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Abstract: Urban fringe areas are locations that compete between urban development and ecological 

protection; their ecological spatial boundaries face the risk of erosion and degradation. Previous 

studies have so far focused on the core area inside the ecological space. However, research on the 

ecological boundary zone has so far been insufficient. The delineation of ECR is based on large-scale 

administrative units, while it is less precise at the level of small-scale rural areas. This study selected 

Paifang village in Nanjing City as the study area and built a Bayesian network model to predict the 

ecological space boundary for 2030. The study also identified the driving factors and their mecha-

nisms affecting the changes in the rural ecological space in an urban fringe area and put forward 

targeted suggestions for its protection. The results suggested that: (1) The ecological space of Paifang 

village will expand in 2030. Specifically, agricultural land has the greatest potential for restoration 

of ecological space, followed by shrubland and grassland, and water bodies and their surrounding 

areas are potentially shrinking ecological space. (2) Artificial construction activities will disturb the 

ecological space, with the change in agricultural land being the main factor affecting the change in 

the ecological space boundary. (3) The Ecological Conservation Redline has a significant effect on 

the protection of the rural ecological space. The results of this study can provide a reference for rural 

planning and the formulation of protection policies in urban fringe areas. 

Keywords: urban fringe area; boundary prediction; Bayesian network; ecological space; Ecological 

Conservation Redline  

 

1. Introduction 

Rural areas are settlements where various production and living activities are carried 

out and are formed under the combined effects of artificial construction and natural evo-

lution [1]. Currently, approximately 510 million people in China live in rural areas, ac-

counting for 36.11% of the country's total population [2]. In terms of area, rural areas ac-

count for more than 94% of China's land area and are an important aspect of national land 

spatial planning [3]. The development of the rural environment directly affects the level 

of the overall environment for human settlement. A village is an ecological unit with basic 

functions of material circulation and energy flow [4] and is also an important ecological 

source in the regional ecological network. Villages undertake ecosystem service functions 

such as water conservation, soil conservation, material exchange, and promotion of a vir-

tuous cycle of the ecosystem [5]. In the context of rapid urbanization in China, the coun-

tryside needs to provide ecosystem services to the city. However, with the development 

of the rural economy, activities such as construction expansion, and the development of 

tourism have caused the villages to face severe risks of damage to the ecological environ-

ment and ecological function degradation [6–8]. 
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The Chinese government proposed the Rural Revitalization Strategy in 2017 to solve 

the ecological dilemma faced by rural development; it aims to solve the problems of eco-

logical space occupation, ecological damage, and environmental pollution caused by dis-

orderly, excessive, and scattered development [9]. In the same year, the Provincial Spatial 

Planning Pilot Program was issued, which proposed to scientifically delineate the spatial 

pattern of "Three Districts and Three Lines" in urban and rural areas [10], which was offi-

cially incorporated into the National Land Spatial Planning System in 2019. Here, the 

"Three Districts" refer to the urban, ecological, and agricultural spaces, and the "Three 

Lines" correspond to the three control lines {Aalders, 2008 #44} of the urban development 

boundary, the Ecological Conservation Redline (ECR), and permanent basic farmland 

[11]. Among them, ecological space is based on nature and is an area that provides eco-

logical products and services as the leading function, thereby playing an important role 

in regulating, maintaining, and ensuring regional ecological security [12]. The ECR is an 

area boundary line for areas with special important ecological functions and ecologically 

high sensitivity within ecological spaces that need to be strictly protected and prohibited 

from development [13]. 

Previous studies have so far focused on core areas inside the ecological space of ur-

ban fringe areas. However, research on ecological boundary zones has been insufficient. 

A rural ecological space is the basis of production and living space [14], and its stability is 

an important guarantee for maintaining the ecological security pattern while also contrib-

uting to the protection of rural characteristic landscape resources [15,16]. In recent years, 

in the practice of the Rural Revitalization Strategy, production–living–ecological (PLE) 

spaces have become a research hotspot [17,18]. However, related research mostly focuses 

on the coupling relationship between the structure and function of a PLE space [19,20], 

with a pertinent focus on ecological spaces. Compared with cities, different types of spaces 

in rural areas are highly integrated into functions [21]. For example, orchards and tea 

fields have dual functions of ecology and production [22,23]. They are not only productive 

spaces with high economic value, but are also complex ecosystems with high vegetation 

coverage and species richness, so their ecological function value cannot be ignored. There-

fore, a rural ecological space is not purely ecological land but includes important ecologi-

cal areas such as ECR permanent reserves, ecological planting industry areas, and ecolog-

ical service function areas [24]. Compared with the strict protection system in the core area 

of the ecological space delineated by the ECR, the erosion of ecological space outside the 

red line has not been prioritized. Considering these facts, the retreat of the ecological space 

boundary will have an impact on the ecological area of the internal core, which is not 

conducive to the construction of the ecological security pattern. However, the ecological 

space at the junction of agricultural and forestry land is usually a symbiotic area of differ-

ent habitat types where the energy flow is more active and has a higher ecological value 

[25]. Therefore, in rural space planning, attention should be paid to the overall protection 

of areas within the rural ecological space boundary. Because of the unique location, vil-

lages in urban fringe areas are important in the competition between urban development 

and ecological protection, the flow of urban and rural elements is extremely frequent, the 

risk of erosion of the ecological space boundary is more serious, and the sustainable de-

velopment of the ecological space is also faced with bigger challenges. Therefore, under-

standing and identifying the evolution of rural ecological spaces in urban fringe areas and 

their driving factors have become crucial issues. 

Currently, most research on ecological space boundaries has focused on identifying 

important ecological function areas and ecologically sensitive and fragile areas [26,27]. For 

example, The ECR [28] is usually based on a larger range of administrative regions, mak-

ing it unsuitable for multi-scale ecological space protection in practical scenarios. Within 

the context of small-scale ecological protection, such as in villages, the microhabitats in 

the ecological space are often ignored [29], and the boundaries of the ecological space are 

left ambiguous [30]. Additionally, the ECR only protects the core area within an ecological 

space, rather than the overall ecological space [31]. Constructing the minimum cumulative 
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resistance (MCR) model according to the "source–sink" theory, one can realize the predic-

tion of the rural ecological spatial pattern [32]. However, this method is an idealized sim-

ulation of ecological processes. On the one hand, this method does not consider the char-

acteristics of the dynamic changes in natural and artificial factors over time. The resistance 

surface constructed is an evaluation of the current ecological conditions, and predicts the 

form of the ecological space at an uncertain time in the future. This cannot reflect the evo-

lutionary characteristics of ecological space over time. In addition, various natural and 

artificial factors change dynamically with time, which will also have a greater impact on 

the prediction results. However, it is still worth noting that rural ecological space is 

formed under the competition of different functional spaces. Considering only the reasons 

for changes in an ecological space will lead to one-sided results. Considering the above-

mentioned shortcomings, this paper attempts to introduce a land-use pattern prediction 

model to simulate the evolution of ecological space and explore the conflict and transfor-

mation relationship between different land functions and the evolutionary process of the 

ecological space by predicting areas at risk of potential ecological loss and areas of poten-

tial ecological restoration [33]. 

Traditional land-use pattern prediction models, such as Markov chains [34,35], arti-

ficial neural networks (ANN) [36,37], CLUE-S [38,39], cellular automata (CA) [40,41], the 

future land-use simulation (FLUS) model [42], the multi-agent system (MAS) [43], etc., 

belong to the black box model [44]. These models generally need to be combined with 

linear regression analysis to make statistical and logical predictions [45,46], but they can-

not reflect ecological processes and changing regularity regarding land-use type. The 

Bayesian network (BN) model is an uncertain knowledge representation and reasoning 

model based on probability and graph theory. Bayesian probability is the underlying 

mathematical principle on which the model operates [47], where it is essential that the 

observer combines prior knowledge and collected evidence data to express the prediction 

of the possibility of an unknown event in the form of probability. At present, BN models 

are widely used in the simulation and prediction of land-use change [48–50], early ecolog-

ical risk warning [51,52], and ecosystem service assessment [53,54]. Compared with the 

black box model, the BN model has a good graphical description method and a priori 

knowledge integration ability, which can not only demonstrate the complex relationship 

between the influencing factors [55] but can also support reverse reasoning to perform 

diagnostic analysis on the prediction results [56]. The BN model integrates ecological 

knowledge and dynamic changes in regularity regarding land-use and combines the data 

on the current situation of influencing factors for parameter learning [57], which can real-

ize the prediction of the future rural ecological space boundary. 

