object level can be 

used to perform classification tasks using classical statistical methods, machine learning, 

and deep learning methods. The issue with these methods is that the OBIA features are 

represented as tabular data. Deep learning methods were previously thought to be inef-

fective for tabular data [24]. Nonetheless, several recent studies have attempted to opti-

mize deep learning performance for tabular data [25–27]. However, the problem with in-

tegrating deep learning with object-level features represented as tabular data is that (1) 

OBIA features are extracted manually, many of which may be irrelevant to the classifica-

tion task at hand, (2) under- and over-segmentation have a significant impact on the fea-

tures calculated, and (3) the spatial characteristics of image pixels are not effectively rep-

resented in the classification model. It is also difficult to hand-craft abstract features 

(edges, textures) that may be useful for classifying image data using these methods. 

Nevertheless, this integration approach could outperform classical machine learning 

methods. For example, in a study by [9] Jozdani et al. (2019), such models performed bet-

ter than other traditional machine methods in terms of the classification of urban land 

cover in the United States. Such integrated models also achieved accurate results for road 

detection in orthophotos [28] and weed species identification and detection in a challeng-

ing grassland environment [29]. A large number of spectral, spatial, and contextual fea-

tures can be extracted from segmented objects; some may not be relevant to the classifica-

tion task. In this case, CNNs with one-dimensional (1D) kernels were used to fine-tune 

the feature before the application of the final classification [30]. The approach with fea-

tures fine-tuned by the CNN outperformed the other feature-selection approaches, i.e., 

the Random Forest feature-importance ranking and recursive feature elimination. 

2.2. Feature-Level Fusion 

OBIA provides features at the image object level which can be computed manually 

after image segmentation is performed. On the other hand, deep learning models enable 

the extraction of deep abstract features from images automatically. Feature fusion can be 

performed to make use of both OBIA-based features and deep features, which may help 

to improve the classification results. This approach is often implemented as a two-branch 

computational network which contains a processing chain to perform segmentation and 

OBIA feature extraction and a network to learn deep and abstract features from the data. 

After combining the two feature sets, a classifier such as tree-based models or Support 

Vector Machines (SVM) is used to obtain class labels for the image pixels [21,31]. Li et al. 

[32] developed a novel hybrid model called (OSVM-OCNN) used for the classification of 
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crops. Their model combines a shallow-structured (OBIA-SVM) model and a deep-struc-

tured (OBIA-CNN) model. The developed OSVM-OCNN effectively extracts low-level 

and high-level information within image objects. They suggest that the developed ap-

proach is an efficient tool to overcome the challenges of remote sensing-based crop classi-

fication methods. Sutha et al. [33] combined SVM and CNN to perform the classification 

of high-resolution remote sensing images, aiming to improve classification accuracy. 

Hong et al. [34] used the common multiscale segmentation algorithm to extract multiscale 

low-level image features and a CNN to obtain deep features from the low-level features 

at each scale, respectively. An approach to extract tree plantations from very-high-resolu-

tion remote sensing images was proposed by Tang et al. [35]. They used an integrated 

OBIA-CNN framework to achieve that. They performed image segmentation to obtain 

OBIA features and a fine-tuned CNN to obtain deep features. To reduce the computation 

time of the model, they conducted feature selection based on the Gini index. The tea ob-

jects were then classified by a Random Forest (RF). The basic problem of this integration 

method is heavy computation [36]. Other problems associated with this integration 

method include duplication in some features extracted by OBIA and CNN such as shape, 

texture, and color. 

2.3. Decision-Level Fusion 

Decision-level fusion techniques are also known as post-deep learning classification 

refinement [37]. In these methods, a deep learning model is used to establish a classifica-

tion map of the study area first. The results are then refined by majority voting based on 

segmentation. Each object contains several pixels with class labels predicted at the pixel 

or patch level by a deep learning model. Finally, each object is assigned a single label 

depending on the most frequently occurring class labels within that object. Zhao et al. [21] 

presented an integrated OBIA and deep learning model to precisely classify three images 

representing urban scenes: Vaihingen (Germany), Beijing (China), and Pavia (Italy). Their 

results indicated that the integrated OBIA-deep learning model has the ability to identify 

and extract different types of buildings such as residential and commercial buildings with 

an accuracy over 90%. Abdi et al. [38] proposed a method to refine a classification map 

produced by a CNN using image segmentation. They showed a significant improvement 

in classification accuracy over other traditional classifiers. Liu et al. [37] developed a new 

approach to optimize land-cover mapping, they used a post-classification technique based 

on the segmentation resulting from OBIA classification to refine the result of image clas-

sification based on a CNN algorithm by labeling each image object according to the dom-

inant land cover type of its pixels. Their method outperformed traditional classification 

methods such as OBIA-Random Forest (RF) and OBIA-Support Vector Machine (SVM). 

Robson et al. [39] applied a combination of OBIA and CNN to identify rock glaciers in 

mountainous landscapes. Timilsina et al. [40] studied urban tree cover changes and their 

relationship with socioeconomic variables. In their approach, OBIA was used to refine and 

improve the tree heatmap obtained by a CNN. In addition, He et al. [41] incorporated 

multiresolution segmentation into the classification layer of U-net and DenseNet architec-

tures for land-cover classification. They also used a voting method to optimize the classi-

fication results. While studies have highlighted the significance of decision-level fusion 

techniques, this method does not fully utilize the OBIA method, as no features are used 

for classification. More recently, Bengoufa et al. [42] used such an approach for rocky 

shoreline extraction from Pleiades satellite images. 

2.4. Deep Learning with Context Patches 

Traditional deep learning models (for example, CNN) operate on rectangular image 

patches of a fixed size (e.g., 24 × 24). While these methods outperform traditional pixel-

based methods and OBIA alone, they are ineffective at accurately extracting object bound-

aries. As a result, several studies have proposed using context patches created by object 

centers, random point (s) within image objects, object skeletons [43], or, more recently, 



Land 2022, 11, 1905 5 of 32 
 

region-based voting methods. The idea behind these new methods is to use image objects 

generated by a segmentation algorithm to create image patches from which a deep learn-

ing model can extract features and then perform classification. According to studies, such 

methods can more accurately classify data at object boundaries. Furthermore, such meth-

ods have a lower computational cost than traditional rectangular patch-based methods. 

