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Abstract: The aim of this work was to assess the influence of physical, chemical, and hydrochemical
factors on the characteristics of bottom sediments in various areas of the shelf of the Crimean
Peninsula. The data obtained during the cruises of the RV “Professor Vodianitsky” in the fall of 2018
and summer of 2019 were analyzed. Hydrochemical analyses of the bottom waters were carried out
using standard hydrochemical methods. Profiles of dissolved oxygen, hydrogen sulfide, and oxidized
and reduced forms of iron in pore waters were obtained, and the geochemical characteristics of bottom
sediments were determined. The features of their spatial and vertical distributions were considered.
Pelite-aleuritic sediments with inclusions of sandy material and shell detritus prevailed in the coastal
zone of the Crimean shelf. The organic carbon content varied from 0.5–0.6% in the gravel–sand
sediments of the Kerch pre-strait area to 2.5–2.7% in the northwestern part. The prevalence of suboxic
conditions was noted, and the main processes in the sediment upper layer were controlled mainly by
reactions involving iron. In some areas of the southern coast of Crimea and the Kerch pre-strait area
from the Sea of Azov, the development of anoxic conditions in the surface layer of bottom sediments
was recorded.

Keywords: bottom sediments; pore waters; voltammetry; oxygen; hydrogen sulfide; granulometric
composition; organic carbon; Black Sea

1. Introduction

Coastal ecosystems are characterized by high productivity and biodiversity, which is
why they account for more than 90% of the world’s seafood and mariculture production [1].
In addition, they are attractive for recreational purposes and play a significant role in the
social and economic spheres [2,3].

Bottom sediments are one of the convenient tools for assessing the state of marine
ecosystems [4]. Representing a quasistationary system, they are an integral indicator of all
the pollution entering the marine environment. At the same time, unlike regular monitoring
of the hydrological parameters of waters, studies of the characteristics of bottom sediments
are usually carried out intermittently [5]. This is why the study, assessment of the state
and prognosis of the oxygen deficiency development in the bottom sediments of marine
ecosystems are relevant.

Significant anthropogenic pressure on coastal waters contributes to the influx of
additional amounts of organic matter and nutrients, thus leading to intensive sedimentation
and rapid changes in the geochemical characteristics of the environment [6]. Such changes
are negative and lead to the degradation of coastal marine ecosystems.

The main processes that determine the characteristics and conditions of bottom sed-
iments and the state of the ecosystem as a whole are controlled, among other things, by
reactions involving organic matter and its production or degradation (oxidation).

The sequence of organic matter oxidation reactions (Table 1) is thermodynamically
predetermined. First, oxygen is used as an oxidizer of organic matter, which ultimately
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leads to its exhaustion [7–9]. As a result, oxygen deficiency develops in the bottom sedi-
ments and then in the water column, which leads to hypoxia/anoxia and the formation of
environmental risk zones [10].

Table 1. Oxidation reactions of organic matter in bottom sediments.

Eq. No Process Name Reaction Scheme Redox Conditions

(1) Aerobic oxidation C106H175O42N16P + 150 O2 → 106 CO2 + 16 HNO3 +
+ H3PO4 + 78 H2O Oxic

(2) Nitrate reduction C106H175O42N16P + 104 HNO3 → 106 CO2 + 60 N2 +
+ H3PO4 + 138 H2O Suboxic

(3) Manganese reduction C106H175O42N16P + 260 MnO2 + 174 H2O→ 106 CO2 +
+ 8 N2 + H3PO4 + 260 Mn(OH)2

Suboxic

(4) Iron reduction C106H175O42N16P + 236 Fe2O3 + 410 H2O→ 106 CO2 +
+ 16 NH3 + H3PO4 + 472 Fe(OH)2

Suboxic

(5) Sulfate reduction C106H175O42N16P + 59 H2SO4 → 106 CO2 + 16 NH3 +
+ H3PO4 + 59 H2S + 62 H2O Anoxic

(6) Methanogenesis C106H175O42N16P + 59 H2O→ 47 CO2 + 59 CH4 +
+ 16 NH3 + H3PO4

Anoxic

After the oxygen concentration decreases below the threshold value (<1% sat.) [11],
the main oxidant changes, nitrates/nitrites, MnO2, and FeOOH, act as oxidants of organic
matter (Table 1). After the exhaustion of these compounds, sulfate reduction processes
accompanied by the formation of reduced forms of sulfur and methanogenesis processes
occur [11].

