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Abstract: Urban land-use affects surface air temperature; however, the impact of urban land-use on
surface air temperature, particularly the extent to which it affects the duration of extreme heat waves,
remains uncertain and the mechanisms of diurnal differences need to be further explored. This paper
presents study of daytime/nighttime extreme heat waves duration in Beijing under different land-use
changes by adopting an index of cumulative hours of extreme heat waves exceeding the certain
thresholds. The urban day/night extreme heat waves cumulative hourly interpolation models were
established based on high-resolution urban land-use and socioeconomic data and were assessed to
have good performance. The annual average cumulative hours of extreme heat waves increased by
95% (daytime) and 116% (nighttime) in 2016–2020 compared to 2011–2015. The cumulative hours for
each land-use type ranked as follows: urban land > cropland > water > grassland > woodland. We
found that the cumulative hours of extreme heat waves increased significantly with the proportion
of urban land and decreased significantly with the proportion of forested land and water. This
research provided important information for alleviating extreme heat waves in cities and for rational
land planning.

Keywords: extreme heat waves; land use/cover; interpolation models; daytime; nighttime

1. Introduction

Under the background of global climate change, the frequent occurrence of extremely
high temperature weather has a great impact on human health and social economy [1,2].
Studies have shown that land use/cover changes alter the surface roughness, vegetation
coverage, and surface reflectivity, which directly affect the latent heat, sensible heat, and
water exchange between the surface and the atmosphere, thereby affecting the local regional
climate and promoting thermal environment changes [3,4]. Urban land expansion is closely
related to urban high temperatures [5–7], and urban land use expansion changes the
thermodynamic characteristics of the underlying surfaces of urban areas to a large extent,
and also has a certain impact on the global temperature increase [8,9]. Therefore, land-use
change can be regarded as the main factor affecting urban high temperatures [10].

Some studies explored the relationship between urban land-use change and urban land
surface temperature from different perspectives. Studies were made of the impact of urban
expansion on urban land surface high temperatures by analyzing the relationships between
various types of building indices or construction land scale and surface temperature [11–13].
Some studies analyzed the relationships between changes of different land-use types and
surface temperature [14,15] or usage of remote sensing indices (Normalized Difference
Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), etc.) to conduct
correlation with surface temperature [16,17]. Some scholars estimated the contribution
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rates of different land-use types to high temperatures [18–21]. In addition, related research
introduced the landscape pattern index to study their impact on urban land surface high
temperatures [22,23]. In general, most of the current studies have focused on surface
temperature rather than surface air temperature. However, the impact of urban land-use
on surface air temperature, especially the extent of the effect on the duration of extreme
heat waves, remains uncertain, and the mechanisms of their diurnal differences need to be
further explored.

In this study, we explored daytime/nighttime extreme heat waves changes in Beijing
under different land-use changes from 2011 to 2020 spanning the 12th Five-Year Plan and
13th Five-Year Plan. Data measured by 225 meteorological stations in the Beijing area is used
in this study and are provided by the Beijing Meteorological Disaster Prevention Center.
The 90% quantile was taken as the high temperature threshold, and the cumulative hours
of extreme heat waves exceeding the thresholds (daytime: 33.1 ◦C; nighttime: 27.9 ◦C) were
adopted to characterize the intensity and duration of extreme heat waves. We established
the urban day/night extreme heat waves interpolation models based on high-resolution
urban land use and socioeconomic data during 2011–2020. The relationship between
different land-use changes and accumulated hours of day/night extreme heat waves
was explored.

2. Materials and Methods
2.1. Study Area

Beijing is located within the range of 115.7◦ E–117.4◦ E, 39.4◦ N–41.6◦ N, with an
altitude range of 6–2300 m. It has a jurisdiction with over 16 districts and 331 townships,
covering an area of 16,410.54 km2 (Figure 1a). At the end of 2020, Beijing’s permanent
population was 21.893 million of which the urban population was 19.166 million, accounting
for 87.5%. The gross domestic product (GDP) of Beijing is 3.6 trillion yuan, and the
city is worthy of being called an international metropolis and representative of China’s
rapid urbanization (Figure 1b). The region has a typical temperate sub-humid continental
monsoon climate with high temperatures and a rainy summer. Through calculation, we
found that, from 2011 to 2020, the average temperature in summer (June–August) in Beijing
increased at a rate of 0.64 ◦C/10a, and the number of hot days also increased, making
Beijing one of the hottest cities in China.

