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Abstract: Military conflicts are one of the inevitable factors that can cause countries to suffer from
food insecurity due to reduced agricultural productivity, increased food prices, and the deterioration
of agricultural land and infrastructure. Farmland may become fallowed and abandoned as a result
of reduced investment in agricultural management caused by military conflicts. To rapidly assess
the impact of conflicts on agricultural land and food security, the utilization of effective and feasible
methods for the regular monitoring agricultural management status is necessary. To achieve this
goal, we developed a framework for analyzing the spatiotemporal distribution of agricultural land
and assessing the impact of the Ukraine–Russia war on agricultural management in Ukraine using
remote sensing (RS) and geographic information system (GIS) technology. The random forest (RF)
classifier, gap filling and Savitzky–Golay filtering (GF-SG) method, fallow-land algorithm based on
neighborhood and temporal anomalies (FANTA) algorithm, and kernel density method were jointly
used to classify and reveal the spatiotemporal distribution of fallowed and abandoned croplands
from 2018 to 2022 based on Landsat time series data on the Google Earth Engine (GEE) platform. The
results demonstrated that fallowed and abandoned croplands could be successfully and effectively
identified through these proven methods. Hotspots of fallowed croplands frequently occurred
in eastern Ukraine, and long-term consecutive fallow agricultural management caused cropland
abandonment. Moreover, hotspots of war-driven fallowed croplands were found in western Kherson
and the center of Luhansk, where the war has been escalated for a long time. This reveals that the war
has had a significant negative impact on agricultural management and development. These results
highlight the potential of developing an accessible methodological framework for conducting regular
assessments to monitor the impact of military conflicts on food security and agricultural management.

Keywords: remote sensing; geographic information system technology; agricultural land; mili-
tary conflicts

1. Introduction

Food security is closely linked to national economic development, social stability, and
human survival [1,2]. The World Food Summit defines food security as a state where all
people, at all times, have physical and economic access to sufficient, safe, and nutritious
food that meets their dietary needs and food preferences for an active and healthy life [3,4].
However, several factors unsteadily affect national food security. For example, climate
change (i.e., global warming and disastrous weather) and frequent human activities (i.e.,
urban construction and industrial development) enhance natural environment stress and
cause the irregular and unhealthy growth of crops, which could lead to an increased
risk of agricultural production and reduce the prospective return of agriculture [5–8].
Sociopolitical factors, including agricultural policy, financial assistance, and technological
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support, are directly related to the trend of national agricultural development and affect
national food security [9,10]. Moreover, armed conflicts are one of the inevitable factors
that can cause countries to suffer from food crises. The present, ongoing Ukraine–Russia
war started on 24 February 2022.

Ukraine is one of the world’s major agricultural exporters; it is rich in black soil
resources and has a strong ability to produce grain and oil such as wheat, barley, sunflower,
and maize. North Africa, the Middle East, and many European countries heavily depend
on agricultural products exported from Ukraine [11–14]. However, as the war intensified,
national food security and the environment faced a serious threat under the background
of the global COVID-19 pandemic. The war zones in Ukraine cover many cultivatable
areas. The land in the risk zones has been damaged due to military operations, and
may no longer be suitable for cultivating crops until the ecological environment and
agricultural production have been reconstructed and resumed [15,16]. Moreover, hindered
transportation, rising food prices, and economic sanctions against Russia have aggravated
the food crisis in Ukraine and other countries [17–19]. Therefore, due to the serious
negative influence of agricultural productivity decline and food insecurity, it is necessary
to understand the impact of the ongoing war on agricultural land use and obtain timely
and accurate spatial distribution information of land use.

Crop cultivation reduction and cropland abandonment are potential outcomes of
armed conflicts wherein production from cultivatable lands ceases due to the danger of
attacks. However, cropland abandonment is difficult to map because of the lack of reliable
information, which usually relies on field surveys implemented by special organizations
such as the Food and Agriculture Organization of the United Nations (FAO) and Eurostat
(Land Use and Coverage Area frame Survey, LUCAS) [19–23]. Compared with field
surveys, which are time-consuming and have a limited ability to capture the spatial and
temporal patterns of cropland changes, remote sensing is a promising technology that
can rapidly, dynamically, effectively, and cost-efficiently monitor agricultural land use for
large-scale applications and long-term trends [24–28]. Moreover, abandoned croplands
are often defined as croplands that have not been cultivated for at least two–five years; in
this situation, the comprehensive consideration of cropland management patterns over
a long period is required [29]. Long time series of fallowed and active croplands could
be an indication of land management intensity, which can be used to define abandoned
croplands. Fallowed croplands can be defined as land without management for at least
one to three years, which makes common classification models difficult to use due to its
complex land status; for example, fallowed land may remain free of vegetation within
a short time, and it may also regrow grass in a longer time [19,22,30]. The fallow-land
algorithm based on neighborhood and temporal anomalies (FANTA) method was proposed
to classify fallowed land without upfront training data in large-scale extents [31]. This
method analyzes relative temporal and spatial greenness patterns to extract fallowed land
information based on statistical indicators derived from long-term Normalized Difference
Vegetation Index (NDVI) time series data. Without the need for field data for training,
FANTA has the advantage of effectively monitoring the agricultural management status
in regions where it is difficult to conduct fieldwork and obtain sufficient fundamental
geographic data [32].