In addition to the content and reactivity of organic matter (and the concentration of
organic carbon proportional to it), the granulometric composition is an important factor
determining the features of biogeochemical processes and changes in redox conditions in
bottom sediments.

Ultimately, the geochemical composition of sediments (granulometric composition,
organic carbon content, porosity), the oxygen concentration in the bottom waters, and
features of the hydrology and hydrodynamics of the water column determine the oxy-
gen downflux, as well as the concentration and depth of its penetration into the bottom
sediments [12,13].

Currently, the hydrology and hydrodynamics of the Crimean Peninsula shelf zone
have been sufficiently studied [14–17]. Based on a complex analysis of the hydrological
data and instrumentally measured currents, the concepts of thermohaline and kinetic fields
for individual sections of the shelf and for different seasons were expanded. The studies
of [14–17] presented the vectors of instrumentally measured currents at various horizons;
their position was compared with the elements of climatic water circulation. The vectors of
instrumentally measured currents, including those in the bottom water layer of interest in
the summer of 2018, were studied [17].

In addition to the hydrological regime, the features of the spatial and vertical dis-
tributions of oxygen in the water column of the coastal regions of the Crimea have been
studied [18–20]. Analysis of the published papers shows that modern studies on the verti-
cal distribution of oxygen in the water column focused on estimates of the suboxic zone
boundary positions [21,22] and were carried out mainly in the deep-water areas of the
Black Sea. The study of oxygen concentrations in the bottom waters of the coastal regions
of the Crimea is currently paid little attention.

The geochemical characteristics of bottom sediments have not been studied in such
detail. Earlier studies are reflected in the works of [23,24]. Currently, the geochemical
characteristics of bottom sediments arouse great interest within the framework of studying
the features of the accumulation and spatial distribution of various pollutants in the water
areas of the Crimean shelf [2,4,25] and closed and semi-closed lagoons [26,27]. Some
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works [28,29] are devoted to the study of the vertical profiles of the key redox species
in pore waters of the bottom sediments obtained by voltammetry. In [30,31], the redox
conditions in the bottom waters were evaluated using various geochemical indices.

However, the comprehensive investigation of the influence of different characteristics
of the bottom waters and bottom sediments on the bottom sediment chemical composition
in the Crimean coastal waters has been paid little attention.

The purpose of this work was to assess the influence of geochemical (granulometric
composition, organic carbon content) and hydrochemical (oxygen concentration in the
bottom waters) factors on the formation and characteristics of the chemical composition of
bottom sediment pore waters in various areas of the Crimean Peninsula shelf.

2. Materials and Methods

During the cruises on the RV “Professor Vodyanitsky” in the autumn of 2018 and sum-
mer of 2019, complex studies were carried out, including an analysis of the hydrochemical
characteristics of the water column and geochemical characteristics of bottom sediments in
the coastal areas of the Crimean Peninsula (Figure 1).
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Figure 1. Scheme of sampling stations (a) bottom sediments surface layer and bottom water layer;
(b) columns of bottom sediments.

Samples from the bottom waters were taken for chemical analysis using bathometers.
The dissolved oxygen content in the water was determined using the Winkler volu-

metric titration method with the Carpenter modification [32]. The accuracy of the technique
is ±0.010 mL/l (±0.4 µM).

Samples of the surface sediment layer (0–5 cm) were taken using a Peterson dredger
(coverage area of 0.1 m2). To study the vertical structure of the sediments, columns of
bottom sediments were selected using a sampler device with an acrylic tube (inner diameter
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of 60 mm) and a vacuum seal. This sampling method makes it possible to preserve the fine
structure of the bottom sediment surface layer and the bottom waters.

The granulometric composition of bottom sediments was determined by the mass
content of particles with different sizes, expressed as a percentage, relative to the mass of a
dry soil sample taken for analysis. At the same time, a combined method of decantation
and dispersion was used. The aleurite and pelite fractions (≤0.1 mm) were separated by
wet sieving, followed by determination of the dry mass gravimetrically. Coarse-grained
fractions (>0.1 mm) were separated by the sieve method of dry sieving using standard
sieves (GOST 12536-2014).