This study selected Paifang Village, a suburban village in Nanjing city, as the study 

area. This study aimed to explore the evolution of rural ecological space boundaries in the 

urban fringe area and the mechanism of the internal driving factors. The study learns from 

the data from 2010 and 2020 by building a BN prediction model to predict the ecological 

space boundary in 2030. On this basis, the study combined the comparative analysis of 

ecological space boundaries in 2020 and 2030 to identify potential areas of ecological loss 

and ecological restoration and demonstrated the protective effect of the ECR on the rural 

ecological space. The research results can provide a reference for rural space planning and 

ecological space protection. 

2. Materials and Methods 

The BN model framework constructed in this paper is presented in Figure 1. The 

period of the research was set to 10 years, and the study used historical data (2010), current 

data (2020), and forecasted data (2030). Firstly, according to the ecological characteristics 

of the village itself and the law of land-use change, the appropriate influencing factors 

were selected to construct the rural ecological spatial boundary prediction index system. 

Relevant prior knowledge was then integrated to build a network model structure. Data 

from 2010 and 2020 were imported into the network model for parameter learning, and a 
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conditional probability table (CPT) was subsequently obtained. The current status data 

were imported into the model for Bayesian inference to predict the ecological space 

boundary in 2030. The forecast results were finally compared with the data in 2020, and 

the changes in the ecological space of the village and potential ecological risks were ana-

lyzed in detail. 

In this paper, the Bayes Net Toolbox (BNT) based on MATLAB R2018a software and 

Netica were used to construct the BN model. Among them, BNT is a BN learning software 

package developed based on MATLAB language [58], and provides models such as con-

ditional probability distribution, network reasoning, parameter learning, and structure 

learning, while Netica is a BN analysis software developed based on the Java language. It 

has a strong graphical ability and can perform diagnostic and sensitivity analyses [59]. 

 

Figure 1. The flowchart of the methodology. 

2.1. Study Area and Data Source 

Paifang Village is an administrative village in Jiangning District, Nanjing City, 

Jiangsu Province, with a total population of 2,154 (Figure 2). Located in the southeastern 

suburbs of the city, it covers an area of 8.2 square kilometers. The village is a typical "land-

scape–pastoral" rural village in the hilly area of southeastern China. Surrounded by tea 

fields and bamboo forests, it has abundant resources and a landscape spatial pattern of 
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"mountain–water–tea–forest–village". The western area of Paifang Village is dominated 

by farmland, scattered with architectural settlements and ponds. Architectural settle-

ments, tea fields, and hilly woodlands are distributed on both sides of the main road run-

ning along the east–west direction in the central and eastern areas. Paifang Reservoir and 

Yanhu Reservoir are two larger water bodies located in the center of the village and south-

east of the village, respectively. According to the ECR delineated by Nanjing City in 2018 

[60], the ecological woodland on the north and south sides of the village is located within 

the ecological red line, with water conservation being the main ecological function. 

Paifang Village is a typical suburban village, only 15 km away from the main urban area 

of Nanjing, allowing for a continuous interaction of urban–rural elements. This occurs 

while the village retains its rural characteristics, despite being greatly threatened by urban 

expansion. However, in recent years, with the development of a rural economy featuring 

tea culture, tea fields have encroached on ecological woodland, increasing the risk of soil 

erosion in the region. At the same time, considering the fact that Paifang Village is a fa-

mous tourist destination in the suburbs of the city, the rapid development of rural tourism 

has brought about a certain degree of over-construction, which may lead to the deteriora-

tion of the ecological environment. 
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Figure 2. The geographical location of study area. 

The remote sensing image data used in this study were procured from the multispec-

tral images carried by Gaofen-2, including the data of the study area in 2010 and 2020. 

According to the LUCC land-use classification system of the Institute of Geographical Sci-

ences and Natural Resources Research, Chinese Academy of Sciences, the land-use types 

are divided into six categories: construction land, woodland, water, shrubland and grass-

land, agricultural land, and bare land. After the interpretation of ENVI5.3, combined with 

field investigation and manual correction, the land-use maps of Paifang Village were ob-

tained for 2010 and 2020 (Figures 3 and 4). The land-use types of woodland, water, shrub-

land, and grassland were then combined to obtain the rural ecological spatial distribution 

map. DEM and data on buildings, roads, water, woodland, and other ground features 

were derived from the surveying and mapping data provided by the Paifang Village Man-

agement Committee. In addition, the Nanjing ECR data were downloaded from the offi-

cial website of the Nanjing Municipal Bureau of Ecology and Environment (http://hbj.nan-

jing.gov.cn/hbyw/zrst/201804/t20180410_615032.html, accessed on 11 May 2022). 

 

Figure 3. Land use of Paifang Village in 2010. 

 

Figure 4. Land use of Paifang Village in 2020. 

http://hbj.nanjing.gov.cn/hbyw/zrst/201804/t20180410_615032.html
http://hbj.nanjing.gov.cn/hbyw/zrst/201804/t20180410_615032.html


Land 2022, 11, 1886 7 of 24 
 

2.2. Bayesian Network Node Variable Selection 

There are usually three types of node variables in BN: (1) input layer node variables, 

which are the initial driving factors; (2) intermediate layer node variables, which are used 

to link input variables and output variables to express the mapping relationship between 

input and output; and (3) the output layer variable, which is usually the final problem to 

be analyzed, or the goal of the solution. Combined with previous research and field in-

vestigations, this study screened the factors that cause changes in the ecological space of 

Paifang Village and used them as node variables. The factors were divided into five types: 

spatial, ecological suitability, policy, land-use expansion, and target (Table 1). The spatial, 

ecological suitability, and policy factors were used as the node variables of the input layer, 

whereas the land-use expansion was used as the node variable of the middle layer; finally, 

the target factor was used as the node variable of the output layer. 

Table 1. Index of rural ecological space prediction model. 

Variable layer Variable type Index 

Input layer 

Space factor 

Altitude 

Slope 

Distance from water 

Distance from roads 

Distance from buildings 

Distance from woodland 

Ecological suitability factor 
Ecological sensitivity 

Importance of ecosystem service 

Policy factor ECR 

Intermediate layer Land-use expansion  

Agricultural expansion  

Construction expansion 

Ecological expansion 

Output layer Target factor Potential ecological space 

In terms of spatial factors, six indicators were selected for the study: altitude, slope, 

distance from water, distance from roads, distance from buildings, and distance from 

woodland. Among them, altitude can reflect the environmental conditions, such as mois-

ture and heat in the area. Different moisture and heat characteristics at different altitudes 

will have varied impacts on the growth of natural vegetation and crops. “Slope” is a basic 

landform feature and is also an important cause of surface runoff and nutrient flow affect-

ing agricultural cultivation and natural vegetation growth [61]. “Distance from water” can 

reflect the irrigation and drainage conditions; at the same time, it is related to ecological 

sensitivity to a certain extent and will have an impact on the changes in agricultural and 

ecological land [62]. “Distance from roads” is closely related to artificial construction ac-

tivities. The road is an important driving force for the expansion of construction land, not 

only affecting the ecological space pattern and land use but also having a certain hindering 

effect on the expansion of ecological land. “Distance from buildings” also reflects the like-

lihood of the occurrence of the activity of human construction. The building-concentrated 

areas in the countryside are usually those settlements where the villagers live. The con-

struction of the settlement area expands in the form of concentric circles with the possibil-

ity of occupying ecological land in the process. The ecological suitability factors primarily 

include ecological sensitivity and the importance of ecosystem services. Among them, 

ecological sensitivity reflects the sensitivity of the ecosystem to the disturbance of various 

natural and human activities [63]. Ecological woodlands and water source areas are highly 

ecologically sensitive areas which, if excessively disturbed, will easily lead to ecological 

problems. Ecological service function refers to the efficiency of ecosystems and their eco-

logical processes to maintain the natural environment conditions on which human beings 

depend on and provide continuous services for [64]. The key service functions for the 
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urban fringe areas are water conservation capacity and soil conservation capacity [65]. In 

the selected case in this study, the policy factor considered is the ECR, a strict control 

boundary delimited by law to focus on protecting important or fragile ecological spaces 

such as ecologically functional and ecologically sensitive areas. Therefore, the ECR has a 

restrictive effect on the expansion of agriculture and construction land to a certain extent. 