The segmentation step, on the other hand, has a notable effect on the accuracy of the pre-

ceding methods. Objects delineated from remote sensing imagery vary widely in size in 

most cases, resulting in large object representations failing to capture small ground objects 

(e.g., urban trees, small buildings, bridges on the water). Martins et al. [43] tested integra-

tion between CNN and multiscale object-based methods for image classification at re-

gional level and heterogeneous landscapes. For extracting convolutional positions, they 

used a skeleton-based algorithm for CNN predictions. The method on their newly devel-

oped datasets, i.e., IowaNet, presented a classification accuracy of 87.2%, which is consid-

ered better than other methods such as fixed-input (OCNN) and patch-based CNN, which 

achieved accuracies of 81.6% and 82%, respectively. Misclassification was detected in 

some classes, such as shadow versus lake or road versus buildings. The main limitations 

of the (multi-OCNN) approach are that it is affected by the number of image bands (i.e., 

aerial photos) and the quality of segmentation. Li et al. [18] proposed a Scale Sequence 

Object-based Convolutional Neural Network (SS-OCNN) that classifies images at the ob-

ject level. These segmented objects were subsequently classified using a CNN model inte-

grated with an automatically generated scale sequence of input patch sizes. This scale se-

quence can effectively fuse the features learned at different scales by progressively trans-

forming the information extracted at small scales to larger scales. Experimental results 

revealed that the SS-OCNN consistently achieved the most accurate classification results. 

Lv et al. [17] developed a model based on the improved object-based convolutional neural 

network (IOCNN) used to classify very-high-resolution imagery sources with convolu-

tional position sampling and zone-division techniques. This model is able to classify ob-

jects that have irregular shapes. The final result indicated that the IOCNN model is con-

siderably more accurate than state-of-the-art models. The IOCNN model achieved classi-

fication accuracies 91.65% and 93.49% on two different images. 

2.5. Deep Learning with Filtered Patches 

There are several ways to transform or filter the information contained in image 

patches before passing them to a deep learning model. These can be based on summary 

statistics or even utilizing ancillary data (image segments). The motivation behind this 

process is to achieve heterogeneous image patches. Pan et al. [44] proposed an object-

based heterogeneous filter integrated into a CNN to overcome the limitations of jagged 

errors at boundaries and the expansion/shrinkage of land-cover areas originating from 

CNN-based models. More recently, Wang et al. [45] proposed adaptive patch sampling to 

map the object primitives into image patches along with the object primitive axes. The 

methods based on image patch filtering or image object filtering aim to improve the 

model’s ability to classify the precise edge of ground objects correctly with some filtering 

methods that can be applied to image patches or image objects. While some studies have 

reported improvement in classification accuracy using this method, the challenge remains 

to best map image objects into image patches. 

Research gap and aim of this research: There have been no assessment studies that 

compare the effectiveness of each of the methods listed above. Nevertheless, different 

streams of study are being pursued to improve the performance of each method. To that 

end, this study develops a novel classification technique based on decision-level fusion, 

to resolve the fundamental issue with methods in this category, namely, that the “segmen-

tation step is independent of feature extraction and classification”. For accurate image 

classification, the proposed model learns the best segmentation parameters and high-level 

features jointly. 
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3. Study Area and Dataset 

The Worldview-3 satellite image data used in this study were obtained over the Uni-

versiti Putra Malaysia (UPM) campus in Selangor, Malaysia (3°0′8.0181” N, 101°43′1.2172” 

E). The data were taken in November of 2014 by the Digital Globe. The spatial resolution 

of Worldview-3 image data is 0.31 m for the panchromatic band and 1.24 m for the multi-

spectral bands. The dataset includes eight spectral bands with radiometric resolutions of 

11 bits each: coastal, yellow, green, blue, red, red edge, near-infrared1 (NIR1), and near-

infrared2 (NIR2). 

Figure 1 depicts the training and test areas selected from the image of the study area. 

There are various types of land cover in the area, including bare lands, grasslands, water 

bodies, roads, buildings, and dense vegetation/trees. Roads and buildings are the most 

dominant land-cover classes in the area. Figure 1 depicts some examples of these land-

cover types within the study area. The ground-truth data were obtained in the form of 

land-use and land-cover map in shapefile file format. The Department of Survey and Map-

ping Malaysia (JUPEM) prepared the data in 2015. Figure 2 depicts the ground-truth data 

for the training and test areas. In the area, there are six land-cover types: bare land, grass-

land, road, building, dense vegetation/trees, and water bodies. Table 1 shows the training 

and test data class distribution (i.e., number of pixels and area percentage) in the ground-

truth dataset. 

 

 

Figure 1. The training and test areas are indicated in the Worldview-3 true color composite of the 

study area. 
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Figure 2. The ground-truth maps of the (a) training and (b) test areas. 

Table 1. Training and test data class distribution (i.e., number of pixels and area percentage) in the 

ground-truth dataset. 

Land-Cover Class 
Pixels Percentage 

Training Area Test Area Training Area Test Area 

Buildings 275,441 144,260 26.10% 23.90% 

Roads 288,816 191,106 27.36% 31.66% 

Grassland 168,018 87,707 15.92% 14.53% 

Dense Vegetation/Trees 215,104 111,872 20.38% 18.53% 

Water Body 85,762 54,183 8.13% 8.98% 

Bare Land 22,284 14,469 2.11% 2.40% 

SUM 1,055,425 603,597 100.00% 100.00% 

4. Methodology 

4.1. Data Preprocessing 

The WV-3 image data were subjected to standard preprocessing steps such as radio-

metric calibration, and atmospheric and geometric corrections [46]. To correct errors 
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caused by sensors or the satellite, radiometric correction is required. This study used the 

quick atmospheric correction module available in Exelis Visual Information Solutions 

(ENVI) for atmospheric calibration (Boulder, CO, USA). Atmospheric correction converts 

image pixel values to surface reflectance to compensate for atmospheric degradation. Ge-

ometric distortions in the image include the rotation of the earth during image capture 

and the curvature of the earth, which can be corrected with geometric correction. To per-

form the geometric correction, 13 ground control points (GCPs) were collected from 

Google Earth imagery at clear positions (road intersections, building corners) and used to 

geo-reference the image’s geographic location. The geometric correction’s precision was 

0.6 pixels (root mean square error). The data were projected to the Universal Transverse 

Mercator World Geodetic System 84 datum. 

4.2. Image Segmentation 

Image segmentation aims at generating image objects that can be used to help classi-

fication tasks by providing additional spatial and contextual features. This process is a 

key component of OBIA. There are several segmentation algorithms applied in remote 

sensing including multiresolution segmentation (MRS) [47], mean shift [48,49], watershed 

methods [50,51], and simple linear iterative clustering (SLIC) [52]. However, MRS (first 

proposed by Baatz in 2000) [53] is the most common approach used for fine spatial reso-

lution image segmentation [54]. Thus, it was used for the OBIA process in this study. 