The content of organic carbon (Corg) was determined coulometrically on an express
analyzer AN 7529 using a technique adapted for marine bottom sediments [33,34]. The
value of the standard deviation for samples with a Corg content of <0.5% was 0.028, and
that for samples with a Corg content of >1.5% was 0.083.

To obtain the chemical profile of pore waters, voltammetry with a glass Au-Hg mi-
croelectrode was used [35–37]. An electrode saturated with silver chloride was used as
a comparison electrode, and a platinum electrode was used as an auxiliary. Profiling of
bottom sediment columns was carried out with a vertical resolution from 1 to 10 mm.
The error of the method was 10%. To analyze the physicochemical characteristics in the
laboratory, the columns were divided into 1–2-cm thick layers using a hand extruder and
an acrylic ring.

3. Results
3.1. Northwestern Region

The waters of the North West Shelf (NWS) are under intense anthropogenic pres-
sure. The supply of a large amount of nutrients (nitrogen, silicon, phosphorus) with river
runoff and their active consumption by phytoplankton for photosynthesis lead to active
consumption of oxygen in the bottom waters for the oxidation of organic matter [18]. As
a result, oxygen deficiency zones occur and anoxic conditions develop, first in the bot-
tom sediments, and then in the bottom water layer. The dynamics of the NWS waters
in winter are determined by the influence of the Rim Current; in other seasons, they are
determined mainly by the influence of wind currents. In [38], it was shown that under
north, northeastern and eastern winds, cyclonic circulation prevails in the NWS, the Rim
Current propagates along the western coast of the Crimea and the Danube runoff is directed
to the south. Under southern and southwestern winds, anticyclonic circulation forms, and
the runoff of the Danube River spreads over the entire shelf. The scheme of surface layer
water transport in the NWS was also presented in [39]. The study of [17] presented the
vectors and quantitative characteristics of bottom currents according to the data of cruise
103 of the RV Professor Vodyanitsky. The current velocities in the bottom water layer in the
seaward part of the Kalamitsky Gulf reached 10 cm/s.

In this work, the Black Sea NWS includes the Karkinitsky and Kalamitsky Gulfs, as
well as an extended section of the coastal zone from Cape Tarkhankut to Cape Khersones.
Further, in this work, these water areas will be referred to as the northwestern region, which
is explained by their geographical position relative to the Crimean coast.

The oxygen concentration in the bottom waters of the northwestern region in the
summer of 2019 varied from 164 to 287 µM (from 50 to 94% sat.) (Figure 2c). The minimum
concentrations were noted in the seaward part of the Kalamitsky Gulf, in the Sevastopol
area (depths of 80–90 m) and in the area of Mezhvodnoye village (15–26 m). The maximum
values were noted in the southwestern seaward part of the Karkinitsky Gulf (depths of
15–40 m).

The surface layer of the sediment in the northwestern region was formed mainly by
silty material (up to 72%) (Figure 2a), consisting mostly of a pelite-aleuritic fraction (60%).
Coarse-grained gravel–sand material was distributed fragmentarily in shallow water in the
northern part of the Kalamitsky Gulf and in the area of Cape Tarkhankut. At some stations,



Land 2022, 11, 1884 5 of 16

the sediment material consisted of large shells, and the proportion of the >1 mm fraction
reached 65–85%.
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The content of Corg in the sediment surface layer (Figure 2b) varied from 0.3–0.8%
dry. wt. at stations located near the coast of Yevpatoriya and around Cape Tarkhankut,
to 2.4–3.3% dry. wt. in fine-grained silty sediments of the seaward part of the Kalamitsky
Gulf and the open southwestern part of the Karkinitsky Gulf. On average, the content of
Corg in the sediment surface layer in the northwestern region was 2.0% dry. wt.