2.2. Data Collection and Preprocessing
2.2.1. Meteorological Data

According to the official data published by the China Meteorological Administration,
the average daily maximum temperature in Beijing was significantly higher in June, July,
and August than in other months. Therefore, in this study, summer was chosen as the time
period when extreme heat waves occur frequently in Beijing. Hourly temperature data from
Beijing meteorological stations (MSs) from June to August during 2011–2020, provided by
the National Meteorological Information Center, were used in this study. We selected a total
of 225 MSs (20 national weather stations-NWSs, 205 automatic weather stations-AWSs) that
were established before June 2011 and still in use until September 2020 (Figure 1a). Most
NWSs are responsible for regional or national weather information exchange and are the
main body of the national weather and climate website. The observation data obtained by
AWS are mainly used for weather services in their own provinces (districts and cities) and
localities and also complement the observation data on the national weather and climate
website. All observation data were processed by the National Meteorological Information
Center for strict quality control. The outliers in the original data were eliminated, and the
missing data are replaced by observations at adjacent times or average values, reducing the
error caused by instrument failure or measurement error, and the data are highly accurate.
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Figure 1. (a) Elevations and locations of meteorological stations (MSs). (b) Land cover types of
cropland, woodland, grassland, shrubland, wetland, water, urban land, and bare land in 2020 (The
black border represents the administrative border of the district; the gray border represents the
administrative border of the township. Data on administrative boundaries were obtained from the
National Geomatics Center of China).

2.2.2. Land Cover

Land cover data were from the GlobeLand30 V2010 and GlobeLand30 V2020 database
(downloaded at http://www.globallandcover.com (accessed on 8 July 2022)), with a spatial
resolution of 30 m, include 10 types, namely: cropland, woodland, grassland, shrubland,
wetland, water, tundra, urban land, bare land, and glacier. The data accuracy of Glo-
beLand30 V2010 was evaluated by Tongji University. Over 150,000 test samples were laid
down, and the overall accuracy of GlobeLand30 V2010 data was 83.50% with a Kappa coef-
ficient of 0.78. The data accuracy of GlobeLand30 V2020 was evaluated by the Aerospace
Information Research Institute, Chinese Academy of Sciences. With over 230,000 samples
laid down, the overall accuracy of GlobeLand30 V2020 data was 85.72% with a Kappa
coefficient of 0.82. The Kappa coefficient is used for consistency testing and can also be
used to measure classification accuracy. In general, a higher Kappa coefficient indicates a
higher classification accuracy.

2.2.3. Population Density

The spatial distribution kilometer grid data of China’s population density in 2015
and 2020 were used, which were from the Institute of Geographic Sciences and Natural
Resources Research (IGSNRR, https://www.resdc.cn/ (accessed on 8 July 2022)), with a
resolution of 1 km. The population density unit is person/km2. The cumulative population
of each district in Beijing was calculated by the ArcGIS statistical tool and verified by the

http://www.globallandcover.com
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resident population of each district in Statistical Yearbook data. The two showed a strong
correlation, with R2 values of 0.99 (2015) and 0.99 (2020).

2.2.4. GDP

Spatial distribution kilometer grid data of China’s GDP in 2020 from the IGSNRR
were used, with a resolution of 1 km. Each grid cell represents the total GDP of the area in
units of 10,000 yuan/km2. The cumulative GDP of each district in Beijing was calculated
using the ArcGIS zoning statistical tool and verified using the total GDP of each district
in the Beijing Regional Statistical Yearbook 2021 (http://nj.tjj.beijing.gov.cn/nj/qxnj/2021
/zk/indexch.htm (accessed on 8 July 2022)). The two showed a strong correlation with R2

values of 0.96 (2015) and 0.96 (2020).

2.2.5. DEM

Digital Elevation Model (DEM) data were derived from the Shuttle Radar Topography
Mission (SRTM) data of the US Space Shuttle Endeavor. In this study, the latest SRTM
V4.1 data were resampled to generate a new dataset with a resolution of 250 m. Data were
projected using a WGS84 ellipsoid.

2.3. Quantification of Extreme Heat Waves and Spatial Mapping

In this study, we used the hourly air temperature data of 20 national weather stations
and 205 automatic weather stations for the past 10 years (2011–2020). This is the expanded
dataset with the largest number of stations and the most abundant data. Based on hourly
temperature data, the daytime (6:00–19:00) and nighttime (19:00–6:00) data in the past
10 years were sorted from small to large, and the 90% quantile was taken as the high
temperature threshold. The cumulative hours of extreme heat waves at each station
exceeding 33.1 ◦C during the daytime, during the summer (June to August), from 2011
to 2015 (12th Five-Year Plan) or from 2016 to 2020 (13th Five-Year Plan), were calculated,
referred to as EHW125d and EHW135d. The cumulative number of hours over 27.9 ◦C at
night at each station was calculated, referred to as EHW125n and EHW135n. Land cover
(cropland, woodland, grassland, shrubland, wetland, water, urban land, and bare land),
population density, DEM, and GDP, as the predictors, which affected the spatial distribution
of high temperature, were selected [24,25]. Then, the extreme heat waves interpolation
models were established based on urban surface land features as follows:

EHWn = f (DEM, landn, pop, GDP) (1)

where DEM is the elevation of the weather station, Landn represents the area of each
land use type within the optimal buffer width of the land use type, pop is the population
density of the site’s location, GDP represents the gross domestic product, EHWn represents
EHW125d, EHW125n, EHW135d, or EHW135n.