Temporally continuous NDVI time series data are essential for performing the FANTA
method, which can reveal long-term vegetation dynamics within the cropland extent.
Although the high temporal resolution data acquired via MODIS (Moderate Resolution
Imaging Spectroradiometer) and AVHRR (Advanced Very High-Resolution Radiometer)
are commonly used to calculate NDVI time series, coarse resolution data are unsuitable
for fine classification [33–35]. Landsat datasets have great advantages for application,
owing to their sufficient historical images with 30 m medium spatial resolution. However,
high-quality Landsat NDVI time series data are difficult to obtain and are limited by cloud
contamination and the satellite 16-day revisit cycle [36–39]. Therefore, two major methods
for reconstructing continuous 30 m Landsat NDVI time series data are proposed: a temporal
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interpolation algorithm based on single Landsat data and spatiotemporal fusion technology
by blending MODIS data with Landsat data [40–43]. The gap filling and Savitzky–Golay
filtering (GF-SG) method is a newly developed NDVI time series reconstruction algorithm
that generates synthesized high-quality Landsat NDVI time series data using MODIS
NDVI time series to fill missing values within Landsat data. Subsequently, a weighted
Savitzky–Golay filter was applied to remove the residual noise in the synthesized time
series. The GF-SG method, proven to perform better, can be simply implemented on the
Google Earth Engine (GEE) platform with a free and available GEE code [36].

In addition to the extraction algorithm of fallowed cropland, accurate and efficient
land cover classification techniques are fundamental and essential for obtaining the spatial
distribution and extent of the land cover of interest (i.e., cropland). Machine learning
algorithms have become promising classification methods owing to their superior general-
ization capability and robustness. Several machine learning algorithms, such as support
vector machines (SVMs), back-propagation neural networks (BP), decision trees (DTs), and
random forest (RF), are widely used for land cover classification [44,45]. Random forest, as
a tree-based ensemble method, has shown prominent performance among these methods
and has a strong capacity for data mining from high-dimensional feature variables [46,47].

Remote sensing (RS) methods are commonly applied to rapidly extract and up-
date ground surface information and geographic information systems (GIS) can provide
flexible geographic spatial analysis tools to detect and display spatial hotspots and dis-
perse objects of interest (i.e., active, fallowed, and abandoned cropland) based on their
neighborhood [48,49]. In addition, the combination of RS and GIS technology has been
widely used in environment-related research, such as land use change, spatial planning,
and environmental and socioeconomic risk issues [50–52]. Therefore, in this study, the
use of RS and GIS is beneficial for discovering the potential impact of military conflicts,
which play a significant role in spatiotemporal change assessment and decision support in
agricultural activities.

This study developed a feasible and comprehensive framework for analyzing the
spatiotemporal distribution of agricultural land and assessing the impact of the Ukraine–
Russia war on agricultural management in Ukraine using RS and GIS technology. Several
proven and promising methods have been used to extract land cover information from
2018 to 2022 using RS imagery on the GEE platform. Moreover, the spatial distribution
pattern changes in agricultural land use (i.e., active, fallowed, and abandoned cropland)
dynamics and the empirical assessment of the war impact on agricultural management
status and food security were performed by means of GIS technology. This study provides
an accessible methodological framework for conducting regular assessments to monitor
the impact of the war on food security and agricultural management. It can be used to
estimate the damage during the ongoing war, and is regarded as a mechanism of support
for scientific decisions related to restoration planning.

2. Materials and Methods
2.1. Study Area

Ukraine is a country in Eastern Europe (longitude: 31◦9′56′′ E; latitude: 48◦22′46′′ N)
that covers approximately 603,500 km2 and has a population of approximately 43 million
people. It is divided into 24 oblasts (Cherkasy, Chernihiv, Chernivtsi, Crimea, Dnipropetrovsk,
Donetsk, Ivano-Frankivsk, Kharkiv, Kherson, Khmelnytskyi, Kyiv, Kirovohrad, Luhansk, Lviv,
Mykolaiv, Odesa, Poltava, Rivne, Sumy, Ternopil, Vinnytsia, Volyn, Zakarpattia, Zaporizhzhia
and Zhytomyr) and one autonomous republic (Crimea) (Figure 1) [53]. Ukraine has an average
elevation of about 178 m. This region has a typical humid continental climate, with an annual
average precipitation of 565 mm and an annual average temperature of 7.1 ◦C [54]. Ukraine,
as an agrarian country, is one of the largest grain exporters in the world, and its major land
cover type is cropland, covering nearly half of the country’s area. Wheat, corn, soybeans,
sunflower, barley, and rapeseed are the main agricultural products [55]. Ukraine regained
its independence in 1991, with the dissolution of the Soviet Union. The agricultural land
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management pattern has shifted from collectivized towards market-oriented economies [9,10].
Large areas of agricultural cropland have been fallowed or abandoned without management
because of the lack of financial support, and weeds may regrow on the cropland [23]. In
addition to the problems of historical and political volatility, the ongoing Ukraine–Russia war
has created the risk of food insecurity. The country’s vast agricultural areas are subjected to
military occupation, which is not conducive to sowing campaigns. The war zones are shown
in Figure 1, and are partitioned according to international military reports and cartographic
materials up to June 2022. The affected farming area is approximately 38% of the total cropland
area of Ukraine, comprising 232,300 km2, which is taken into consideration in the buffer zone
of the frontline territory.
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Figure 1. Study region map of Ukraine with respect to war zones and elevation.