In the area of the Karkinitsky Gulf (St. 158) (Figure 3b), the bottom water layer (depth
~27 m) was weakly saturated with oxygen (62% sat., 185 µM) (Figure 2c). The chemical
composition of pore waters was determined by the processes involving sulfates, the re-
duction products of which are hydrogen sulfide and its derivatives (Table 1). The average
concentration of hydrogen sulfide was 163 µM. The processes of organic matter oxidation
were also controlled by the processes involving dissolved forms of iron (Table 1), were the
average concentration of Fe(II) was 441 µM. The decrease in the oxygen concentration in the
bottom water layer and the development of suboxic conditions in the upper layer of bottom
sediments at stations located near the coast probably resulted from an additional supply
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of organic matter with urban and storm runoff from the northern coast of the Karkinitsky
Gulf. This also led to increased siltation of the coastal zone, since it is quite shallow and
has limited water exchange [39].
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In the area of Kalamitsky Bay (St. 12.1, depth ~60 m), the finely dispersed nature of
the sediment and the high content of Corg (2.7% dry wt.) led to oxygen deficiency and the
development of suboxic conditions. In the upper layer (0–10 mm), the oxidation of organic
matter occurred due to nitrates/nitrites, which are inactive in the potential range used [35].
Below, high concentrations of Fe(II) and Mn(II) were noted (Figure 3a), which averaged
676 µM and 1039 µM, respectively. High concentrations of these components might be
explained by the occurrence of ferromanganese nodules in these areas [40], which was also
confirmed by modern data in [31].

3.2. Southern Coast of Crimea and Feodosiya Gulf

The region of the southern coast of Crimea (SCC) includes a section of the coast from
Cape Aya to the Feodosiya Gulf. A large number of sanitary-resort and health infrastructure
facilities are concentrated along the shore. The Feodosiya Gulf is characterized by a
more intense anthropogenic impact, including the industrial–agrarian–recreational type of
economic development of the territory, especially in its western part [41]. The modern state
of the Feodosiya Gulf ecosystem is significantly affected by the maritime complex facilities
and the discharge of storm- and wastewater [42].

In the coastal zone of the SCC, the direction of currents in 75% of cases coincides with
the direction of the coastline. In 80–90% of cases, their speed does not exceed 20 cm/s, and
only in 2% of cases is their speed more than 40 cm/s. The maximum velocities are noted
for the southwestern and northeastern currents [43]. According to the data of [17], the
velocities of bottom currents in the SCC region vary from 10 cm/s in the shallow Feodosiya
Gulf (10–20 m) to 20–30 cm/s in the deep-water areas (50–100 m).

Under the action of wind, a two-layer structure of flows periodically forms in shallow
coastal water, and a countercurrent is observed under the drift current [43]. In the area of
Alushta, a countercurrent is observed between the Rim Current and the coast [44]. This
nature of coastal current structures has certain ecological consequences. When wastewaters
are discharged at a distance of less than 4 km from the coast, pollutants return to the beach
zone and accumulate in the bottom water layer. On the contrary, when the outlet is over
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10 km from the coast at a depth of more than 100 m, the transverse circulation in the Rim
Current leads to their further sinking and moving away from the coast [44]. In addition,
according to the studies presented in [45], under the action of prolonged northeast winds,
the Sea of Azov waters saturated with suspended matter spread along the entire SCC,
reaching Cape Khersones.

The granulometric composition of the bottom sediments of the SCC is diverse. In the
Sevastopol region, the surface layer (0–5 cm) was poorly represented by the gravel fraction
(2%), and the proportion of sandy material was about 1%. The silty material prevailed
(94%) (Figure 4a), formed mainly by the pelite-aleuritic fraction (77%). The content of Corg
averaged 2.4% dry. wt.
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To the southeast of Sevastopol, the sediment became coarser. The content of the gravel
fraction at the stations located near the shore in the Limensky Gulf and the Laspi Gulf
reached 10–23%, and the content of silty material reached 66–72%. The content of Corg in
the bottom sediment surface layer in this area reached 2.7% dry. wt.

In the northeast direction from Yalta to Sudak, the sediment was represented mainly
by silty material (72–95%) (Figure 4a), with an increase in the pelitic fraction from 55% to
89%. The increased proportion of gravel–sand material in the SCC was determined mainly
by the contribution of shell material. Thus, the maximum values were noted both near the
coast and at the stations located on the continental slope (100–300 m). The content of Corg
in this area averaged 1.5% dry. wt. (Figure 4b).