MRS is a bottom-up multi-scale segmentation that generates the objects using an it-

erative algorithm, which minimizes the average heterogeneity of image objects weighted 

by the size. It has three critical parameters that need to be set to control the growth of the 

generated objects: scale, shape, and compactness. The scale and shape parameters are de-

fined as the maximum allowed heterogeneity and textural homogeneity in the resultant 

image segments. Likewise, the last parameter is used to optimize segments relating to 

their compactness, aiming for relatively compact segments [55,56]. The scale parameter 

controls the size of the generated image objects. For a certain scale value, the size of the 

image object is larger for homogeneous data, whereas the size of the image object is 

smaller for heterogeneous data. The relationship between color and shape criteria influ-

ences by the shape parameter value. The color standard can be adjusted and set by select-

ing a suitable value for shape criteria. The compactness of an image object can be defined 

by the product of the width and the length over pixels numbers. 

The algorithm starts from individual pixels and then groups these pixels until the 

predefined parameters are satisfied or a stopping criterion is reached [57]. The merging 

cost function integrates spectral and shapes heterogeneity, as shown in Equation (1). 

f = w × hcolor+(1-w) × hshape         (1)

where � belongs to weight for spectral heterogeneity with the interval 0–1, and ℎ�����  

and ℎ�����  refer to shape and color parameters, respectively. 

MRS parameters are determined experimentally based on the approach of trial-and-

error [58]. However, the three parameters of the algorithm have a significant impact on 

the quality of output segmentation results. As a result, it is critical to find the optimal or 

suboptimal values for these parameters with a systematic approach to ensure improved 

classification results. 

4.3. Object-Based Convolutional Neural Networks (OCNN) 

As discussed in Section 2, there are several ways to combine deep learning with 

OBIA. The focus of this research is the method of decision-level fusion, which first devel-

ops a classification map by a deep learning model and then applies a refinement process 

(majority voting) based on image segmentation. 
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4.3.1. The Backbone Convolutional Neural Network (CNN) 

A CNN is a deep learning model based on a multilayer perceptron that performs 

convolutional and pooling operations on image patches. It was developed for image pro-

cessing with the use of local connections and weight sharing [59]. CNNs, as opposed to 

dense feedforward networks, reduce the risk of overfitting and training time. These ad-

vantages are increased with multidimensional images. A typical CNN is made up of sev-

eral layers, such as convolutional, pooling, and fully connected. Each layer is fed by small 

image patches that scan over the entire image to capture different feature attributes at 

local and global scales. Convolutional layers apply filters to images to extract low- and 

high-level features. A feature map is formed by the features retrieved from the image by 

convolutional layers. To increase nonlinearity, a nonlinear activation function (e.g., sig-

moid, hyperbolic tangent, rectified linear units) is used outside the convolutional layer 

[60]. Feature maps are generalized inside the CNN framework by pooling layers until 

high-level features are produced [61]. The statistics of features inside certain regions are 

aggregated by pooling layers, resulting in the output feature map. The fully connected 

layers transform feature maps into image feature vectors that may be classified using Soft-

max or any other classifier. Figure 3 illustrates the CNN architecture used in this study. 

 

Figure 3. An illustration of the CNN architecture used in this study. 

4.3.2. The Proposed OCNN Framework (OCNN-JO) 

Figure 4 shows the proposed object-based CNN that is based on joint optimization 

of image segmentation and learning deep features from very-high-resolution satellite im-

agery. The model consists of two main stages, which are: (1) training a CNN on processed 

image patches, and (2) employing joint Bayesian optimization to find the best segmenta-

tion parameters and updating the CNN’s network weights by transfer learning. 

After establishing image data and ground-truth pairs, image patches extracted from 

the raw image are processed in four steps: balancing class samples, dividing the data into 

training, validation, and test sets, encoding class labels, and normalizing the image data 

into a standard value range. In remote sensing, data with imbalanced classes are a preva-

lent issue [62]. They affect the classification algorithm in that it correctly predicts classes 

that make up the majority while misclassifying classes that make up the minority. This 

study used random oversampling to balance the amount of data within various classes in 

the dataset because deep learning methods need rather large training datasets. By choos-

ing random samples from the class dataset with replacement, the approach increases the 

number of data in a minority class. The samples are then split into three groups: training 

(70%), validation (15%), and test (15%), which are used to train, validate, and test the mod-

els, respectively. The target data are then encoded after that. The image data are finally 

normalized using the min–max technique. 
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A CNN classification model is trained based on patch-based samples. Image segmen-

tation is utilized in decision-fusion approaches to refine the classification results produced 

by the CNN with majority voting. However, the choice of segmentation parameters has a 

major impact on the outcome. While optimizing segmentation parameters alone may re-

sult in accurate segmentation, not sharing knowledge between segmentation and feature 

learning can have a major influence on classification performance. As a result, a Bayesian 

optimization strategy was employed in this study to jointly optimize the image segmen-

tation process and train the CNN model for image classification. 

The Bayesian optimization workflow used in this study is depicted in Figure 1. The 

approach begins by taking the pretrained CNN and updating the network’s weights via 

transfer learning. The MRS, on the other hand, segments the input image using the initial 

segmentation parameters scale = 100, shape = 0.1, and compactness = 0.5. To obtain the 

classification map, a majority voting method is applied to the CNN predictions based on 

image segmentation. A Gaussian filter with a 7 × 7 kernel is additionally used to smooth 

and reduce the noise in the results. Finally, the classification accuracy is assessed at the 

pixel level using the mean intersection over union (mIoU) metric. 

The entire procedure, from transfer learning to accuracy measurement, is regarded 

as an objective function for Bayesian optimization. Consequently, it is anticipated that the 

Bayesian optimization will identify the best segmentation parameters that result in the 

best feature learning and classification. After transfer learning, the optimum segmentation 

parameters and a trained CNN are used to create the study area’s final classification map. 
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Figure 4. Workflow of the Bayesian optimization procedure to jointly optimize segmentation and 

feature learning for image classification. 

 Bayesian Optimization 

Optimization methods such as grid and random search are often used with objective 

functions f(x) that are cheap to evaluate. However, with expensive objective functions, it 

is important to minimize the number of samples drawn from the black box function. 

Bayesian optimization is an approach that best suits this kind of problem. It attempts to 

find the global optimum in a minimum number of iterations. Bayesian optimization in-

corporates prior belief about f and updates the prior with samples drawn from f to obtain 
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a posterior that better approximates f. The model used for approximating the objective 

function is called a surrogate model. Bayesian optimization also uses an acquisition func-

tion that directs sampling to areas where an improvement over the current best observa-

tion is likely. 