2.2. Remote Sensing Satellite Imagery

Surface reflectance (SR) images from the Landsat 8 Operational Land Imager (OLI)
(Collection 2, level-2) were collected from the GEE cloud computing platform from 2018 to
2022. Landsat 8 SR products have been atmospherically corrected using the Land Surface
Reflectance Code (LaSRC). Clouds, cloud shadows, snow, and ice pixels were masked
based on the accompanying quality assessment band. The surface reflectance values from
Landsat collection 2 were calculated by multiplying the original pixel value by a scale factor
of 0.0000275, and then adding an offset of −0.2 per pixel. To obtain clear and cloudless
images that cover the entire study area, we filtered out Landsat images acquired from April
to October 2018 to 2021, and March to June 2022.

2.3. Methodological Framework

The methodology was carried out in two phases (Figure 2). First, level-1 land cover
(cropland, forest, grassland, bare ground, built-up area, water, and wetland) was classified
using an RF classifier with several feature variables derived from Landsat images, such
as spectral indices, tasseled cap transform variables, and gray-level co-occurrence matrix
texture (GLCM) variables. Five level-1 land cover classification maps were generated
for the years 2018–2022. Within the cropland extent, the FANTA method was applied to
map annual fallowed cropland using a high-quality NDVI time series with a 30 m spatial
resolution produced by the GF-SG method by integrating Landsat and MODIS images.
The abandoned cropland was extracted using two consecutive years of fallowed cropland
maps. In the first phase, we used several RS algorithms to extract information on objects
of interest (land cover types, fallowed cropland, and abandoned cropland) on the GEE
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platform. Second, we analyzed the spatial and temporal changes in agricultural croplands
and assessed the impact of the ongoing Ukraine–Russia war on agricultural management
practices and food security. In the second phase, we introduced the kernel density spatial
analysis technology of GIS to more clearly reveal the spatial distribution pattern.
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2.4. Level-1 Land Cover Classification
2.4.1. Training and Testing Sample Generation

To efficiently obtain accurate and sufficient training samples, we integrated manually
labeled samples and samples automatically derived from a global land cover product.
Liu et al. proposed a novel global 30 m land cover dataset that provided fine and accurate
classification maps once every 5 years from 1985 to 2020 (GLC_FCS30-1985_2020) [56]. The
global land cover classification product is produced by applying an RF classifier based
on time series Landsat surface reflectance data, Sentinel-1 SAR data, DEM data, a global
thematic auxiliary dataset, and a prior knowledge dataset on the GEE platform [56–58]. We
adapted the fine classification system of the GLC_FCS30-1985_2020 product to be consistent
with the level-1 land cover types of Ukraine owing to the actual geographical characteristics
(Table 1).

Table 1. Number of samples and description of class system for initial land cover classification
in Ukraine.

No. Code Class
Training Samples

Testing Samples
P M2018 M2021

1 C1 Bare ground 1975 834 867 169
2 C2 Built-up area 1994 1609 1611 279
3 C3 Cropland 5002 1791 1796 322
4 C4 Forest 4975 1756 1763 116
5 C5 Grassland 2134 1106 922 271
6 C6 Wetland 1507 1376 1389 193
7 C7 Water 1811 639 634 225

Total 19,398 9111 8982 1575
P represents the training samples derived from land cover classification product data; M represents the training
samples generated by manually labeling.
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We extracted the stable pixels for which the land cover classes remained unchanged
from all the GLC_FCS30-1985_2020 classification maps by using the overlay spatial analysis
method in ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA). Subsequently, many
points were automatically generated using stratified random sampling from the stable
areas. Considering the influence of the classification errors of the product, we checked
the automatically derived points and removed the observably incorrect points according
to Google Earth and Landsat images. A total of 19,398 points were selected from the
classification product as the training samples for classification in each year. Considering
the labor cost, operational efficiency, and dynamic spatial distribution of land cover across
several years, we manually labeled a total of 9111 and 8982 points from the Landsat images
in 2018 and 2019, respectively, and labeled points of other years could be updated based on
the two-year sample sets.

A total of 1575 points within the testing dataset used to assess the classification
accuracy were manually labeled from the high-resolution images available on Google
Earth. Moreover, to ensure the reliability of the testing data for assessing the historical
classification results, the global ESRI land cover classification product with a 10 m spatial
resolution for each year from 2017 to 2021 released by the Environmental Systems Research
Institute was used as a reference to correct the testing points.

2.4.2. Random Forest Classification

The random forest classifier is an ensemble learning algorithm that integrates many
classification and regression tree (CART) classifiers by using a bagging strategy. The
bootstrap sampling technology is used to generate sample subsets for training each CART.
During the construction of a CART, each node is split using the feature variables based
on the threshold yielded from the smallest Gini coefficient [59,60]. The RF method has
been widely used and proved to perform better with high-dimensional data and provide
higher accuracy in classification tasks [61,62]. Furthermore, application programming
interfaces (APIs) for the RF classifier have been provided to make requests to the GEE
servers, allowing for the rapid completion of large-scale land cover mapping on the GEE
platform. The number of decision trees (Ntree) and the number of variables per split (Mtry)
are important hyper-parameters of the RF classifier that can affect computational efficiency
and classification accuracy. In this study, Ntree was set to 100 and the value of Mtry was the
square root value of the total number of input features.