The maximum proportion of silty material was noted in the Feodosiya Gulf (Figure 4a),
the content of which decreased from the central part (97%) to the seaward part (79%). The
content of the gravel fraction was minimal (1–2%) and slightly increased to 8% in the
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offshore part due to an increase in the proportion of shells and shell detritus. The average
content of Corg in the central part of the gulf was 1% dry. wt., and in the seaward part
it was 1.4% dry. wt. (Figure 4b). Thus, the Corg content in the bottom sediments of the
Feodosiya Gulf was, on average, lower in comparison with the shallow water stations in
the SCC region.

In the Sevastopol region (St. 24, depth ~80 m), the saturation of bottom waters with
oxygen was 84% (275 µM), but there was no oxygen on the sediment surface. The main
components of the pore water in this region were oxidized forms of iron.

In the area of the SCC from Yalta to Sudak (depths of 20–80 m), intense water dynamics
provided the oxygen saturation of the bottom waters (up to 105% sat.; Figure 4c). The main
processes of organic matter oxidation in the upper layer of sediments took place with the
participation of oxygen. In the lower layers, the main biogeochemical processes proceeded
mainly with the participation of dissolved forms of iron and sulfates (Table 1).

In the area of Yalta (St. 41, depth ~35 m), the penetration of oxygen in bottom sediments
up to 14 mm (Figure 4a) determined the oxic conditions. Below, the conditions changed
to anoxic, and the main components of the pore waters were reduced forms of iron and
sulfides. In addition, the high concentration of Fe(II) (up to 500 µM) limited the sulfide flux
into the upper layer of the sediments.

In the area of Alushta (St. 57, depth ~50 m), despite the oxygen saturation of the
bottom waters (93% sat., 293 µM), hydrogen sulfide was already present in the surface of
the sediments. This led to the rise of anoxic conditions. The main components of the pore
waters were the reduced forms of iron and sulfur. The concentration of hydrogen sulfide
varied from 1 to 392 µM, with an average value of 140 µM. The average concentration of
Fe(II) was 472 µM (Figure 5b).
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Despite the sufficient oxygen saturation of the bottom waters (up to 110% sat.)
(Figure 4c), there was no oxygen in the surface of sediments in the Feodosiya Gulf (St. 73,
depth ~21 m). The main components of pore waters were reduced forms of iron and sulfur
(Figure 6a). The average concentration of Fe(II) was 1123 µM, and the maximum concen-
tration reached up to 2100 µM. This is probably the result of a significant anthropogenic
contribution; for example, port manufacture [41,42]. The concentration of hydrogen sulfide
varied from 110 to 368 µM, with an average value of 270 µM. The presence of hydrogen



Land 2022, 11, 1884 9 of 16

sulfide is also determined by the anthropogenic contribution of stormwater and municipal
wastewater [42], which are additional sources of nutrients and organic matter.
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In the seaward part of the Feodosia Gulf (St. 88 a, depth ~32 m), Fe(II) was also
the main component of the pore water, but its concentrations were lower and averaged
655 µM (Figure 6b). This may indicate that, farther from the central part of the gulf, the
anthropogenic load is significantly reduced. The average concentration of hydrogen sulfide
was also an order of magnitude lower than in the central part of the Feodosia Gulf and
amounted to 2.5 µM. The processes of organic matter oxidation in bottom sediments in this
area were controlled by reactions involving iron (Table 1).

Thus, despite the active water dynamics, the low content of Corg, and the saturation
of the bottom waters with oxygen, the determining factor in the occurrence of anoxic
conditions in the Feodosia Gulf bottom sediments was probably the predominance of the
silty fraction (up to 97%).

3.3. Kerch Pre-Strait Area

In the late 1980s–early 1990s, the Kerch pre-strait area from the Black Sea was sub-
jected to strong anthropogenic impact, which led to siltation of the upper layer of bottom
sediments. Some of the main factors influencing the ecosystem of this area, in addition to
shipping and active fishing, are soil dumping, dredging, and the transfer of suspended mat-
ter from the Kerch Strait [46,47]. These factors negatively affected the chemical composition
of sediments and benthic communities [42,48].