Three indicators were selected in terms of land-use expansion: agricultural expansion, 

construction expansion, and ecological expansion. The mutual competitive relationship 

between these three indicators can directly reflect changes within the ecological space.  

2.3. Data Processing  

DEM and data of buildings, roads, waters, and woodlands were input into the 

ArcGIS 10.2 software, and spatial analysis and distance tools were used to obtain the spa-

tial factor data. The ecological suitability factor data are then obtained, and this process 

includes ecological sensitivity evaluation and the importance of ecosystem service value 

(ESV) evaluation [66,67]. The ecological sensitivity evaluation refers to the ability of eco-

logical factors to adapt to external disturbances without a loss in ecological integrity [68]. 

In this study, we use the analytic hierarchy process (AHP) [69] to comprehensively eval-

uate the ecological sensitivity of factors such as terrain, water systems, land use, and veg-

etation and determine their weight. Then, in ArcGIS software, according to the evaluation 

index system, each factor is graded and assigned. Finally, the rasterized ecological sensi-

tivity evaluation results are obtained after the weighted sum is calculated. EVS evaluation 

is a comprehensive evaluation based on the characteristics of Paifang Village, combined 

with water conservation capacity and soil conservation capacity [70]. In this study, the 

water balance equation is used to calculate the water conservation amount [71], and its 

formula is as follows: 

𝑇𝑄 = ∑（𝑃𝑖 − 𝑅𝑖 − 𝐸𝑇𝑖）

𝑗

𝑖=1

× 𝐴𝑖 × 103 (1) 

where Q is the total water conservation (m³); Pi is the rainfall (mm); Ri is the surface runoff 

(mm); ETi is the evapotranspiration (mm); A is the area of the ecosystem of type i (km2); i 

is the i-th ecosystem type in the study area; and j is the number of ecosystem types in the 

study area. 

𝑅 = (𝑃 × 𝛼) (2) 

where R is the surface runoff(mm); P is the annual average rainfall (mm); and α is the 

average surface runoff coefficient. 

The surface runoff Ri is obtained by multiplying the rainfall by the surface runoff 

coefficient. The surface runoff coefficient describes the degree to which rainfall is con-

verted into runoff. The coefficient accounts for the impact of ecosystems on rainfall and 

runoff. 

Soil retention capacity is the ability of ecosystems (e.g., forests, grasslands, etc.) to 

reduce soil erosion caused by water erosion through their structure and processes. In this 

paper, the revised universal soil loss equation (RUSLE) [72] is used to conduct the evalu-

ation, and the formula is as follows: 

𝐴𝑐 = 𝑅 × 𝐾 × 𝐿𝑆 × (1－𝐶) (3) 

where Ac is the soil conservation amount; R is the rainfall erosivity index; K is the soil 

erodibility factor; LS is the length-slope factor; and C is the surface vegetation coverage 

factor. 

We reclassified the evaluation results of water conservation capacity and soil conser-

vation capacity, carried out AHP and weighted superposition, and finally calculated the 

ESV importance grid map. 

Finally, the data obtained from the analysis and land-use maps from 2010 and 2020 

were subsequently rasterized. The resultant raster maps were then superimposed and 
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analyzed to characterize land-use expansion, specifically agricultural, construction, and 

ecological expansion. After acquiring the node variable data, taking the administrative 

boundary of Paifang Village as the scope, 38,883 random sample points were generated 

according to the area ratio. The sample points were superimposed on the data grid map 

to obtain the element variable values of each sample point. Considering BNT can only 

handle discrete variables, the values of each variable were discretized into two to three 

classes (Table 2).  

Table 2. Discrete classification table of variables. 

Variable 

type 
Index 

Value 

type 

Classification code 

1 2 3 

Space factor 

Altitude 
Continu-

ous 
13-49.8m 49.8-99.6m 99.6-197m 

Slope 
Continu-

ous 
0-5 5-15 ＞15 

Distance from water 
Continu-

ous 
0-50m 50-200m ＞200m 

Distance from roads 
Continu-

ous 
0-50m 50-200m ＞200m 

Distance from 

buildings 

Continu-

ous 
0-50m 50-200m ＞200m 

Distance from 

woodland 

Continu-

ous 
0-50m 50-200m ＞200m 

Ecological 

suitability 

factor 

Ecological sensitiv-

ity 

Continu-

ous 

Low  

sensitivity 

Medium  

sensitivity 

High  

sensitivity 

Importance of ESV  
Continu-

ous 

Generally  

important 

Moderately  

important 

Most 

 important 

Policy factor ECR Discrete 
Inside the 

ECR 

Outside the 

ECR 
- 

Land-use ex-

pansion  

Agricultural expan-

sion  
Discrete 

Expansion 

area 

Non-expan-

sion area 
- 

Construction ex-

pansion  
Discrete 

Expansion 

area 

Non-expan-

sion area 
- 

Ecological expan-

sion  
Discrete 

Expansion 

area 

Non-expan-

sion area 
- 

Target factor 
Potential ecological 

space 
Discrete 

Ecological 

space 

Non-ecologi-

cal space 
- 

2.4. Bayesian Network Model Structuring and Parameter Learning 

A complete BN model must include the network structure and parameters, in which 

the structure must be a directed acyclic graph (DAG), and its pointing relationship repre-

sents the interdependence between different variables. The parameters are CPT, used to 

indicate the strength of the causal relationship between nodes. The BN structure may be 

expressed as: 

𝑆 =  (𝑉, 𝐿) (4) 

where, S represents the BN structure. Here, S is composed of node variable set V (V = {V1, 

V2, V3, …, Vn}) and directed edge L (L = ViVj|Vi,Vj,∈V). Among them, the node variable 

Vi is the abstract representation of the research problem, and the directed edge L is the 

dependency or causal relationship between the node variables Vi、Vj. 
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The parameters between the node variables are the probability distribution sets re-

flecting the local correlation between the nodes, with the following expression: 

𝑃 =  {𝑃(𝑉}𝑖|𝑉1, 𝑉2, 𝑉3, … , 𝑉𝑖−1 ), 𝑉𝑖 ∈  𝑉 (5) 

where, if Vpi is used to represent the parent node set of variables Vi, the joint probability 

distribution of V is: 

𝑃(𝑉 )  =  𝑃(𝑉1, 𝑉2, 𝑉3 , … , 𝑉𝑛)  = ∏ 𝑃(𝑉𝑖|𝑉𝑝𝑖)

𝑛

𝑖−1

 (6) 

The construction of the BN model network may be obtained through data training 

for structure learning, including greedy search, the K2 algorithm, the hill-climbing algo-

rithm, etc. It may also be directly provided by expert experience. However, the relation-

ship between factors obtained through structural learning is essentially a statistical rela-

tionship [48] which cannot explain its internal scientific connotation and may be different 

from the real causal relationship. Therefore, this study adopts the expert experience 

method to construct the Bayesian causality network and uses BNT to complete the coding 

in MATLAB (Figure 5). 

 

Figure 5. Bayesian network model structure. 

The purpose of BN parameter learning is to learn the conditional probability distri-

bution of each node under the condition of a known network structure. In the case of 

complete data, this may be calculated using the maximum likelihood estimation (MLE). If 

the data are partially missing, it may be calculated using the expectation–maximization 

(EM) algorithm [73]. Considering the training data were complete in the BN setting, the 

MLE was used for parameter learning in this study. Discretized spatial factors, ecological 

suitability evaluation factors, land-use expansion factors, and policy factor data in 2010, 

as well as the ecological spatial data in 2020 (Figure 6), were used as training samples for 

parameter learning in MATLAB. The complete CPT was obtained after the training. The 

training sample data were finally imported into Netica software to visualize the results 

(Figure 7). 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

  

(m)   
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Figure 6. Discrete training sample data. (a) Altitude; (b) Slope; (c) Distance from water (2010); (d) 

Distance from roads (2010); (e) Distance from buildings (2010); (f) Distance from woodland (2010); 

(g) Ecological sensitivity (2010); (h) Importance of SEV (2010); (i) ECR; (j) Agricultural expansion 

(2010-2020); (k) Construction expansion (2010-2020); (l) Ecological expansion (2010-2020); (m) Eco-

logical space (2020). 