We applied the RF method with several feature variables to classify level-1 land covers.
The variables included surface reflectance variables derived from Landsat images (blue,
green, red, near infrared, and two shortwave infrared bands); Normalized Difference Vege-
tation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Normalized
Difference Built-up Index (NDBI), and Bare Soil Index (BSI); brightness, greenness, and
wetness from a tasseled cap transform (Table 2); and texture variables (contrast, correlation,
inverse difference moment, sum average, and entropy) calculated from the gray-level co-
occurrence matrix method (GLCM) using the near-infrared band that can reflect vegetation
information [63–65].

Table 2. Calculation equations of normalized difference indices and component variables from
tasseled cap transform method.

Abbreviation Formula

NDVI (NIR − Red)/(NIR + Red)
MNDWI (Green − SWIR1)/(Green + SWIR1)

NDBI (SWIR1 − NIR)/(SWIR1 + NIR)
BSI ((SWIR2 + Red) − (NIR + Blue))/((SWIR2 + Red) + (NIR + Blue))

Brightness 0.3037 × Blue + 0.2793 × Green + 0.4743 × Red + 0.5585 × NIR × +0.5082 × SWIR1 + 0.1863 × SWIR2
Greenness −0.2848 × Blue − 0.2435 × Green − 0.5436 × Red + 0.7243 × NIR × +0.0840 × SWIR1 − 0.1800 × SWIR2
Wetness 0.1509 × Blue + 0.1973 × Green − 0.3279 × Red + 0.3406 × NIR × −0.7112 × SWIR1 − 0.4572 × SWIR2
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Because of the pixel-based classification, the results may contain many scattered pixels
representing misclassified pixels that directly decrease the classification accuracy and
impact the continuity of spatial patterns for land cover types in the classification maps.
Therefore, a post-classification process was conducted to reduce the salt-and-pepper noise
in ENVI 5.1 software (Exelis Visual Information Solutions, Inc., Boulder, CO, USA). Noise
pixels were removed using majority analysis, which groups the scattered pixels into the
majority class within a 5 × 5 kernel size.

2.4.3. Accuracy Assessment

The confusion matrix is one of the most common methods applied to assess classifi-
cation accuracy. Several evaluation indicators derived from the confusion matrix can be
used to comprehensively assess the classification results, including the overall accuracy
(OA), kappa coefficient (Kappa), user’s accuracy (UA), and producer’s accuracy (PA). The
OA represents the total percentage correctly classified. The kappa coefficient reflects the
agreement between the classification results and the actual reference data. The UA de-
scribes the percentage of correctly classified results of the classification results per class.
The PA describes the percentage of correctly classified results of the actual reference sites
per class [66]. The equations for calculating each indicator are as follows:

OA = ∑n
i=1 mii/N (1)

UA = mii/mi+ (2)

PA = mii/m+i (3)

Kappa =
(

N∑n
i=1 mij −∑n

i=1 mi+m+i

)
/
(

N2 −∑n
i=1 mi+m+i

)
(4)

where N is the total number of testing samples; mii is the correctly classified pixel of class i;
mi+ is the total pixel number of class i in the data to be verified; m+i is the total pixel number
of type i in the reference data; and n is the class number.

2.5. Fallowed Cropland Classification
2.5.1. NDVI Time Series Reconstruction Method

The Landsat NDVI time series data with 30 m spatial resolution effectively reflected
the vegetation phenological stages and could be used to classify croplands under different
management practices [67,68]. However, due to frequent cloud contamination, unscanned
gaps, and limitations of satellite 16-day revisit cycles, temporally continuous Landsat NDVI
time series were difficult to obtain.

A novel reconstruction method called gap filling and Savitzky–Golay filtering (GF-SG)
was recently proposed by Chen, and was used to produce Landsat NDVI time series data
in this study. The GF-SG method first fills the missing values of the original Landsat NDVI
time series data by using MODIS NDVI time series data to generate a cloud-free Landsat
NDVI time series. The coarse spatial resolution of MODIS images is resampled using the
bicubic interpolation method, which is in accordance with the spatial resolution of the
Landsat images. The temporal shape curve for each Landsat image pixel is determined
by searching and matching operations in the resampled MODIS image around the pixel
location. The synthesized Landsat-MODIS NDVI time-series data are preliminarily gen-
erated. Second, a weighted Savitzky–Golay filter method is designed to remove residual
noise and smooth the synthesized NDVI time series. Finally, cloud-free and temporally
continuous Landsat NDVI time series data with 30 m spatial resolution and an 8-day period
are produced [36].

Additionally, we selected the MOD09Q1 product from the GEE platform to generate
MODIS time series data. MOD09Q1, corrected for atmospheric conditions, provides surface
spectral reflectance of red and near-infrared at 250 m resolution. For each pixel, a value
was selected from all acquisitions within the 8-day composite period. Moreover, the GF-SG
method can be implemented simply using an open-source GEE code on the GEE platform.
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Finally, we calculated 46 NDVI images for each year from 2018 to 2021 and 28 NDVI images
for January–July 2022.