Coarse-grained material prevailed in the surface layer (0–5 cm) of the bottom sedi-
ments of the Kerch pre-strait from the Black Sea, and the content of the >10 mm fraction
reached 47% (Figure 7a). The silty material averaged 28% of the sediment mass and was
formed by the aleuritic-pelite (6%) and pelite-aleuritic (22%) fractions. The content of Corg
averaged 0.7% dry. wt. (Figure 7b).
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(c) degree of oxygen saturation of the bottom water layer of the Kerch pre-strait region.

In the region of the Kerch pre-strait from the Sea of Azov (St. 115, depth ~10 m), the
oxygen concentration in the bottom water layer was 217 µM (91% sat.) (Figure 7c), and
on the sediment surface (0 mm), it decreased to 133 µM (Figure 8a). The predominant
components of the pore waters were the reduced forms of iron and manganese. The Fe(II)
concentration reached 2700 µM (Figure 8a), with an average value of 803 µM. Two layers of
Mn(II) concentrations were noted: 1–15 mm and 36–76 mm (Figure 8a). The concentration
of Mn(II) in the 1–15 mm layer increased from 236 to 854 µM (average value of 538 µM),
and in the 36–76 mm layer, it decreased from 1042 to 658 µM (average value of 853 µM).
Iron monosulfide (FeS) was also noted.
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In the region of the Kerch pre-strait from the Black Sea (St. 89), the oxygen concen-
tration in the bottom water layer was 282 µM (88% sat.), which is quite typical for this
depth (45 m). On the sediment surface, its concentration reached 272 µM (Figure 8b), and it
penetrated the sediment up to 11 mm deep. Below, the main components of the pore waters
were reduced forms of iron. The Fe(II) concentration varied between 130 and 628 µM, with
an average value of 288 µM. The presence of iron monosulfide, which is a product of the in-
teraction between reduced forms of sulfur and iron (Table 1), was also noted. Its formation,
apparently, contributed to the binding of sulfides; the average concentration of H2S was
6 µM. As a result, the oxic conditions in the upper layer of the bottom sediments in this
area and the low content of Corg (less than 1% dry wt.) were determined by intense water
dynamics [17] under the influence of the Rim Current and the granulometric composition
of the sediment.

4. Discussion

The depth affects both the formation of the hydrochemical structure of waters and the
features of the formation of sediments [21,22,49]. The analysis of the results obtained made
it possible to confirm the established ideas that oxygen saturation in the water column
may decrease with the depth (Figure 9a). The Current data show that the average oxygen
saturation of the bottom waters varied from 73% sat. in the northwestern region and 79%
sat. in the SCC to 96% sat. in the region of the Kerch pre-strait.

It was also confirmed that, with increasing depth, the proportion of the fine-grained
clay fraction increases (Figure 9c). The exception is shallow-water areas (for example, the
Feodosia Gulf, Karkinitsky Gulf, the shallow part of the northwestern region), in which
finer-grained sediments are formed. In addition, in [49], it was noted that, depending on
the hydrodynamic regime, sediments of different particle sizes can accumulate at the same
depth. One of the characteristic examples of such dependence is the pre-strait zone of
the Kerch Strait. In some of its sections, both coarse-grained shell and fine-grained silty
sediments accumulate. As a result, an average (0.55) linear dependence of the accumulation
of the fine-grained pelitic fraction on the depth was noted for the Black Sea coastal areas.
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waters; (b) the content of Corg in the surface layer of the sediment; (c) the proportion of the pelite-
aleuritic fraction in the surface layer of the sediment.

For the coastal areas, a positive (0.63) linear correlation dependence of the oxygen
concentration on the proportion of the coarse-grained fraction (> 0.1 mm) in the surface
(0–5 cm) sediment layer was obtained. This confirms the well-established notion that the
average sediment size determines the oxygen flux, as well as the concentration and depth
of its penetration into bottom sediments [12,13,50,51].

A significant correlation between the content of the clay fraction and Corg content
was found in the studied water areas. This was primarily determined by the relationship
with the content of pelite-aleuritic material (the correlation was 0.7), while the correlation
with the aleuritic-pelite fraction was weak (0.2). However, despite the noted relationship
between the pelite-aleuritic fraction and Corg content, the effect of the depth was more
pronounced (Figure 8b). This stronger relationship is explained by the fact that in modern
sediments in the coastal areas of the Black Sea, organic carbon also accumulates in silty
sands with inclusions of shell detritus (1.7–2.1% dry wt.). In earlier works, it was noted
that for coarse-grained sediments in the Crimea coastal regions, the content of Corg did not
exceed 1% [39,52,53]. The data obtained in this work indicate a significant excess of the
studied values. Similar dynamics were previously displayed in [52] on the example of the
Kerch Strait.