 

Figure 7. Training result of BN model. 

2.5. Bayesian Network Inference  

After obtaining the network structure and CPT, new evidence samples were loaded, 

and the node value probability of the target variable and the maximum a posteriori prob-

ability (MAP) explanation were calculated. First, the spatial factor, ecological suitability 

factors, and policy factor data for 2020 (Figure 8) were loaded into the BN model as new 

evidence samples, and the Bayesian inference engine was used to predict the probability 

distribution of the target variable, which is the ecological space in 2030. Then, the MAP 

explanation of the probability distribution was calculated to determine whether a sample 

point is located within the ecological space. Finally, the resultant data of the calculation of 

all the sample points were imported into ArcGIS for analysis, and the ecological space 

boundary was displayed for 2030. 

   
(a) (b) (c) 

   
(d) (e) (f) 
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(g) (h) (i) 

Figure 8. Discrete evidence sample data. (a) Altitude; (b) Slope; (c) Distance from water (2020); (d) 

Distance from roads (2020); (e) Distance from buildings (2020); (f) Distance from woodland (2020); 

(g) Ecological sensitivity (2020); (h) Importance of ESV (2020); (i) ECR. 

2.6. Sensitivity and Diagnostic Analyses  

Sensitivity and diagnostic analyses can realize the quantitative analysis of the rela-

tionship between the variables in the BN model [74]. Sensitivity analysis is used to meas-

ure the influence of the input variable on the target variable. It is carried out through the 

forward-reasoning ability of BN, and the influence is expressed by variance reduction. 

The calculation process is presented in Formula (4). The greater the degree of variance 

reduction, the stronger the influence of the input variable on the target variable [75]. The 

diagnostic analysis set a specific state for the target variable, and the impact factor on the 

target variable was evaluated by observing its probability change. The results are gener-

ally expressed by the degree of change in the probability value. The greater the change in 

the probability value, the stronger the effect of the influence factor on the target variable. 

𝑉𝑅 = 𝑉(𝐸𝑆) − 𝑉(𝐸𝑆|𝐼) = ∑ 𝑃(𝑠) × (𝑠 − 𝐸[𝐸𝑆])2 − ∑ 𝑝(𝑠|𝐼)𝑠 × (𝑠 − 𝐸[𝐸𝑆|𝐼])2

𝑆𝑆

 (7) 

where VR represents the variance reduction; V(ES) represents the variance of variable ES; 

V(ES)|I represents the variance of variable ES when variable I is known; and s represents 

the state of the output variable. 

3. Results 

3.1. Analysis of Forecast Results  

Based on the information on the ecological space in 2020 (Figure 9) and the predicted 

ecological space in 2030 (Figure 10), the total area of ecological space in 2020 and 2030 are 

3,296,490 m2 and 3,587,175 m2, respectively. From 2020 to 2030, the proportion of the eco-

logical space to the total area in Paifang Village increased from 37.68% to 41.00%, thereby 

demonstrating an expansion. In terms of the changes in the ecological space distribution 

(Figure 11) over the past 10 years, approximately 3,020,850 m2 of the ecological space re-

mained stable, and the local expansion area reached 566,325 m2. However, 275,625 m2 of 

the ecological space was determined to be lost at the same time. 

The relationship between eco-spatial changes and land-use types was additionally 

explored (Figures 12 and 13). The prediction results demonstrated that, on the one hand, 

67.99% of the expanded ecological space was converted from non-ecological land, includ-

ing construction land, bare land, and agricultural land, where a majority was converted 

from agricultural land (382,500 m2). In addition, 32.14% of the newly added ecological 

space was transformed from originally non-ecological space, such as woodland, shrub-

land and grassland, and waterfront areas with better ecological conditions. Among them, 

the ecological space recovery of shrubland and grassland was more remarkable, reaching 

89,100 m2. Moreover, ecological space shrinkage primarily occurred in the water area, 

with an area of up to 191,250 m2, accounting for 65.31% of the total shrinking area within 

the ecological space. Therefore, it may be deduced that the area around the water body of 
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Paifang Village is facing severe ecological problems. Finally, considering the large pro-

portion of its own ecological space, the expansion and shrinkage of the woodland did not 

fluctuate significantly, and the overall ecological status was relatively stable. 

 

Figure 9. Ecological space in 2020. 

 

Figure 10. Ecological space in 2030. 

 

Figure 11. Shrinking and expansion areas of ecological space in 2030. 

 

Figure 12. Shrinking and expansion areas of ecological space in land use. 
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(a) (b)  

Figure 13. Comparison of land-use types in areas of changed ecological space:(a) Shrinking area; 

(b) Expansion area. 

3.2. Results of sensitivity and diagnostic analysis  

3.2.1. Sensitivity Analysis 

In this study, the predicted ecological space of the target variable was used as the 

analysis variable, and Netica was used to conduct the sensitivity analysis on other varia-

bles. The results are presented in Table 3. In terms of spatial factors, the variance reduc-

tions in distance to buildings, distance to the road, distance to water, distance to wood-

land, altitude, and slope were found to be 3.19%, 1.19%, 0.51%, 0.30%, 0.51%, and 0.00%, 

respectively. Therefore, the distance from buildings and roads was determined to have a 

stronger impact on the ecological space, while topography demonstrated a weaker im-

pact. Regarding land-use expansion, the variances of agricultural expansion, construction 

expansion, and ecological expansion were reduced by 2.43%, 5.07%, and 1.13%, respec-

tively. It may be observed that changes in agricultural land and construction land will 

have a strong impact on ecological space. Among them, the effect of the change in agri-

cultural land was found to be the most significant. In addition, in terms of ecological suit-

ability factors, the impact of ecological sensitivity is stronger than that of importance of 

ESV. Finally, the ECR is also a factor that was found to have a strong impact on the eco-

logical space, with a variance reduction of up to 59.56%. 

Table 3. Sensitivity analysis results. 

Variable type Index Variance Reduction /% 

Space factor 

Altitude 3.19 

Slope 1.19 

Distance from water 0.51 

Distance from roads 0.30 

Distance from buildings 0.51 

Distance from woodland 0.00 

Ecological suitability fac-

tor 

Ecological sensitivity 57.67 

Importance of ESV 5.49 

Policy factor ECR 59.56 

Land-use expansion  

Agricultural expansion  2.43 

Construction expansion  5.07 

Ecological expansion  1.13 

3.2.2. Diagnostic Analysis 

The quantitative causal relationship between the impact factor and the target variable 

may be obtained through a diagnostic analysis of the reverse reasoning ability of the BN 

model. The value of the "potential ecological space" was set to "yes," under the assumption 

that a sample point is within the ecological space. The changes in the value of the impact 

variable are presented in Table 4. It was observed that in terms of the spatial factor, the 

probability of the variable "distance from buildings" demonstrated a large change, where 
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the probability of "<50m" dropped by -1.4%, and the probability of "50–200m" and ">200m" 

both increased by 0.7 %, indicating that areas away from construction land are better pro-

tected. However, there was no significant change in “distance from woodland” at each 

level, indicating that the overall structure of the forest woodland in the village area is 

relatively stable, and the ecological space cannot be easily changed.  

In terms of the ecological suitability factors, the probability of "low sensitivity" and 

"medium sensitivity" in ecological sensitivity decreased by 2.5% and 25.4%, respectively, 

and the probability of "high sensitivity" increased by 27.8%. This demonstrates that a large 

number of medium-sensitive areas transformed into high ecological sensitivity areas fol-

lowing the expansion of ecological space. Therefore, moderately sensitive areas have great 

ecological potential, and proper restoration may improve the overall ecological benefits. 

In terms of the importance of ESV, the probability of "generally important" decreased by 

12.1%, while the probability of "moderately important" and "most important" increased 

by 8.4% and 3.7%, respectively, which shows that compared with ecological sensitivity, 

this factor has less impact on the ecological space boundary. It will, however, improve the 

overall ecological function value of the village. 

Table 4. Diagnostic analysis results. 