Bayesian optimization works based on the following steps: (1) selecting a surrogate 

model for defining the prior of the objective function, (2) obtaining the posterior using the 

Bayes rule based on the function evaluations, (3) using an acquisition function to decide 

the next sample point, and (4) adding newly sampled data to the set of observations and 

repeating the process from step 2 till convergence or budget elapses. For the complete 

mathematical foundation of Bayesian optimization, readers are referred to [63–65]. 

Gaussian processes (GPs) are used as a surrogate model for Bayesian optimization 

and incorporate prior beliefs about the objective function. They are iteratively updated to 

capture the objective function’s posterior probability distribution. A GP is parametrized 

by a mean function, μ, and covariance or kernel function, k. Ref. [66] recommended the 

use of the ARD Matérn kernel [67] because the squared exponential kernel is unrealisti-

cally smooth for practical optimization problems. 

An acquisition function is used to propose new � combinations in the domain space 

to evaluate with �(�) by making use of the GP posterior probability distribution. Even 

though there are many acquisition functions, expected improvement (EI) [68] is the most 

commonly used [65]. EI helps to choose the next query sample as the one which has the 

highest EI over the current ��� �(��), where �� = argmax��∈��:�
f(x�) and x� is the loca-

tion queried at �th time step. 

In this acquisition function, t + 1�� query point, x��� , is selected according to the 

Equation (2). 

���� = ��������(‖ℎ���(�) − �(�∗)‖|��) (2)

where � is the actual ground-truth function, h��� is the posterior mean of the surrogate 

at t + 1�� timestep, D� is the training data, and x∗ is the actual position where � takes the 

maximum value. 

An objective function to minimize: our objective function, f(x), takes a parameter 

combination, x, from the domain space, and applies a series of data processing steps to 

obtain the accuracy of classification results by the means of mIoU. Those steps include 

transfer learning, image segmentation, majority voting, and Gaussian filtering, which are 

described below. 

The Python programming language was used to implement the Bayesian optimiza-

tion. This study used the Bayesian optimization implementation of GPyOpt (http://shef-

fieldml.github.io/GPyOpt/) (15 September 2022). 

GPyOpt is a Bayesian optimization library based on GPy (https://shef-

fieldml.github.io/GPy/) (15 September 2022). This contains the parameter space of each 

MRS parameter, of which the Bayesian optimization routine has to identify the optimal 

parameter combination. The scale ranged from 25 to 5000, shape from 0 to 0.9, and com-

pactness from 0 to 1. 

 Transfer Learning 

In the proposed classification framework, optimal parameters of MRS algorithm can-

not be effectively determined independently. There should be a knowledge-sharing mech-

anism between the classification and segmentation to achieve the best possible optimiza-

tion. Transfer learning was employed to produce classification maps based on given MRS 

parameters. The aim of the transfer learning was to reduce the computational burden as, 

if the original classification model was used, each optimization iteration would have taken 

a much longer time. Transfer learning also aimed to effectively exploit learned weights 

with large samples to produce classification maps with small samples in new situations. 
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 Majority Voting 

Deep learning classification results are improved further by the majority voting of 

class categories by pixels in each object segmented by MRS. Each pixel in the deep learning 

classification map contains a class label predicted by the model. Calculating the most com-

mon class occurring within the objects yields a single class label for each image object. In 

the final classification map, each pixel in the object takes the new class label of the object 

it contains. 

 Gaussian Filtering 

The Gaussian filter is a non-uniform, low-pass filter often used to blur images or re-

duce noise in images. It is a 2D convolution operator; however, different kernels can be 

used, such as bell-shaped, based on the application type. In this study, the Gaussian filter 

was applied with 7 × 7 kernel size to the input images to smooth out the noise. 

 Training Strategy 

CNNs, like other deep learning models, are trained using backpropagation and sto-

chastic gradient descent (SGD), which is based on differentiation or chain rules. Concern-

ing the model’s parameters, SGD efficiently minimizes a differentiable objective function 

(e.g., categorical cross-entropy). Several enhancements and new optimization strategies 

for training CNNs have recently been proposed. The adaptive moment estimation (Adam) 

method was employed in this study, which is an optimization method that computes 

adaptive learning rates for each parameter of a network model. Adam’s technical details 

can be found in the original paper [69]. It was used in this study to minimize categorical 

cross-entropy loss (Equation (1)). The weights are all initialized with a zero-mean Gauss-

ian distribution with a standard deviation of 0.01, whereas the biases are initialized with 

a constant of 1. The learning rate is initially set at 0.001, and the learning rate policy is 

sigmoidal decay. The models are trained for 500 iterations before being terminated. If no 

improvement in validation accuracy is observed after 15 iterations, the training process is 

immediately halted, as shown in Equation (3). 

����(��, �) = −
1

�
� �(�)�����(�) + (1 − �(�)���(1 −

�

���

��(�)))           (3)

4.4. Benchmark Methods 

Patch-based CNN, Center-Point OCNN, region majority voting OCNN (RMA-

OCNN), and Decision-Fusion OCNN were used as benchmarks to assess the effectiveness 

of the proposed classification model, OCNN-JO. To ensure a fair comparison, the under-

lying CNN in each approach was identical in terms of network parameters and hyperpa-

rameters. The methods that use image segments were implemented based on the same 

segmented objects acquired from MRS. Descriptions and parameter settings of these 

benchmarks are detailed as follows: 

Patch CNN: This model is based on densely overlapping patches with the size of a 9 × 9 

set experimentally. The number of convolutional layers and their corresponding number 

of filters are also set experimentally to 2 and 64, respectively. 

Center-Point OCNN: In contrast to pixel-wise CNN, this model uses image segmentation 

to extract patches at the objects’ centers. The segmentation parameter scale, shape, and 

compactness were set experimentally to 4500, 0.15, and 0.1, respectively. 

RMV-OCNN: This model works principally as the CPOCNN; however, it randomly gen-

erates N convolutional positions within each image segment and trains the CNN. The 

same segmentation parameters are chosen for this model. The network’s architecture and 

hyperparameters are also identical to the CPOCNN. 
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Decision-Fusion OCNN: This model generates predictions for each image pixel within 

image segments by using the PCNN and subsequently fuses them with a majority voting 

strategy to achieve the final classification results. 

4.5. Accuracy Assessment 

4.5.1. Classification Accuracy Assessment 

This study uses three common classification accuracy assessment methods, namely, 

overall accuracy (OA), Kappa coefficient (K), and mean intersection over union (mIoU). OA 

and K are notably two accuracy measures used in traditional remote sensing studies. 