The increase in the rates of Corg input and accumulation in medium- and coarse-
grained sediments apparently, indicates an intensification of anthropogenic pressure on
marine natural ecosystems, even in the case of open water areas with high water dynamics.

As a result of an increase in the supply of organic matter to bottom sediments, oxygen
is consumed for its oxidation. A decrease in the supply of oxygen from the bottom water
layer in this case can lead to an oxygen deficiency. The depletion of oxygen for the oxidation
of organic matter and other reduced compounds leads to a shift in the processes occurring
due to the anaerobic oxidation of organic matter closer to the sediment surface. Thus,
reduced forms of nitrogen, manganese, iron, and sulfur become predominant in the upper
layer of sediments, and oxygen-free zones with anaerobic conditions are formed [9–11]. An
increase in the content of reduced compounds, in particular, the concentration of sulfides,
in the surface layer of sediments will further lead to an increase in their flow into the
bottom water layer. In this case, anaerobic conditions are formed in bottom sediments
and in the water column [11]. Such changes in the physical and chemical characteristics of
sediments affect the ecological state of the ecosystem and, as a result, the socio-economic
attractiveness of the region.

Relationships between the distribution of Corg in sediments and H2S concentrations
in the pore waters of bottom sediments in the coastal areas of the Crimean Peninsula
shelf were determined (Figure 10). For the surface layer (0–5 cm), a significant positive
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correlation (0.67) was established at the 95% confidence level (Figure 10a). With depth,
the content of organic carbon in the cores increased, which was also seen in the data on
the concentrations of hydrogen sulfide. The values of the correlation dependence of the
studied parameters varied from 0.7 to 0.99, which indicates a strong relationship between
the geochemical characteristics of the sediments and the chemical composition of the pore
water (Figure 10b).
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5. Conclusions

The analysis of the results obtained in this work made it possible to conclude that in
the northwestern region (Karkinitsky and Kalamitsky Gulfs), there was a lack of oxygen
in the bottom sediment surface layer, as well as oxygen deficiency in the bottom water
layer. In the SCC area, intensive hydrodynamics contributed to the saturation of the bottom
waters with oxygen (up to 105% of sat.). At most stations, oxygen penetrated into the
sediment up to 20 mm. The main processes of the organic matter oxidation in the sediment
upper layer occurred with the participation of oxygen. However, despite the saturation of
the bottom water layer with oxygen, in the area near the Feodosiya Gulf, hydrogen sulfide
was already present in the surface layer of sediments, and the main processes in the bottom
sediments proceeded with the participation of iron and hydrogen sulfide. In the Kerch
pre-strait area from the Black Sea side, oxic conditions prevailed in the bottom water layer
and the sediment upper layer, and from the Sea of Azov side, the absence of oxygen was
noted in the upper layer of bottom sediments and the main processes proceeded with the
participation of reduced forms of iron and manganese. In the southwestern part of the
Kerch Strait, suboxic conditions were noted.

The presence of positive linear correlation dependences of the oxygen concentration
on the proportion of the coarse-grained fraction (>0.1 mm), and of the hydrogen sulfide
concentration on the Corg content in the surface layer (0–5 cm) of the sediment and sed-
iment columns, indicate a strong relationship between the geochemical characteristics
of sediments and the chemical composition of the pore water. This confirms the early
assumptions that the average particle size of the sediment determines the oxygen flux,
concentration, and depth of its penetration into bottom sediments, while the intensive
supply and accumulation of organic carbon, on the contrary, lead to the depletion of oxygen
for its oxidation and contribute to the appearance of high hydrogen sulfide concentrations.

It is noted that in areas with an aerobic environment, the main factor determining the
redox conditions is the water dynamics. This factor affects the saturation of bottom waters
with oxygen. However, the limitation of water exchange and changes in the conditions and
rates of sedimentation in these zones can contribute to the formation of oxygen-deficient
zones.
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