Variable type Index Variable states Probability change /% 

Space factor 

Distance from water 

＜50m -1.4 

50-200m 0.7 

＞200m 0.7 

Distance from roads 

＜50m -0.3 

50-200m 0.5 

＞200m -0.2 

Distance from build-

ings 

＜50m -0.4 

50-200m 0.6 

＞200m -0.2 

Distance from wood-

land 

＜50m -0.2 

50-200m 0.1 

＞200m 0.1 

Ecological suita-

bility factor 

Ecological sensitivity 

Low sensitivity -2.5 

Medium sensitivity -25.4 

High sensitivity 27.8 

Importance of ESV 

Generally important -12.1 

Moderately important 8.4 

Most important 3.7 

Land-use expan-

sion  

Agricultural  

expansion  

Expansion area -2.86 

Non-expansion area 2.9 

Construction  

expansion  

Expansion area -5.6 

Non-expansion area 5.3 

Ecological  

expansion  

Expansion area 1.9 

Non-expansion area -1.9 

4. Discussion 

4.1. Changes in Ecological Space and Suggestions for Protection  

Suburban villages are areas with a high risk of ecological loss in the process of ur-

banization, but the main driving forces for changes in their ecological space vary due to 

their unique socioeconomic context and natural conditions [76]. For example, Guli Village, 

which is also located in Jiangning District, assumed the function of agricultural produc-

tion in the early days, and their ecological space greatly shrunk compared to villages that 



Land 2022, 11, 1886 17 of 24 
 

have had different developmental trajectories. In the process of rapid urban expansion, 

most spatial changes in such villages entail the transformation of agricultural land to in-

dustrial land [77]. Therefore, the main reason for the shrinking of ecological space is the 

decline in the ecological function of agricultural land. Another example is Longtan Vil-

lage, Qixia District, Nanjing. The main reason for the shrinking of the ecological space for 

this village is the encroachment of mountain forests caused by mining or construction. 

Compared with the above two cases, Paifang Village is a typical "landscape–pastoral" ru-

ral village in a hilly area. Its own ecological conditions are more pristine. The maintenance 

of these conditions can be attributed to terrain-related constraints, which have kept indus-

trial and agricultural development at a minimum, resulting in the village having a more 

stable ecological space. However, with the development of rural tourism in recent years, 

the Paifang Reservoir and Yanhu Reservoir, located in the core tourist areas, have greatly 

increased the probability of ecological degradation, but the stability of the ecological space 

of non-core tourist areas can be expected to remain relatively stable. 

According to the predicted ecological space boundary in 2030, the potential shrinking 

areas of the ecological space in Paifang Village were primarily distributed in the shorelines 

of the Paifang Reservoir and Yanhu Reservoir, as well as the woodland nearby, while the 

possibility of ecological space restoration in the mountain area on the south side of Paifang 

Reservoir was observed. The ecological conservation forest on the north side of the central 

and western parts of the village is a relatively stable ecological space. After having ana-

lyzed trends in Paifang Village, we believe that Paifang Reservoir and Yanhu Reservoir 

are closely related to the artificial environment and are located close to the built-up area 

of the village, so they are more likely to be affected by human activities than ecological 

conservation forests. The two reservoirs have not only become core areas of tourism de-

velopment in Paifang Village (i.e., because of their good natural scenery), but also main 

water sources for agricultural production in the village. Therefore, the ecological functions 

of Paifang Reservoir and Yanhu Reservoir will inevitably be disturbed and weakened to 

a certain extent. 

Specifically, there is ongoing development and construction of hotels and restau-

rants on the east side of Paifang Reservoir (Figure 14-a). This area is also an area of con-

centrated activity for tourists. Human-induced disturbances lead to greater risks of water 

pollution, water surface shrinkage, and degradation of ecological function. However, the 

Paifang Reservoir, as an important water source, must strictly be protected. Therefore, it 

is necessary to limit the scale of development of the reservoir and its surrounding areas. 

There is an additional risk of shrinking ecological space at the edge of the woodland 

around the Paifang Reservoir. Considering this area is the junction of agricultural land 

and forest land, it is also necessary to limit the intensity of agricultural activities in this 

area. The ecological space of the mountain on the south side of the reservoir has the po-

tential to expand to the south (Figure 14-b). This area is located within the scope of the 

Nanjing ECR, and its west is currently dominated by shrubland and grassland. Under the 

strict protection of the ECR, combined with appropriate ecological restoration measures, 

the ecological space area can be further expanded. The east side is dominated by tea fields. 

Although it is agricultural land, it has the potential to develop into an ecological space 

because of its higher ecosystem service function compared to other paddy fields. Com-

pared with the Paifang Reservoir, the Yanhu Reservoir area faces greater ecological risks 

(Figure 14-c). Not only is the edge of its ecological space eroded, but there is also the risk 

of ecological fragmentation within. On analyzing the current situation around the Yanhu 

Reservoir, it was found that the area with the shrinking ecological space is adjacent to the 

external road, which is the entrance of the village, where human disturbance is inevitable. 

Therefore, this area should limit the scope of human activities to the greatest extent and 

build an ecological buffer zone at the junction of water and land to relieve external eco-

logical pressure. 
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Figure 14. Ecological space dynamics from 2020 to 2030: (a) Paifang Reservoir and its surrounding 

areas; (b) Mountain on the south side of Paifang Reservoir; (c) Yanhu Reservoir and its surrounding 

areas. 

4.2. Driving Factors Affecting Ecological Spatial Change and Their Mechanisms 

The change in rural ecological space not only reflects the status of ecological devel-

opment but also the contradiction and conflict between different functional spaces [78]. 

Considering that the PLE space in the countryside is highly integrated [79], the mecha-

nism of influencing factors on ecological space changes is complex. Based on the results 

of diagnostic and sensitivity analysis, it was found that the topography is not the main 

factor affecting changes in ecological space in urban fringe areas; artificial construction 

and other factors will have a greater impact. In the case of Paifang Village, the result is 

reflected in the shrinking of ecological space caused by the large-scale construction of 

tourist facilities such as hotels and restaurants. Through the lens of land-use expansion, 

the impact of agricultural expansion on the ecological space is stronger than that of con-

struction land. For this, there are believed to be two main reasons. First, the superior plan-

ning of Paifang Village limits the boundaries of rural construction and development, 

thereby reducing the possibility of construction occupying ecological space. Second, there 

are several mixed spaces between agricultural land and ecological land, which not only 

involve conflicts between land-use types but also provide dual functional services of ecol-

ogy and production. The impact of agricultural expansion on ecological space is, there-

fore, bidirectional; it may not only cause the shrinking of ecological space but also pro-

mote its expansion to a certain extent. 

4.3. Evolution of the ecological space boundary and its impact 

The edge of an ecological space is usually in an unstable state. This is especially true 

when we consider the fact that the nature and function of its land use change frequently, 

resulting in chaotic land development and a spatial structure not conducive to the mainte-

nance of ecological integrity [33]. On the other hand, material and energy flows are more 

active in marginal areas, and their habitat composition is more complex [80]. This type of 

area has the potential to be restored to ecological forest land, with multiple possibilities 
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for development and construction or reclamation into agricultural space. Reasonable pol-

icy formulation and ecological space planning are, therefore, conducive to the sustainable 

stability of the ecosystem and the development of the rural economy. According to the 

forecast results, the ecological boundary of Paifang Village in 2030 will be significantly 

different from that in 2020. Specifically, the ecological boundary will be further promoted 

towards agriculture and construction, culminating in an increase in the boundary across 

various measures [81]. The current ecological boundary (i.e., 2020) is largely in the form 

of "farmland–forest land", "tea field–forest land", "forest land–construction land", "water 

area–construction land", "water area–farmland", etc. However, in 2030, it will shift to-

wards being "farmland–tea field–woodland" or "construction land–tea field–woodland". 

This means that the scope of the ecological cross-zone will expand, and the overall com-

plexity and heterogeneity of the ecological space will increase [82]. The implications of 

these changes will be manifested in more frequent material and energy flows, an increased 

species richness, and more complex community structures, culminating in an overall im-

provement in the habitat quality of the village. 

Taking Paifang Village as an example, the marginal area of its ecological space is 

dominated by agricultural lands such as cultivated land and tea fields. These land-use 

types also have important ecological functions such as material production, nutrient se-

questration, habitat support, and soil carbon sequestration [83]. From this point of view, 

it may be regarded as a component of ecological space. When restoring the ecological 

space in this area, it is necessary to wholly consider the configuration of the agricultural 

and forestry structure combined with the permanent basic farmland line and relevant pol-

icies on food security [84]. For example, tea fields have the dual functions of production 

and ecology [85], which can improve green vegetation coverage while having good eco-

nomic benefits and supporting the development of tourism and agriculture. It is believed 

that the internal structure of agricultural land may be properly adjusted and optimized 

under the premise of abiding by the bottom line of food security, such as converting part 

of fallow land into tea fields or economic forests, which is not only favorable to the resto-

ration of the ecological space but also brings forth certain economic benefits. 