These measures can be computed at pixel or object level. This study uses them at the pixel 

level due to the nature of the validation data prepared for this research. OA refers to the 

specific value of the total number of all correct classifications and that of samplings and 

reflects the degree of correctness of all categories in the classification results of images 

(Equation (4)). The Kappa coefficient refers to an assessment index to judge the extent of 

coincidence between two images and ranges from 0 to 1. It indicates how much the clas-

sification method selected is better than the method where the single pixel is randomly 

assigned to any category (Equation (5)). On the other hand, mIoU (also known as the Jac-

card index) is reported occasionally in semantic segmentation applications as well as clas-

sification problems [70]. mIoU can be calculated based on pixels or bounding boxes. It is 

the ratio of intersection between the reference and classified samples with the union of the 

two groups. The former method is well-suited for classification applications, while the 

latter is preferable for instant segmentation or object-detection tasks. In this study, mIoU 

is applied directly to pixels over the classified image as a whole. It uses the true positive 

(TP), false positive (FP), and false negative (FN) classes at the pixel level (Equation (6)). 

OA=
∑ mii

n
i=1

∑ ∑ mij
n
i=1

n
j=1

         (4)

K =
N ∑ m��

�
��� − ∑ m��m��

�
���

N� − ∑ m��m��
�
���

 (5)

mIoU =
TP

TP + FP + FN
    (6)

where mij represents the total number of pixels that are assigned to Class j from those 

subordinate to Class i in the research region and n represents the total number of clas-

ses. N represents the total number of samples, and m�� and m�� are, respectively, sums 

of rows and lines in the confusion matrix. 

4.5.2. Segmentation Quality Assessment 

The quality of image segmentation can be measured with some reference data based 

on comparing segmented objects and their actual objects in the reference data. The quality 

of segmentation degrades due to anomalies such as under-segmentation or over-segmen-

tation. These values can be formulated by metrics such as area of fit (AFI) or quality rate 

(QR), which can be calculated using the reference object area (A�) and the object area ob-

tained as a result of segmentation (A�) [37,71]. In optimal segmentation, AFI is expected 

to be 0 and the QR value is expected to be 1. Quality metrics were calculated using the 

following equations: 

AFI =
A� − A�

A�

      (7)
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QR = 1 −
A� ∩ A�

A� ∪ A�

    (8)

5. Results and Discussions 

5.1. Segmentation Results 

Segmentation is a major processing step in object-based deep learning classification 

methods and its parameters can have a significant impact on segmentation results and, 

ultimately, the classification results. Setting segmentation parameters by experience can 

achieve reasonable results, but it can only be performed independently from feature learn-

ing, which as a result may impact the final classification results as no knowledge is shared 

between the two segmentation and feature extraction tasks. In this study, segmentation 

parameters were optimized by the proposed Bayesian optimization workflow discussed 

in Section 3. Figure 5 shows the segmentation results for the training and test areas with 

the optimal parameters. For the training areas, the optimization procedure found the fol-

lowing best parameters, i.e., scale, shape, and compactness. For the test area, the best seg-

mentation parameters were for scale, shape, and compactness, respectively. 

Table 2 illustrates the search space, initial values, and best values of MRS segmenta-

tion parameters for the training and test areas. Table 3 presents the quality metrics for the 

segmentation results. The training area was segmented with AFI and QR of 0.046 and 

0.945 m, respectively. The metrics for the test area were −0.037 AFI and 0.932 QR. The 

results indicate good segmentation for both areas. 

 

Figure 5. The results of MRS segmentation with optimal parameters were found by the proposed 

Bayesian optimization method for the (left) training and (right) test areas. 

The three MRS parameters were optimized based on search spaces experimentally 

set up in this research. For the scale parameter, the low bound and high bound were de-

termined as 25 and 5000, respectively. For the shape and compactness, the search space of 

the real values between 0.01 and 1 was used in the optimization process. The initial values 
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of the parameters were decided randomly. The best values were then determined by the 

proposed Bayesian optimization method for both training and test areas. The best scales 

were 4705 and 4617 for the training and test areas, respectively. The best shape and com-

pactness values were 0.2 and 0.1 for the training area and 0.14 and 0.1 for the test area. 

The best parameter values found for the training area are very close to those found for the 

test area. In both areas, higher scale value, and lower shape and compactness, are pre-

ferred. 

Table 2. Search space, initial values, and best values of MRS segmentation parameters for the train-

ing and test areas. 

Parameter Search Space 
Initial 

Value 

Best Value (Training 

Area) 

Best Value (Test 

Area) 

Scale Integer [25, 5000] 100 4705 4617 

Shape Real [10−2, 100] 0.5 0.2 0.14 

Compactness Real [10−2, 100] 0.5 0.1 0.1 

Table 3. Segmentation quality metrics for the training and test area datasets. 

Dataset AFI QR 

Training Area 0.046 0.945 

Test Area −0.037 0.932 

5.2. The Results of the Proposed Model 

The proposed classification workflow experimented with three CNN models, 

namely, 2D CNN, 3D CNN, and HybridSN. A visual comparison of these methods as 

classification maps is presented in Figures 6 and 7 for the training and test areas, respec-

tively. Table 4 presents the classification accuracies obtained for the three methods in the 

training and test areas including the overall accuracies (OA, Kappa, mIoU) as well as per-

class accuracies. Generally, the three applied methods produced accurate boundary infor-

mation and the smoothest visual results. In addition, the semantic contents of buildings 

and linearly shaped features (roads) were identified with high geometric fidelity and ac-

curacy compared to the ground-truth data. The 3D CNN layers and combining 3D and 

2D CNN layers (HybridSN) yielded slightly better accuracies than the 2D CNN layers. 

The ability of CNN models with higher kernel dimensions improved the boundary ex-

traction of the image objects, which helped in obtaining better geometric fidelity and clas-

sification accuracies. The results also highlight that the CNNs with higher kernel dimen-

sions help in extracting better contextual features by combing the spectral and spatial in-

formation of the image data for feature extraction. 

In terms of classification accuracy, the HybridSN model achieved the best accuracies 

in both the training and test areas. In the training area, the HybridSN model achieved 0.96 

OA and mIoU and 0.95 Kappa. Slightly better accuracies (0.97 OA and mIoU and 0.96 

Kappa) were obtained for this model in the test area due to the less-complex urban fea-

tures (buildings and roads) compared to the features of the training area. The 3D CNN 

performed better than the 2D CNN based on the overall accuracy metrics in both the train-

ing and test areas. Looking at the per-class accuracies, the results indicate that water bod-

ies were extracted most accurately due to their significant spectral variation compared to 

other classes. Buildings and roads were also extracted with higher accuracies than dense 

vegetation and bare lands by the three models due to their accurate geometric represen-

tations by the optimized segmentation. As the classes, i.e., buildings and roads are the 

dominant classes in the training and test areas, the Bayesian optimization could better 

identify the boundaries of these objects with the optimal segmentation parameters ob-

tained. A generic accuracy metric (mIoU) was used to optimize the segmentation param-

eters in this study. However, for specific applications, e.g., vegetation studies, a modified 
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accuracy metric (average vegetation class accuracy) can be used to improve the process of 

segmentation, which may acquire better accuracies for the required application. 