2.5.2. FANTA Algorithm

The fallow-land algorithm based on neighborhood and temporal anomalies (FANTA)
method is used to identify active and fallow land by using NDVI time series data, which
compares the current greenness of a cropland pixel to its historical greenness and its
neighborhood greenness [31,32]. Temporal anomalies (T_NDVIm

max and T_NDVIm
range) are

calculated using a z-score transformation as follows:

T_NDVIm
max =

(
NDVIm

max − NDVIm
max_mean

)
/NDVIm

max_stdv (5)

T_NDVIm
range = (NDVIm

range − NDVIm
range_mean)/NDVIm

range_stdv (6)

where m is the month in the year of interest; NDVIm
max is the monthly NDVI maximum

value; NDVIm
range is the monthly NDVI range value that is the difference between the

maximum and minimum NDVI values. The mean, standard deviation and median values of
monthly NDVIm

max and NDVIm
range are also calculated. In particular, the monthly NDVIm

max
and NDVIm

range values used for calculating mean and standard deviation are greater than
or equal to the median NDVI observed with the pixels between 2018 and 2022.

Spatial anomalies are calculated using z-score transformation based on the monthly
NDVI maximum and monthly NDVI ranges, similar to the temporal anomalies. However,
the extraction method of the median values (S_NDVIm

max_stdv and S_NDVIm
ramge_stdv) is

different, and was calculated based on all annual pixels within a neighborhood zone.
In this study, the administrative regions are used as spatial neighbor regions instead of
climate divisions from the primal method because of the aim of identifying the war-driven
agricultural management changes in our study.

The FANTA method uses monthly NDVI temporal and spatial anomalies to identify
the fallowed cropland based on four logical statements (Equations (7)–(10)). If any two of
the four logical statements were true, the pixel was classified as fallowed cropland for a
given month.

Statement 1 (Equation (7)) and Statement 2 (Equation(8)) illustrate the consistently low
NDVI maximum and range values of fallowed cropland, respectively, during the growing
season based on temporal greenness anomalies.

T_NDVImi
max < −3(i = 5, 6, 7) OR T_NDVI

mj
max < −3(j = 4, 5, 6) (7)

T_NDVImi
range < −3(i = 5, 6, 7) OR T_NDVI

mj
range < −3(j = 4, 5, 6) (8)

where m is the month in the year of interest; T_NDVIm
max and T_NDVIm

range are the tempo-
ral anomalies based on the NDVI maximum and range values, respectively; i represents
the main growing season in May, June, and July; and j represents the early growing season
in April, May, and June.

Statement 3 (Equation (9)) and Statement 4 (Equation (10)) illustrate the consistently
low NDVI maximum and range values of fallowed cropland within a neighborhood,
respectively, during the main growing season based on spatial greenness anomalies.

MAX(NDVImi
max) < 0.8MAX(S_NDVImi

max_stdv)(i = 4, 5, 6, 7) (9)

MAX(NDVImi
range) < 0.8MAX(S_NDVImi

range_stdv)(i = 4, 5, 6, 7) (10)

where S_NDVIm
max_stdv and S_NDVIm

ramge_stdv are the median values of NDVIm
max and

NDVIm
range that are calculated based on all annual pixels within a neighborhood zone,

respectively; i represents the main growing season in April, May, June, and July.
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2.6. Cropland Spatial Distribution Analysis

To reveal the spatial distribution pattern of active, fallowed, and abandoned croplands
more clearly and visually, a spatial geographical analysis algorithm called kernel density
estimation was applied. This method calculates the density of point features in a neighbor-
hood around those features, and produces a continuous density surface map to show the
density of objects of interest. This method is beneficial for detecting and displaying spatial
hotspots and the dispersion of cropland for effectively and directly understanding spatial
and temporal pattern characteristics [69,70]. In this study, the kernel density method was
carried out using spatial analysis tools in ArcGIS 10.2 software. First, the raster data ob-
tained from several fallowed and abandoned cropland classification maps were converted
to polygon vector data. Then, the center points of the polygon features were extracted to
execute the kernel density method. Finally, kernel density maps were obtained to assess
agricultural management in the case of the ongoing Ukraine–Russia war.

3. Results
3.1. Level-1 Land Cover Classification

The RF method was applied to classify level-1 land cover types within 18 variables for
each year from 2018 to 2022. The overall accuracy, kappa coefficient, producer’s accuracy,
and user’s accuracy are shown in Table 3. The overall accuracy and kappa coefficient
of annual land cover classification are similar, with values greater than 80% and 0.79,
respectively. The RF method yielded the highest producer’s accuracy and user’s accuracy
for bare ground, built-up areas, and water, approximately above 90% for each year. Forests
had the highest producer’s accuracy with above 95%, whereas the user’s accuracy value was
lower, ranging from 69.62 to 86.05%. RF also produced good results for the cropland used
to extract the agricultural extent. The producer’s accuracy of cropland ranged from 86.02
to 92.55%, and the user’s accuracy of cropland ranged from 67.95 to 71.99%. In contrast,
grasslands and wetland had lower accuracies among all classes. The producer’s and
user’s accuracies of grassland were about 80% and 50%, respectively, and the classification
accuracy of wetland was approximately 70%.