4.4. The Protective Effect of The ECR on Ecological Space 

The ECR is a nationwide unified supervision system with high management effi-

ciency [86]. The mountain forests on the north and south sides of the central and eastern 

parts of Paifang Village are in the Dongkeng Ecological Public Welfare Forest. The public 

welfare forest is a functional area for water conservation in the ECR designated by Nan-

jing City. It is not only highly ecologically sensitive but also an extremely important area 

for ESV. In the predicted ecological space boundary for 2030, the ecological woodland 

within the ECR did not shrink. In addition, in areas other than the ECR, a small portion of 

non-ecological lands, such as agricultural land and construction land, was converted into 

ecological space. Compared with the shrinking ecological space of water and its surround-

ing areas, the ECR demonstrated a more significant effect on the protection of ecological 

woodlands in urban fringe areas. Therefore, it may be thought that to play the role of the 

ECR further, the protection level for ecological space may be further delineated. For ex-

ample, the protection level of the core ecological waters of Paifang Reservoir and Yanhu 

Reservoir may be improved. On the other hand, the buffer zone between the ECR area 

and the construction space may be expanded by constructing an "agroforestry complex 

space" [87]. Not only can the ecological effect be enhanced, but it may also contribute to 

an improvement in economic benefits. 

4.5. Limitations 

However, the BN model constructed in this study to predict rural ecological space 

boundaries in urban fringe areas has certain limitations: (1) The selection of the node var-

iables and the construction of network structure are based on the ecological and morpho-

logical characteristics and the land-use pattern of Paifang Village. To a certain extent, this 
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study may be considered specific research on the urban fringe area in the hilly region of 

the middle and lower reaches of the Yangtze River. When researching villages with dif-

ferent natural geographical environments, industrial development directions, and socio-

economic conditions, there is a need to adjust node selection and the network structure 

accordingly. (2) Variables affecting rural ecological spatial boundaries in urban fringe ar-

eas and their causal structures are not static; significant policy changes and sudden natu-

ral disasters within the study period may result in bias. Therefore, when using this 

method for parameter learning, the selected period should not be too large, and there 

should be no disruptive events occurring during the period. (3) Due to the selection of a 

small study area, the number of selected sample points was subsequently small. This may 

affect the accuracy of the results to a certain extent. Therefore, we may expand the study 

area in the future. 

5. Conclusions 

In this study, a Bayesian network was used to predict rural ecological space. Firstly, 

this study addresses issues seen in previous studies that were directed towards a similar 

problem, such as not being able to reflect the randomness of human activities in a rural 

spatiotemporal context, resulting in inaccurate predictions. Secondly, the Bayesian net-

work structure effectively reflects the mechanism of action between factors affecting the 

evolution of rural ecological space while also reflecting the competitive relationship be-

tween different types of functional spaces, quantitatively expressed in the form of CPT. 

Overall, our study has yielded predictions that are largely more accurate. The research on 

the rural ecological boundary in this paper accounts for the lack of precision and accuracy 

of the ECR through the delineation of large-scale administrative units at the level of small-

scale rural areas. In addition, this paper identifies the key driving factors and their prob-

abilities affecting the evolution of rural ecological space. These results provide a reference 

for the optimal allocation of resources aimed at protecting and developing rural ecological 

space.  

The main conclusions of this study are as follows: 

(1) It was predicted that the total ecological space area of Paifang Village in 2030 will be 

3,587,175 m2, demonstrating expansion compared with 2020. Changes in the ecolog-

ical space include expansion as well as shrinkage. Agricultural land has the greatest 

potential for ecological restoration, followed by shrubland and grassland, while wa-

ter bodies and their surrounding areas are potential areas of shrinking ecological 

space that need to be focused on; 

(2) Competition exists between ecological and production spaces in urban fringe areas. 

Artificial construction activities and changes in agricultural land will disturb the eco-

logical space to a certain extent and are the main driving factors affecting the changes 

in ecological space boundaries; 

(3) The edge of rural ecological spaces in urban fringe areas is often in an unstable state. 

The flow of material and energy in this type of area is relatively active and has vari-

ous functional values and good recovery potential; 

(4) The protection effect of the ECR on the rural ecological space is remarkable. In addi-

tion to the strict protection of the area within the ECR, attention should also be paid 

to the protection of the ecological space outside the ECR boundary. 

Author Contributions:  Conceptualization, Y.Y. (Yangyang Yuan); methodology, Y.Y. (Yangyang 

Yuan) and Y.Y. (Yuchen Yang); software, Y.Y. (Yangyang Yuan) and Y.Y. (Yuchen Yang); data cu-

ration, Y.Y. (Yangyang Yuan) and Y.Y. (Yuchen Yang); writing—original draft preparation, Y.Y. 

(Yangyang Yuan) and Y.Y. (Yuchen Yang); writing—review and editing, C.Y. and W.R. All authors 

have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Key Research and Development Program of 

China (Grant No. 2019YFD1100405) and the National Natural Science Foundation of China (Grant 

No. 51838003). 



Land 2022, 11, 1886 21 of 24 
 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Publicly available datasets were analyzed in this study. These data 

can be found here: http://hbj.nanjing.gov.cn/hbyw/zrst/201804/t20180410_615032.html (accessed on 

111 May 2022). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Wang, Y.; Liu, B. CD Discussions on Rural Landscape and Rural Landscape Planning in China. Chin. Landsc. Archit. 2003, 1, 55–

58. 

2. National Bureau of Statistics. Bulletin of the Seventh National Census (No. 7)—Urban and Rural Population and Floating Pop-

ulation. 2021. Available online: http://www.gov.cn/xinwen/2021-05/11/content_5605791.htm (accessed on 11 May 2022). 

3. Commentator of Guangming Daily. Improve Rural Environment and Build Beautiful Countryside. Guangming Daily. 2018. 

Available online: https://news.gmw.cn/2018-02/06/content_27591798.htm (accessed on 11 May 2022). 

4. Huang, G. Functions, problems and countermeasures of China’s rural ecosystems. Chin. J. Eco-Agric. 2019, 27, 177–186. 

5. Zhao, M. A Discussion on Community Building and Community Preference in City Planning. Planners 2013, 29, 5–10. 

6. Li, K.Y.; Jin, X.L.; Ma, D.X.; Jiang, P.H. Evaluation of Resource and Environmental Carrying Capacity of China’s Rapid-Urban-

ization Areas: A Case Study of Xinbei District, Changzhou. Land 2019, 8. 

7. Tang, C.L.; He, Y.H.; Zhou, G.H.; Zeng, S.S.; Xiao, L.Y. Optimizing the spatial organization of rural settlements based on life 

quality. J. Geogr. Sci. 2018, 28, 685–704. 

8. Long, H.L.; Liu, Y.Q.; Hou, X.G.; Li, T.T.; Li, Y.R. Effects of land use transitions due to rapid urbanization on ecosystem services: 

Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. 

9. Yue, W.; Wang T, Zhen Y, Unified zoning of territorial space use control derived from the core concept of “Three Types of 

Spatial Zones and Alert-lines”. China Land Sci. 2020, 34, 52–59 + 68. 

10. General Office of the CPC Central Committee; General Office of the State Council. Pilot Program of Provincial Spatial Planning. 

2017. Available online: http://www.gov.cn/zhengce/2017-01/09/content_5158211.htm (accessed on 11 May 2022). 

11. Central Committee of the Communist Party of China; The State Council. Several Opinions on Establishing a Land Spatial Plan-

ning System and Supervising Its Implementation. 2019. Available online: http://www.gov.cn/zhengce/2019-05/23/con-

tent_5394187.htm (accessed on 11 May 2022). 

12. Huang, J.; Lin, H.; Qi, X. A literature review on optimization of spatial development pattern based on ecological-production-

living space. Prog. Geogr. 2017, 36, 378–391. 