Figure 8 illustrates convergence plots showing the progress of Bayesian optimization 

of MRS parameters with 2D CNN, 3D CNN, and HybridSN models. The results indicate 

that the 2D CNN requires the least number of iterations (19) to stabilize during optimiza-

tion, while the 3D CNN and HybridSN required larger numbers of iterations (24 and 25, 

respectively). On the other hand, Figure 9 presents the convergence plots visualizing the 

progress of optimization. It depicts the accuracy (mIoU) of classification after n calls of 

Bayesian optimization. 

 

Figure 6. Classification maps of different CNN methods for the training area: (a) 2D CNN, (b) 3D 

CNN, and (c) HybridSN. 

 

Figure 7. Classification maps of different CNN methods for the test area. 
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Table 4. Classification assessment of different CNN methods used with the proposed model for the 

training and test areas. 

 Training Area Test Area 

Class 2D CNN 3D CNN HybridSN 2D CNN 3D CNN HybridSN 

Buildings 0.94 0.94 0.97 0.95 0.96 0.97 

Roads 0.98 0.96 0.94 0.98 0.98 0.98 

Grass Land 0.93 0.93 0.95 0.93 0.91 0.94 

Dense Vegetation/Trees 0.93 0.96 0.94 0.9 0.91 0.95 

Water Body 0.98 0.97 0.98 0.98 0.98 0.99 

Bare Land 0.88 0.92 0.98 0.93 0.95 0.98 

OA 0.94 0.95 0.96 0.94 0.95 0.97 

Kappa 0.92 0.94 0.95 0.93 0.94 0.96 

mIoU 0.94 0.95 0.96 0.94 0.95 0.97 

 

(a) 

 

(b) 

Figure 8. The learning curve of the proposed model with HybridSN backbone model: (a) training 

dataset, (b) test dataset. 
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5.3. Performance Comparison with Benchmark Models 

The proposed model’s performance was assessed based on the comparison with ex-

isting benchmark approaches involving the pixel-wise Patch CNN, Center OCNN, Ran-

dom OCNN, and Decision Fusion. The base CNN and network hyperparameters for the 

object-based methods were the same. The same training data were employed to train the 

benchmark models and measure their validation performance. 

Figures 10 and 11 show the classification maps obtained for the training and test areas 

using different classification models. The result of Patch CNN contains a “salt-and-pepper 

effect” more than the other methods because it processes the image data at the pixel level. 

This method also misclassified buildings as roads more than the other methods, indicating 

that object-level features help to separate these two classes more effectively than using 

pixel-level features. In object-based methods, salt-and-pepper noise is significantly de-

creased due to image segmentation and the use of majority voting for classification. How-

ever, over-segmentation and using small scales may also lead to classification results with 

salt-and-pepper noise. As a result, segmentation optimization can help to keep this type 

of noise to a minimum. Both Center OCNN and Random OCNN produced classification 

maps with less speckle noise, especially within building objects due to the fact of using 

majority voting for obtaining the objects’ class labels. However, the former method is 

more accurate in separating adjacent buildings. The Decision-Fusion method obtained re-

sults with less noise; however, it has worse smoothness in the boundaries of buildings and 

roads, especially for complex objects. The proposed model combines the advantages of 

low salt-and-pepper noise, accurate separation of adjacent buildings, and accurate bound-

ary identification. 

The accuracy of classification maps was measured by OA, Kappa, and mIoU at the 

pixel level. Tables 5 and 6 summarize the measured accuracies for different methods in 

training and testing areas. The Patch CNN achieved the worst accuracy of 0.89 OA and 

Kappa and 0.86 mIoU in the training area and slightly better accuracy in the test area of 

0.93 OA and Kappa and 0.91 mIoU. The Decision-Fusion method performed almost the 

same as the Patch CNN. The methods that rely on context patches show that the Center 

OCNN achieved better classification accuracy than the Random OCNN in both the train-

ing and test areas. For example, based on mIoU, the Center OCNN achieved 0.93 com-

pared to 0.90 for the Random OCNN in the training area. In the test area, the two methods 

achieved 0.95 and 0.93 mIoU, respectively. The proposed method, on the other hand, 

achieved the best accuracy compared to other methods. In the training area, it achieved 

0.96 OA, 0.95 Kappa, and 0.96 mIoU. In the test area, the accuracies were slightly better at 

0.97 OA, 0.96 Kappa, and 0.97 mIoU. 

Table 5. Overall accuracy and per-class accuracies of the proposed and benchmark classification 

methods based on samples from the training area. 

Class Patch CNN Center OCNN Random OCNN Decision Fusion Proposed 

Buildings 0.85 0.96 0.85 0.84 0.97 

Roads 0.85 0.87 0.83 0.83 0.94 

Grass Land 0.91 0.95 0.94 0.8 0.95 

Dense Vegetation/Trees 0.93 0.93 0.94 0.84 0.94 

Water Body 0.96 0.98 0.98 0.93 0.98 

Bare Land 0.93 0.98 0.98 0.89 0.98 

OA 0.89 0.93 0.9 0.89 0.96 

Kappa 0.86 0.91 0.87 0.88 0.95 

mIoU 0.89 0.93 0.9 0.89 0.96 
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Table 6. Overall accuracy and per-class accuracies of the proposed and benchmark classification 

methods based on samples from the test area. 

Class Patch CNN 
Center 

OCNN 

Random 

OCNN 

Decision Fu-

sion 
Proposed 

Buildings 0.9 0.96 0.96 0.92 0.97 

Roads 0.91 0.93 0.94 0.89 0.98 

Grass Land 0.89 0.94 0.89 0.9 0.94 

Dense Vegetation/Trees 0.96 0.96 0.93 0.94 0.95 

Water Body 0.99 0.97 0.98 0.98 0.99 

Bare Land 0.97 0.98 0.98 0.95 0.98 

OA 0.93 0.95 0.94 0.93 0.97 

Kappa 0.91 0.94 0.9 0.92 0.96 

mIoU 0.93 0.95 0.93 0.93 0.97 

 

Figure 9. Convergence plots showing the progress of Bayesian optimization of MRS parameters 

with 2D CNN, 3D CNN, and HybridSN models. 
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Figure 10. Classification maps of different methods used in this research for the training area. 
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5.4. Sensitivity Analysis 