Table 3. Accuracy evaluation results based on testing samples.

Year C1 C2 C3 C4 C5 C6 C7 OA(%) Kappa

2018
PA(%) 97.63 94.62 88.20 98.28 44.65 65.80 98.22

82.29 0.7904UA(%) 94.83 91.03 70.12 75.00 79.08 70.56 100.00

2019
PA(%) 88.76 91.40 87.58 98.28 53.14 60.10 99.56

81.59 0.7817UA(%) 97.40 89.47 67.95 79.17 78.26 68.64 100.00

2020
PA(%) 84.02 95.70 86.02 98.28 47.97 58.03 97.78

80.13 0.7646UA(%) 96.60 87.25 68.23 70.81 80.25 65.12 99.55

2021
PA(%) 85.80 95.70 90.99 95.69 55.72 77.20 98.22

84.89 0.8208UA(%) 96.03 89.90 71.99 86.05 90.42 74.13 99.10

2022
PA(%) 81.66 96.42 92.55 94.83 57.35 66.84 98.22

83.82 0.8081UA(%) 96.50 96.42 69.46 69.62 88.14 79.14 97.36

Figure 3 shows the visual spatial patterns of all classes based on Google Earth images,
RF classification results (CR_RF30-2021), and three different land cover products. The
products included GLC_FCS with 30 m spatial resolution in 2020 (GLC_FCS30-2020),
GlobeLand with 30 m spatial resolution in 2020 (GlobeLand30-2020), and ESRI land cover
data with 10 m spatial resolution in 2021 (ESRI10-2021). The results revealed that CR_RF30-
2021 achieved desirable visual results, as demonstrated in the second column of Figure 3,
which were able to better distinguish different classes within the neighborhood. The
class boundaries were smooth and clear. The spatial continuity was less influenced by
the scattered pixels (salt-and-pepper noise). Compared with the GLC_FCS30-2020 and
GlobeLand30-2020 products, CR_RF30-2021 showed better visual classification results for
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bare ground, grassland, and wetland (see Figure 3b,c). Although cropland, as the most
focused class, was partially misclassified as grassland and wetland, the classification results
were satisfactory and can be sufficient to illustrate the actual spatial pattern compared with
the high-spatial-resolution maps.
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Figure 3. Four representative subsets (a–d) for comparing the RF classification results with three land
cover products and Google Earth images. The first column shows the Google Earth image, the second
column shows the RF classification results named CR_RF30-2021, the following columns illustrate the
classification products named GLC_FCS30-2020, GlobeLand30-2020, and ESRI10-2021. C (longitude,
latitude) represents the central geographic coordinate of the enlarged pictures.

3.2. Spatial and Temporal Analysis of Fallowed and Abandoned Cropland

Fallowed cropland, defined as farmland without cultivation and management for one
year, was extracted from the FANTA method. To monitor the abandoned cropland, we
used fallowed cropland time series classification results to map the abandoned cropland in
which the cultivatable land was not cultivated for at least two consecutive years.

Figure 4 shows that the fallowed cropland was widespread in many administrative re-
gions, and the distribution pattern varied during the five years. The percentage of fallowed
croplands fluctuated between years. The fallowed cropland was mainly concentrated in
eastern Ukraine, and the highest density frequently occurred in Kherson, which accounted
for 12.49–43.43% of the total fallowed cropland area of Ukraine from 2018 to 2022. Other
eastern regions, such as Zaporizhzhia, Crimea, Luhansk, Kirovohrad, Dnipropetrovsk, and
Mykolaiv had larger areas of fallowed croplands with an area percentage of more than 6%
of total fallowed cropland for at least two years. In western Ukraine, the spatial distribution
pattern of fallowed cropland was dispersed with a smaller area percentage of less than
4%. Some western regions, such as Zhytomyr, Volyn, Rivne, Lviv, and Khmehnytskyi,
accounted for more than 1% of the total fallowed cropland area. The fallowed cropland
area percentage of total cropland area in each administrative region was 0.01–3.84%.
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Figure 4. (a–e) illustrate the annual kernel density maps of fallowed cropland from 2018 to 2022;
(f) illustrates the statistical graph of area percentage of fallowed cropland. FAf represents the area of
fallowed cropland in each administrative region as a percentage of the total fallowed cropland area
in Ukraine. FBf represents the area of fallowed cropland as a percentage of the cropland area in each
administrative region.

Figure 5 shows that a certain area of fallowed cropland without management changed
to abandoned croplands and occurred in several administrative regions with different
area percentages. The hotspots frequently occurred in western Kherson, with the area
percentage of total abandoned cropland varying from 24.62 to 64.39%, and also continually
arose in the center of Luhansk, with the area percentage varying from 0.75 to 14.42%.
Moreover, the abandoned cropland was distributed more widely in eastern Ukraine from
2021 to 2022; besides Kherson and Luhansk, some administrative regions, such as Crimea,
Donetsk, Mykolaiv, and Zaporizhzhia, also had large areas of abandoned cropland, with
an area percentage of more than 7% of total abandoned cropland. Abandoned cropland is
also widely distributed in some regions in the northwest of Ukraine, such as Volyn, Rivne,
Zhytomyr, and Kyiv, during different periods.
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Figure 5. (a–d) illustrate the kernel density maps of abandoned cropland for each consecutive two-
year period from 2018 to 2022; (e) illustrates the statistical graph of area percentage of abandoned
cropland. FAa represents the area of abandoned cropland in each administrative region as a percentage
of the total abandoned cropland area in Ukraine. FCa represents the area of abandoned cropland as a
percentage of the total fallowed cropland area in each administrative region.