13. Ministry of Ecology and Environment of the People’s Republic of China. Technical Guide for Delimitation of Ecological Con-

servation Redline. 2017. Available online: https://www.mee.gov.cn/gkml/hbb/bgt/201707/W020170728397753220005.pdf (ac-

cessed on 11 May 2022). 

14. Gilman, R.; Gilman, D. Eco-Villages and Sustainable Communities: A Report for Gaia Trust by Context Institute; Context Institute: 

Langley, WA, USA, 1991. 

15. Rogers, K.S. Ecological Security and Multinational Corporation. 1997. Available online: 

https://www.files.ethz.ch/isn/136132/ECSP%20report_3.pdf#page=29 (accessed on 11 May 2022). 

16. Liu, C. Iop in Research on Planning and Design of Rural Characteristic Landscape from the Perspective of Sustainable Devel-

opment. In Proceedings of the 5th International Conference on Environmental Science and Material Application (ESMA), Xi’an, 

China, 15–16 December 2019. 

17. Zhao, T.Y.; Cheng, Y.N.; Fan, Y.Y.; Fan, X.N. Functional Tradeoffs and Feature Recognition of Rural Production-Living-Ecolog-

ical Spaces. Land 2022, 11. 

18. Yang, Y.Y.; Bao, W.K.; Li, Y.H.; Wang, Y.S.; Chen, Z.F. Land Use Transition and Its Eco-Environmental Effects in the Beijing-

Tianjin-Hebei Urban Agglomeration: A Production-Living-Ecological Perspective. Land 2020, 9. 

19. Kong, L.Y.; Xu, X.D.; Wang, W.; Wu, J.X.; Zhang, M.Y. Comprehensive Evaluation and Quantitative Research on the Living 

Protection of Traditional Villages from the Perspective of “Production-Living-Ecology”. Land 2021, 10. 

20. Bai, R.; Shi, Y.; Pan, Y. Land-Use Classifying and Identification of the Production-Living-Ecological Space of Island Villages-A 

Case Study of Islands in the Western Sea Area of Guangdong Province. Land 2022, 11. 

21. Fei, J.B.; Xia, J.G.; Hu, J.; Shu, X.Y.; Wu, X.; Li, J. Research progress of ecological space and ecological land in China. Chin. J. Eco-

Agric. 2019, 27, 1626–1636. 

22. Demestihas, C.; Plenet, D.; Genard, M.; Raynal, C.; Lescourret, F. Ecosystem services in orchards. A review. Agron. Sustain. Dev. 

2017, 37. 

23. Xue, H.; Li, S.; Chang, J. Combining ecosystem service relationships and DPSIR framework to manage multiple ecosystem 

services. Environ. Monit. Assess. 2015, 187. 

http://hbj.nanjing.gov.cn/hbyw/zrst/201804/t20180410_615032.html
https://www.files.ethz.ch/isn/136132/ECSP%20report_3.pdf#page=29


Land 2022, 11, 1886 22 of 24 
 

24. Ministry of Natural Resources of the People’s Republic of China. National “Three Zones and Three Lines” Delineation Rules. 

Available online: https://www.mnr.gov.cn/dt/ywbb/202204/t20220428_2735148.html (accessed on 11 May 2022). 

25. Beecher. Nesting Birds and the Vegetation Substrate; Chicago Omithological Society: Chicago, USA, 1942. 

26. Chen, J.; Wang, S.S.; Zou, Y.T. Construction of an ecological security pattern based on ecosystem sensitivity and the importance 

of ecological services: A case study of the Guanzhong Plain urban agglomeration, China. Ecol. Indic. 2022, 136. 

27. Xu, X.; Tan, Y.; Yang, G.; Barnettc, J. China’s ambitious ecological red lines. Land Use Policy 2018, 79, 447–451. 

28. Ministry of Environmental Protection of the People’s Republic of China. Technical Guide for Delineation of Ecological Conser-

vation Redline. 2015. Available online: https://www.mee.gov.cn/gkml/hbb/bwj/201505/t20150518_301834.htm (accessed on 11 

May 2022). 

29. Blackwell, M.S.A.; Pilgrim, E.S. Ecosystem services delivered by small-scale wetlands. Hydrol. Sci. J. J. Des Sci. Hydrol. 2011, 56, 

1467–1484. 

30. Stine, P.A.; Hunsaker, C.T. An Introduction to Uncertainty Issues for Spatial Data Used in Ecological Applications. In Spatial 

Uncertainty in Ecology; Hunsaker, C.T., Goodchild, M.F., Friedl, M.A., Case, T.J., Eds.; Springer: New York, NY, USA, 2001; pp. 

91–107. 

31. Zhang, S.; Zhuang, Y. Relationship between ecological space and ecological conservation redline from the perspective of man-

agement requirements. Biodivers. Sci. 2022, 30. 

32. Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape. Landsc. Urban Plan. 1992, 23, 1–16. 

33. Xiao, P.N.; Xu, J.; Zhao, C. Conflict Identification and Zoning Optimization of “Production-Living-Ecological” Space. Int. J. 

Environ. Res. Public Health 2022, 19, 7990. 

34. Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman 

using GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91. 

35. Xu, T.T.; Zhou, D.J.; Li, Y.H. Integrating ANNs and Cellular Automata-Markov Chain to Simulate Urban Expansion with An-

nual Land Use Data. Land 2022, 11, 1074. 

36. Pijanowski, B.C.; Tayyebi, A.; Doucette, J.; Pekin, B.K.; Braun, D.; Plourde, J. A big data urban growth simulation at a national 

scale: Configuring the GIS and Neural Network Based Land Transformation Model to run in a High Performance Computing 

(HPC) environment. Environ. Model. Softw. 2014, 51, 250–268. 

37. Rahman, M.T.U.; Tabassum, F.; Rasheduzzaman, M.; Saba, H.; Sarkar, L.; Ferdous, J.; Uddin, S.Z.; Islam, A. Temporal dynamics 

of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environ. Monit. 

Assess. 2017, 189. 

38. Jiang, W.G.; Chen, Z.; Lei, X.; Jia, K.; Wu, Y.F. Simulating urban land use change by incorporating an autologistic regression 

model into a CLUE-S model. J. Geogr. Sci. 2015, 25, 836–850. 

39. Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of 

regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. 

40. Hagoort, M.; Geertman, S.; Ottens, H. Spatial externalities, neighborhood rules and CA land-use modelling. Ann. Reg. Sci. 2008, 

42, 39–56. 

41. Verburgab, P.H.; de Nijs, T.C.M.; van Eck, J.R.; Visser, H.; de Jong, K. A method to analyse neighborhood characteristic of land 

use patterns. Comput. Environ. Urban Syst. 2004, 28, 667–690. 

42. Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) 

for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. 

43. He, C.Y.; Okada, N.; Zhang, Q.F.; Shi, P.J.; Li, J.G. Modelling dynamic urban expansion processes incorporating a potential 

model with cellular automata. Landsc. Urban Plan. 2008, 86, 79–91. 

44. Huang, Q.; Zheng, X.Q.; Liu, F.; Hu, Y.C.; Zuo, Y.Q. Dynamic analysis method to open the “black box” of urban metabolism. 

Resour. Conserv. Recycl. 2018, 139, 377–386. 

45. Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata 

models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. 

46. Wang, H.; Stephenson, S.R.; Qu, S.J. Modeling spatially non-stationary land use/cover change in the lower Connecticut River 

Basin by combining geographically weighted logistic regression and the CA-Markov model. Int. J. Geogr. Inf. Sci. 2019, 33, 1313–

1334. 

47. Zhang, Q. Dynamic Uncertain Causality Graph for Knowledge Representation and Probabilistic Reasoning: Directed Cyclic 

Graph and Joint Probability Distribution. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1503–1517. 

48. McCloskey, J.T.; Lilieholm, R.J.; Cronan, C. Using Bayesian belief networks to identify potential compatibilities and conflicts 

between development and landscape conservation. Landsc. Urban Plan. 2011, 101, 190–203. 

49. Aitkenhead, M.J.; Aalders, I.H. Predicting land cover using GIS, Bayesian and evolutionary algorithm methods. J. Environ. 

Manag. 2009, 90, 236–250. 

50. Meyer, S.R.; Johnson, M.L.; Lilieholm, R.J.; Cronan, C.S. Development of a stakeholder-driven spatial modeling framework for 

strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA. Ecol. Model. 2014, 291, 

42–57. 