5.4.1. Sensitivity Analysis of the Segmentation Parameters 

The segmentation process played a vital role in the proposed classification model and 

its parameters (shape, scale, and compactness), which have a significant effect on the clas-

sification accuracy. In this study, the segmentation parameters were optimized using the 

proposed joint Bayesian optimization approach. However, it is important to investigate 

how each parameter impacts the segmentation quality and ultimately the classification 

accuracy. Figure 12 presents the classification accuracy measured by mIoU based on dif-

ferent segmentation parameter values sampled by the Bayesian optimization method as 

expected improvement regions. As the optimization was performed jointly with the fea-

ture extraction, the results were presented for different base CNN models, namely, 2D 

CNN, 3D CNN, and HybridSN. With all three models, the results indicate that generally 

lower shape and compactness values yield better segmentation quality and classification 

accuracy. However, no systematic pattern was observed for the scale parameter. After n 

calls, the Bayesian optimization directed the search for regions of lower shape and com-

pactness (<0.5). For the scale parameter, the optimal values ranged from 1000 to 5000 with 

no specific optimal region in between. The results highlight that as the area contains ob-

jects of different sizes, the optimal scale could be a small or large value. On the other hand, 

as the area is mostly covered by buildings of regular geometry (rectangular, square), lower 

values of shape and compactness achieved the best segmentation and classification accu-

racy in the area. 

5.4.2. The Effect of Patch Size 

The process of sensitivity analysis was conducted to investigate the effect of patch 

size on the accuracy (mIoU) of the proposed model with different base CNN models. The 

patch sizes varied from 3 × 3 to 9 × 9, with a step size of 2. Table 7 presents the accuracies 

obtained from this experiment. It can be seen that a larger patch size increases the accuracy 

of the models for all the base CNNs [72,73]. The smallest patch size (3 × 3) yielded accura-

cies of 0.93, 0.94, and 0.95 for the models, i.e., 2D CNN, 3D CNN, and HybridSN, respec-

tively. Higher accuracies were obtained with larger patch sizes and the largest patch size 

(9 × 9) achieved accuracies as high as 0.94, 0.95, and 0.97 for the mentioned CNN models, 

respectively. 

Table 7. Accuracy assessment based on mIoU of the proposed classification under different CNN 

models using patch sizes from 3 × 3 to 9 × 9. 

Patch Size 
mIoU 

2D CNN 3D CNN HybridSN 

3 0.93 0.94 0.95 

5 0.93 0.94 0.95 

7 0.94 0.95 0.96 

9 0.94 0.95 0.97 
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Figure 11. Classification maps of different methods used in this research for the test area. 
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Figure 12. Sensitivity analysis on MRS segmentation parameters. 
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5.4.3. Computational Efficiency 

The proposed models were evaluated and compared with benchmark approaches in 

terms of the computational efficiency, as shown in Table 1. All analysis were conducted 

using the libraries (Keras and Tensorflow) within the Python environment (e.g., python 

3.7) and a computer laptop with Radeon Graphics (2.90 GHz), 16.0 GB of memory, AMD 

Ryzen 7 4800H processor, and a 64-bit Windows 11 operating system. The networks’ train-

ing was performed on the CPU. In each method, the processing times of different pro-

cessing stages were calculated including data preparation/preprocessing, image segmen-

tation, model training, and post-processing. As shown in Table 8, the image segmentation 

with its optimal parameters required only 2 s to obtain the image segments from the pro-

cessed images. For the data preparation and preprocessing, all the methods except the 

Center OCNN and Random OCNN methods required 5.3 s. This processing stage re-

quired a longer time for the Center OCNN and Random OCNN as they required addi-

tional processing of extracting segments’ centers or random points within image seg-

ments, respectively. They took about 17.66 and 15.61 s, respectively. Regarding the train-

ing time for the base CNN models, the 2D CNN in Patch CNN, Decision Fusion, and the 

proposed method, their training required 2.27 s. The Center OCNN and Random OCNN 

took much less time to train, 0.001 and 0.003 s, respectively, due to the lower number of 

training image patches. On the other hand, the proposed method with the 3D CNN and 

HybridSN required the longest time to train, 11.13 and 12.14 s, respectively. Adding the 

time required for all the subprocesses, the total time required for each method shows that 

the Patch CNN (7.57 s), followed by the proposed method with 2D CNN (10.57 s), and the 

Decision Fusion (12.57 s) had the lowest time. The Center OCNN and Random OCNN 

had total processing times of 21.661 and 20.613 s, respectively. The proposed methods 

with 3D CNN and HybridSN had the longest time of 23.63 and 24.64 s, respectively. Much 

more efficient implementation of the data preprocessing and post-processing can reduce 

the processing time of the methods that required a longer time. 

Table 8. The computational efficiency of the proposed and benchmark classification models includ-

ing their subprocesses. 
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Patch CNN 2D CNN - 5.3 2.27 0 7.57 

Center OCNN 2D CNN 2 17.66 0.001 2 21.661 

Random OCNN 2D CNN 2 15.61 0.003 3 20.613 

Decision Fusion 2D CNN 2 5.3 2.27 3 12.57 

Proposed 2D CNN 2 5.3 2.27 5 10.57 

Proposed 3D CNN 2 5.5 11.13 5 23.63 

Proposed HybridSN 2 5.5 12.14 5 24.64 

Bayesian Opti-

mization (per it-

eration) 

- - - 13 - 13 

5.5. Discussion 

Very-high-resolution (VHR) satellite images contain complex and heterogeneous ob-

jects which require efficient feature extraction and classification models to convert them 

into meaningful thematic maps. Precise characterization of image objects is critical for ro-

bust representation of spatial contexts. In addition, appropriate feature extraction meth-

ods and the way image patches are extracted from image objects also play a significant 

role in producing accurate thematic maps from VHR images. 
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This study presents a joint optimization of image segmentation and deep feature 

learning for the classification of VHR satellite images. Previous methods applied segmen-

tation optimization independently from deep learning feature extraction, which lacks 

knowledge sharing between the two tasks. Using image segmentation and deep learning 

sequentially or combining them in post-processing can overcome several issues of pixel-

level classification such as “salt-and-pepper” noise, smoothness of object boundary, and 

separation of adjacent buildings. However, joint optimization of segmentation and feature 

extraction can even further improve upon the traditional methods [74]. The proposed 

method is different from those presented in previous works in multiple aspects: (1) jointly 

optimizing the extraction of image objects and feature learning, (2) utilizing hybrid CNN 

models to extract hierarchical features which combine 2D and 3D convolutional opera-

tions, and (3) using transfer leaning to achieve efficient integration of segmentation and 

deep feature extraction. 