3.3. Influence of the War on Agricultural Cropland

As for the influence analysis of the war on agricultural development and management,
farmland that was regularly cultivated for at least three years during 2018–2021 and only
fallowed in 2022 was defined as cropland that could be severely impacted by the Ukraine–
Russia war. Administrative regions that suffered from the war mainly included Chernihiv,
Crimea, Donetsk, Kharkiv, Kherson, Kyiv, Luhansk, Mykolaiv, Sumy, Zaporizhzhia, and
Zhytomyr, which had large areas of cropland (Figure 6b). From the kernel density map,
within the confines of war zones, the agricultural management of cropland was influenced
to various extents, with fallowed cropland distributed widely in all administrative regions.
Western Kherson, the center of Luhansk and northern Crimea had high kernel density
values, with largest area percentages of 25.35%, 22.91%, and 9.13% of the total fallowed crop-
land, respectively. Other administrative divisions, such as Mykolaiv, Chernihiv, Kharkiv,
Zaporizhzhia, and Donetsk, had an area percentage of the total fallowed cropland with the
value of approximately 6%. The fallowed cropland area percentage of total cropland area
in each administrative region was 0.17–2.14%.
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Figure 6. (a) illustrates the kernel density map of fallowed cropland in war zones; (b) illustrates
the level-1 land cover classification map of the war zones; (c) illustrates the statistical graph of area
percentage of fallowed cropland. FAf represents the area of fallowed cropland in each administrative
region as a percentage of the total fallowed cropland area in war zones. FBf represents the area of
fallowed cropland as a percentage of the cropland area in each administrative region.

4. Discussion
4.1. Mapping and Analysis Approaches

To accurately and rapidly extract fallowed and abandoned land and effectively assess
the influence of the war on agricultural cropland management practices in Ukraine, we
applied a series of proven remote sensing and GIS techniques, including the RF classifier,
GF-SG method, FANTA algorithm, and kernel density estimation; these remote sensing
methods can be implemented on the GEE platform. The reasonable results adequately
demonstrate the accessibility of these methods for monitoring large-scale cultivated land
management patterns.

For the RF method to classify level-1 land cover types, several variables were used
to provide abundant information, which helped identify the spectral, geometric, interior
structure, and spatial neighborhood characteristics of different surface ground objects
on Landsat 8 RS imagery. The RF classifier with these variables produced satisfactory
classification accuracy for cropland, which played an important role in developing a
cultivated mask layer for the following tasks. In the annual classification maps, cropland
was partially misclassified as grassland and wetland owing to the spectral similarity of
herbaceous vegetation and the spatially blurred boundary of adjacent classes.

The FANTA algorithm mainly depends on NDVI time series data to identify fallow
land. The most prominent advantage of the FANTA algorithm is that it requires no field
data for training and instead relies adequately on temporal and spatial NDVI anomalous
values [31]. Using this method to map fallowed croplands is not subject to geographical
conditions, climate conditions, or time cost; it may help factually reflect the historical
greenness dynamics of vegetation growth and rapidly obtain estimate results to monitor
the agricultural cultivated management status. The GF-SG method significantly reduced the
influence of cloud contamination on Landsat images and improved the temporal resolution,
resulting in high-quality Landsat NDVI time series data with 30 m spatial resolution and
8-day temporal resolution based on MODIS data [36].
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Kernel density estimation is a suitable spatial analysis technology for detecting
hotspots and dispersion patterns in fallowed and abandoned croplands. It can intuitively
and visually reveal the areas that frequently occur as hotspots of fallowed and abandoned
croplands, which should be considered for reinforcing agricultural management and in-
creasing agricultural production [71]. The hotspots of fallowed and abandoned cropland
sequentially occurring in war zones can be used as an indicator for assessing the risk of
food crisis caused by the war.

A joint utilization of the RF classifier, GF-SG method, FANTA algorithm, and kernel
density estimation proved beneficial for quickly monitoring and assessing agricultural
cropland status in large-scale regions where it was difficult to conduct fieldwork. The
practical international situation of the ongoing war in Ukraine is complicated and volatile,
which increased the risk of collecting field data, and we had minimal detailed prior knowl-
edge of Ukrainian agricultural management. The methods and implementation procedures
proposed in this study can be used for the rapid and effective assessment of the impact of
war on agricultural management.

4.2. Assessment of Agricultural Cropland Management Practices

The annual kernel density maps of fallowed cropland illustrated that fallow cropland
management was common in Ukraine. The spatial distribution pattern of fallowed crop-
lands was widespread and varied between years. Hotspots of fallowed cropland frequently
occurred in eastern Ukraine, such as Kherson, Crimea, Luhansk, and Zakarpattia, and
long-term consecutive fallow agricultural management caused cropland abandonment.
Moreover, Volyn, Rivne, Zhytomyr, Kyiv, and Chernihiv, which were located in northwest
Ukraine, also had widely distributed abandoned croplands.