Land 2022, 11, 1886 23 of 24 
 

51. Ayre, K.K.; Landis, W.G. A Bayesian Approach to Landscape Ecological Risk Assessment Applied to the Upper Grande Ronde 

Watershed, Oregon. Hum. Ecol. Risk Assess. 2012, 18, 946–970. 

52. Weil, K.K.; Cronan, C.S.; Meyer, S.R.; Lilieholm, R.J.; Danielson, T.J.; Tsomides, L.; Owen, D. Predicting stream vulnerability to 

urbanization stress with Bayesian network models. Landsc. Urban Plan. 2018, 170, 138–149. 

53. Aalders, I. Modeling Land-Use Decision Behavior with Bayesian Belief Networks. Ecol. Soc. 2008, 13. 

54. Landuyt, D.; Broekx, S.; Goethals, P.L.M. Bayesian belief networks to analyse trade-offs among ecosystem services at the re-

gional scale. Ecol. Indic. 2016, 71, 327–335. 

55. Chen, S.H.; Pollino, C.A. Good practice in Bayesian network modelling. Environ. Model. Softw. 2012, 37, 134–145. 

56. Frayer, J.; Sun, Z.L.; Muller, D.; Munroe, D.K.; Xu, J.C. Analyzing the drivers of tree planting in Yunnan, China, with Bayesian 

networks. Land Use Policy 2014, 36, 248–258. 

57. Tian, F.H.; Li, M.Y.; Han, X.L.; Liu, H.; Mo, B.X. A Production-Living-Ecological Space Model for Land-Use Optimisation: A 

case study of the core Tumen River region in China. Ecol. Model. 2020, 437. 

58. Murphy, K.P. The bayes net toolbox for Matlab. Comput. Sci. Stat. 2001, 33, 1024–1034. 

59. Mahjoub, M.A.; Kalti, K. Software Comparison Dealing with Bayesian Networks. In Proceedings of the 8th International Sym-

posium on Neural Networks, Guilin, China, 29 May–1 June 2011; pp. 168–177. 

60. Nanjing Municipal Bureau of Ecological Environment. Regional Protection Planning of Ecological Conservation Redline in 

Jiangsu Province. 2018. Available online: http://hbj.nanjing.gov.cn/hbyw/zrst/201804/t20180410_615032.html (accessed on 11 

May 2022). 

61. Zhao, N.; Yang, Y.H.; Zhou, X.Y. Application of geographically weighted regression in estimating the effect of climate and site 

conditions on vegetation distribution in Haihe Catchment, China. Plant Ecol. 2010, 209, 349–359. 

62. Schluter, M.; Savitsky, A.G.; McKinney, D.C.; Lieth, H. Optimizing long-term water allocation in the Amudarya River delta: A 

water management model for ecological impact assessment. Environ. Model. Softw. 2005, 20, 529–545. 

63. Hiddink, J.G.; Jennings, S.; Kaiser, M.J. Assessing and predicting the relative ecological impacts of disturbance on habitats with 

different sensitivities. J. Appl. Ecol. 2007, 44, 405–413. 

64. Wu, J.G. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 

28, 999–1023. 

65. Leemans, R.; Groot, R.S. Millennium Ecosystem Assessment Series. In Ecosystems and Human Well-Being: A Framework for Assess-

men; Island Press: Washington, DC, USA, 2003. 

66. Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the 

global value of ecosystem services. Glob. Environ. Change-Hum. Policy Dimens. 2014, 26, 152–158. 

67. Jin, X.; Wei, L.; Wang, Y.; Lu, Y. Construction of ecological security pattern based on the importance of ecosystem service func-

tions and ecological sensitivity assessment: A case study in Fengxian County of Jiangsu Province, China. Environ. Dev. Sustain. 

2021, 23, 563–590. 

68. HaiWei, Y.I.N.; Xu, J.; Chen, C.; Kong, F. GIS-based Ecological Sensitivity Analysis in the East of Wujiang City. Sci. Geogr. Sin. 

2006, 26, 64–69. 

69. Saaty, T.L. How to Make a Decision—The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. 

70. Rao, E.; Ouyang, Z.; Yu, X.; Xiao, Y. Spatial patterns and impacts of soil conservation service in China. Geomorphology 2014, 207, 

64–70. 

71. Zeng, Z.; Piao, S.; Lin, X.; Yin, G.; Peng, S.; Ciais, P.; Myneni, R.B. Global evapotranspiration over the past three decades: Esti-

mation based on the water balance equation combined with empirical models. Environ. Res. Lett. 2012, 7. 

72. Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation 

(RUSLE); U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2008. 

73. Ji, Z.W.; Xia, Q.B.; Meng, G.M. A Review of Parameter Learning Methods in Bayesian Network. In Proceedings of the Interna-

tional Conference on Intelligent Computing ICIC 2015: Advanced Intelligent Computing Theories and Applications, Fuzhou, 

China, 20–23 August 2015; pp. 3-13. 

74. Pollino, C.A.; Woodberry, O.; Nicholson, A.; Korb, K.; Hart, B.T. Parameterisation and evaluation of a Bayesian network for use 

in an ecological risk assessment. Environ. Model. Softw. 2007, 22, 1140–1152. 

75. Landuyt, D.; Broekx, S.; Engelen, G.; Uljee, I.; Van der Meulen, M.; Goethals, P.L.M. The importance of uncertainties in scenario 

analyses—A study on future ecosystem service delivery in Flanders. Sci. Total Environ. 2016, 553, 504–518. 

76. Bai, L.; Xiu, C.; Feng, X.; Liu, D. Influence of urbanization on regional habitat quality:a case study of Changchun City. Habitat 

Int. 2019, 9. 

77. Yeh, A.G.O.; Li, X. Economic development and agricultural land loss in the Pearl River Delta, China. Habitat Int. 1999, 23, 373–

390. 

78. Gu, X.; Xie, B.; Zhang, Z.; Guo, H. Rural multifunction in Shanghai suburbs: Evaluation and spatial characteristics based on 

villages. Habitat Int. 2019, 92, 102041. 

79. Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology 

analysis. Sci. Total Environ. 2017, 577, 136–147. 



Land 2022, 11, 1886 24 of 24 
 

80. Harris, L.D. Edge effects and conservation of biotic diversity. Conserv. Biol. 1988, 2, 330–332. 

81. Johnston, C.A.; Pastor, J.; Pinay, G. Quantitative Methods for Studying Landscape Boundaries. In Landscape Boundaries; Ecolog-

ical Studies; Hansen, A.J., di Castri, F., Eds.; Springer: New York, NY, USA,1992; Volume 92. 

82. Wiens, J.A. Ecological Flows Across Landscape Boundaries: A Conceptual Overview. In Landscape Boundaries; Ecological Stud-

ies; Hansen, A.J., di Castri, F., Eds.; Springer: New York, NY, USA, 1992; Volume 92. 

83. Jiang, C.H.; Li, G.Y.; Li, H.Q.; Li, M. Iop in The Study of Ecological Service Value of Farmland Ecosystem in the Beijing-Tianjin-

Hebei Region. In Proceedings of the International Conference on Sustainable Development on Energy and Environment Pro-

tection (SDEEP), Yichang, China, 28–30 July 2017. 

84. Zhao, Q.G.; Yang, J.S.; Zhou, H. “Ten Words” Strategic Policy for Ensuring Red Line of Farmland and Food Security in China. 

Soils 2011, 43, 681–687. 

85. Su, S.L.; Wan, C.; Li, J.; Jin, X.F.; Pi, J.H.; Zhang, Q.W.; Weng, M. Economic benefit and ecological cost of enlarging tea cultivation 

in subtropical China: Characterizing the trade-off for policy implications. Land Use Policy 2017, 66, 183–195. 

86. Zhang, C.; Lin, D.Y.; Wang, L.X.; Hao, H.G.; Li, Y.Y. The Effects of the Ecological Conservation Redline in China: A Case Study 

in Anji County. Int. J. Environ. Res. Public Health 2022, 19. 

87. Li, S.; Zhu, C.; Lin, Y.; Dong, B.; Chen, B.; Si, B.; Li, Y.; Deng, X.; Gan, M.; Zhang, J.; et al. Conflicts between agricultural and 

ecological functions and their driving mechanisms in agroforestry ecotone areas from the perspective of land use functions. J. 

Clean. Prod. 2021, 317. 

 

 