In sequential methods, the errors are propagated from one task to another. For exam-

ple, poor segmentation will result in less-accurate classification because the latter task is 

based on the output of the former task. In this case, optimizing the segmentation is highly 

needed [73]. The problem with optimizing segmentation independently from feature ex-

traction is that most deep learning methods utilize image segments as a spatial unit for 

extracting image patches and ultimately learning the image features. Considering seg-

mentation, a separate step may lead to an optimized solution for specific integration work-

flows and not a general optimal solution. With joint optimization, this issue can be over-

come, and the optimal segmentation will always be obtained regardless of the integration 

workflow. In the methods that use post-processing to combine segmentation and classifi-

cation predictions, poor segmentation continues to have a significant impact on the final 

classification. Not sharing the knowledge between the two tasks results in learning fewer 

effective features. Figure 13 shows the improved land-cover extraction depending on the 

proposed OCNN method compared to some traditional methods. 

The pixel-based CNN algorithm that depends on image patches often weakens the 

boundary information of the land use, somewhat like the Gabor filter or morphological 

methods. In these methods, blurred boundaries occur between the classified objects, with 

a loss of useful land features. This problem can be overcome with object-based CNNs. 

Object-based deep learning classification demonstrates a strong ability for classifying 

complex land uses through deep feature representation and maintaining the fine spatial 

details of image objects [45,75]. Accurate segmentation is very important for learning ef-

fective spatial features that can easily distinguish different land-use classes, especially for 

methods that are based on context patches which are extracted based on the object center 

or random points within objects. The way these objects are created decides the image 

patches that are used for feature extraction by the deep learning models. In optimal seg-

mentation, there is a need to ensure that small objects are segmented but also to prevent 

large objects from being over-segmented. Furthermore, the parameters of the MRS algo-

rithm can be used to control the boundary of image objects through shape and compact-

ness. 

However, object-based CNNs require innovative use of appropriate functional units 

and convolutional processes based on image segmentation. The methods Center OCNN 

and Random OCNN share the same problem. The center point or the generated random 

points may exist near the boundary of the object due to the complexity of the object’s 

outline shape. This will lead to some undesirable deep features that might be involved 

and thus severely affect classification. In Random OCNN, the effect of this problem can 

be decreased by using several random points and taking the majority voting among the 

class labels predicted at those random points. Nevertheless, the computation efficiency of 

the model can be significantly increased. Some studies have attempted to overcome this 

and related issues by using the appropriate distribution of voting points within image 

objects with geometry conditions or advanced analysis of convolutional processes. 
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In this study, some parameters have been selected experimentally such as patch size. 

These parameters are related to image segmentation in object-based deep learning classi-

fication. Therefore, it is significant to be optimized jointly with the segmentation parame-

ters. This can be investigated in future research either by our proposed Bayesian optimi-

zation approach or any other suitable optimization methods. 

 

Figure 13. The improved land-cover extraction depending on the proposed OCNN method com-

pared to traditional methods. 

6. Conclusions 

In remote sensing imagery, urban land-use information is illustrated as high-level 

semantic functions or geospatial patterns. As a result, urban land-use/land-cover extrac-

tion from remotely sensed sources requires methods with the efficient capability of spec-

tral, spatial, and contextual feature learning. In recent years, deep learning methods such 

as CNN have shown great success in feature extraction from remotely sensed images. 

However, there is a problem with these methods for the accurate extraction of object 
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boundary information due to the use of rectangularly shaped image patches. OBIA is an-

other image classification paradigm that is widely used to extract features from remotely 

sensed data and perform land-use classification at the object level. In addition, several 

new research works combined the two methods into a single approach, commonly known 

as object-based CNN. The major advantage of such an integrated approach is to effectively 

learn image features while accurately characterizing the boundary of objects through im-

age segmentation. 

This research aimed to use a Bayesian optimization technique to jointly optimize 

MRS segmentation parameters and learn the weights of the CNN network for land-cover 

classification in urban areas from VHR satellite images. The classification workflow also 

included the application of a decision-level fusion based on the best segmentation output 

and the use of Gaussian filtering to further improve the quality of classification results. In 

addition, several CNN variations including 2D CNN, 3D CNN, and HybridSN were in-

vestigated to show how the proposed workflow is affected by these base feature extraction 

methods. To investigate the performance of the proposed classification model, a compar-

ison with several recently developed benchmark models was considered. The validation 

of the proposed model was based on two subsets (training and test) taken from a 

Worldview-3 satellite image over UPM campus located in Selangor province, Malaysia 

(101°43′1.2172” E, 3°0′8.0181” N). In both areas, buildings and roads were the dominant 

land-cover classes. The quality of segmentation was measured by AFI and QR while the 

classification accuracy was measured by OA, Kappa, and mIoU. 

The major findings of the research are as follows: 

 Bayesian optimization could find comparable optimal MRS parameters for the train-

ing and testing areas with excellent quality measured by AFI (0.046, −0.037) and QR 

(0.945, 0.932). The best scales were 4705 and 4617 for the training and test areas, re-

spectively. The best shape and compactness values were 0.2 and 0.1 for the training 

area and 0.14 and 0.1 for the test area. 

 For the proposed classification workflow, the HybridSN model achieved the best re-

sults compared to 2D and 3D CNNs. In the training area, the HybridSN model 

achieved 0.96 OA and mIoU and 0.95 Kappa. Slightly better accuracies (0.97 OA and 

mIoU and 0.96 Kappa) were obtained for this model in the test area. The 3D CNN 

layers and combining 3D and 2D CNN layers (HybridSN) yielded slightly better ac-

curacies than the 2D CNN layers regarding geometric fidelity, object boundary ex-

traction, and separation of adjacent objects. 

 A comparison of the proposed model with several benchmark methods showed that 

the proposed model achieved the highest accuracy, reaching 0.96 OA, 0.95 Kappa, 

and 0.96 mIoU in the training area and 0.97 OA, 0.96 Kappa, and 0.97 mIoU in the 

test area. 

 Sensitivity analysis on patch size used for CNN showed that higher accuracies could 

be obtained with larger patch sizes and the largest patch size (9 × 9) achieved accura-

cies as high as 0.94 for 2D CNN, 0.95 for 3D CNN, and 0.97 for HybridSN. 

 The computational efficiency assessment of the presented model and the imple-

mented benchmark methods showed that all the methods could be trained on a nor-

mal computer with no GPU in a relatively short time (<25 s for the most complex 

model). 

According to the results listed above, the proposed classification model can serve as 

an efficient tool for extracting land-cover information from VHR satellite imagery. In ad-

dition, the proposed model can be used for a wide range of urban and environmental 

applications that are based on remote sensing data or use land-cover products as a data 

layer. However, further improvements can be made to jointly optimize patch size and 

other network-related parameters with the MRS parameters and feature extraction mod-

els. 
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