Owing to a more direct evaluation of the influence of the war in Ukraine, we further
extracted the cropland that was regularly cultivated for at least three years from 2018 to
2021 but just fallowed in 2022. The results revealed that the hotspots of cropland that were
impacted by the war were found in western Kherson, the center of Luhansk, and northern
Crimea. Kherson and Luhansk are the major war zones where Russian forces controlled or
operated attacks without control from February to July 2022. The Autonomous Republic
of Crimea is the only region within Ukraine with its own constitution. It came to be
controlled by Russia on 16 March 2014, and had a sovereignty dispute between Russia
and Ukraine [72]. Northern Crimea was close to the war zones of Russian control. Other
oblasts, such as Zaporizhzhia, Donetsk, and Kharkiv in eastern Ukraine, and Chernihiv,
Sumy, Kyiv, and Zhytormyr in northern Ukraine, had large areas of fallowed cropland,
which also suffered from the Ukraine–Russia war and Ukrainian partisan warfare, which
have directly affected the agricultural and economic activities of Ukraine [73].

It has been reported by FAO that these war-impacted oblasts have suffered from the
highest levels of food insecurity, especially Kherson, Luhansk, Kharkiv, Chernihiv, and
Sumy. The war has severely disrupted economic activities, which has caused a loss of
income and increased food prices. Due to migration movement and agricultural infrastruc-
ture damaged by the ongoing war, agricultural productivity has significantly reduced and
a large area of cultivatable land has become fallowed cropland without agricultural man-
agement [74]. With intensifying wars, pollutants from ordnance material explosions can
seriously destroy soil, water, and the atmospheric environment, which directly influences
the growth of crops and food production.

As Ukraine is one of the world’s top agricultural producers and exporters, the war
could jeopardize the food security of many countries, especially those that are highly depen-
dent on Ukraine and Russia for food and fertilizer imports [75]. Moreover, according to the
historical fallowed and abandoned cropland maps, the spatial distribution of agricultural
croplands without management is widespread in many oblasts and varies during different
periods based on various factors such as soil quality, topography, population, climate, and
agricultural and economic policies [76]. It is necessary to monitor agricultural resources
and management regularly to reduce the risk of a food crisis.
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5. Uncertainty and Limitations

Our study has demonstrated that the proposed methodological framework for an-
alyzing the spatiotemporal distribution of agricultural land and assessing the impact of
war on agricultural management is effective and feasible. The evaluated results can be
used to support scientific assessments and decisions for food security and agricultural
livelihoods. Nevertheless, some uncertain and limiting factors may impact the results, and
several avenues for further improvement of these methods are possible.

First, we emphatically assessed agricultural cropland management practices from
2018 to 2022, in which the time span was comparatively shorter for cropland abandonment
mapping. The extension of the evaluated period and longer-term NDVI time series data
may provide more sufficient and accurate historical greenness information for cultivated
land. The FANTA method can improve the identification precision of fallowed croplands.
Second, owing to the limitations of geographical conditions, the lack of field data creates
uncertainty in the evaluation accuracy. Actual field data on agricultural management
and auxiliary data, such as soil maps, agricultural parcel abandonment rate maps and
historical agricultural statistical data, can help to reduce misinterpretations of cropland
management maps. Moreover, the FANTA method depends mainly on long-term statistical
NDVI values with empirical parameters. Auxiliary data can be used to correct the empirical
parameters to reveal the actual ground conditions more accurately. Third, the quality of
Landsat imagery plays an important role in the extraction of information. Although NDVI
interpolation methods effectively reduce the impact of cloud contamination, they may
not completely eliminate noise. The use of multisensory data may provide additional
information to ensure data accuracy. We will continue to conduct this research. If we have
the opportunity to request a future partnership with Ukrainian universities in connection
with the agricultural sector, we may be able to obtain accurate materials from local farmers
or experts and make the results as accurate as possible.

6. Conclusions

This study proposes a feasible framework for monitoring the spatiotemporal distri-
bution of agricultural land and assessing the impact of war on agricultural management
in Ukraine using RS and GIS technology. RF, GF-SG, and FANTA algorithms were used
to classify fallowed croplands based on Landsat time series data on the GEE platform.
Abandoned croplands were extracted based on the change detection. The kernel density
method can help clearly reveal the spatial distribution of fallowed and abandoned crop-
lands. The successful utilization of these methods has proven beneficial for the simple
and quick monitoring of the spatiotemporal characteristics of agricultural cropland status
in large-scale regions where it is difficult to conduct fieldwork. The results reveal the
serious negative influence of war on agricultural management and development, which can
directly increase the risk of international food insecurity. This study provides an insightful
way to utilize scientific technology to regularly monitor the impact of war on food security
and agricultural livelihoods. It can be easily expanded to other places dealing with similar
issues which could be of concern to the whole world, e.g., wars, territorial conflicts based
on irredentism, or more general global changes impacting agricultural developments and
their regulation factors in the future.
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