To obtain the spatial scale with the strongest correlations between various factors
and EHWn, 225 MSs were set with 100 buffer widths ranging from 1 to 100 km, and the
land cover grid data were cropped with the vector files of the buffer. Using the spatial
analysis function of ArcGIS, areas of 8 land cover types in 100 buffer zones of approximately
225 MSs were obtained (8 × 100 = 800 variables). DEM, GDP and population density data
were point data (3 variables). In summary, 803 predictor variables were prepared.

The Pearson correlation coefficient is used to calculate the type of linear relationship
between two variables (positive, negative, none) and the strength of this relationship (weak,
moderate, strong). We used Pearson correlation coefficient to analyze the correlation be-
tween each variable and EHWn. Since the correlation coefficients between shrubland,
wetland and water areas within the 1–100 km buffer zone and EHWn were not high, these
variables were removed. Then, the buffer width with the highest correlation coefficient with
EHWn was determined among the 100 buffer widths for the 4 land types of cropland, wood-
land, grassland and urban land. Stepwise linear regression was performed with EHWn as
dependent variables, and cropland, woodland, grassland, urban land, population density,

http://nj.tjj.beijing.gov.cn/nj/qxnj/2021/zk/indexch.htm
http://nj.tjj.beijing.gov.cn/nj/qxnj/2021/zk/indexch.htm
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DEM, and GDP as independent variables. Then, the multiple linear regression equations are
obtained, which were the extreme heat waves interpolation models of EHW125d, EHW125n,
EHW135d, and EHW135n (see Supplementary Materials).

Based on the above multiple regression models, we interpolated the EHWn data of the
kilometer grid cells using daytime and nighttime data from 225 stations, combined with
resolution land use data of 30 m. First, 1 km × 1 km regular grid cells and grid points were
generated for the study area; we calculated the value of the independent variable and the
value of the result variable for each grid point and then we assigned the values of grid
points to the grid to obtain the spatial distribution maps of daily/night extreme heat waves
during the 12th and 13th Five-Year plans with a resolution of 1 km.

3. Result Analysis
3.1. Performance Evaluation of the Interpolation Models for Cumulative Hours of Urban Extreme
Heat Waves

We used EHW125d, EHW125n, EHW135d, and EHW135n from 225 MSs to correlate
with the area of each land-use type within the 1–100 km buffer zone (Figure 2). With the
change of buffer width, the cropland area in the buffer zone was positively correlated with
EHW125d, EHW125n, EHW135d, and EHW135n. When the buffer width was 0–50 km, the
absolute value of the correlation coefficient was less than 0.4, which was a weak correlation.
When the buffer width was 50–100 km, the absolute value of the correlation coefficient
was greater than 0.4 and less than 0.6, which was a moderate correlation. The area of
woodland in the buffer zone was negatively correlated with EHW125d, EHW125n, EHW135d,
and EHW135n. When the buffer width was 0–60 km, the absolute value of the correlation
coefficient was greater than 0.6 and less than 0.8, which was a strong correlation. When the
buffer width was 60–100 km, the absolute value of the correlation coefficient is greater than
0.4 and less than 0.6, which was a moderate correlation. The area of grassland in the buffer
zone was negatively correlated with EHW125d, EHW125n, EHW135d, and EHW135n. When
the buffer width was 0–40 km, the absolute value of the correlation coefficient was greater
than 0.4 and less than 0.6, which was a moderate correlation. When the buffer width was
40–100 km, the absolute value of the correlation coefficient was greater than 0.6 and less
than 0.8, which was a strong correlation. The area of urban land in the buffer zone was
positively correlated with EHW125d, EHW125n, EHW135d, and EHW135n, and the absolute
value of the correlation coefficient was greater than 0.6, which was a strong correlation. The
area of shrubs, wetlands, and water in the buffer zone and EHW125d, EHW125n, EHW135d,
and EHW135n were sometimes positively correlated and sometimes negatively correlated,
which may be related to the area and distribution pattern of shrubs, wetlands, and waters
in Beijing.

By stepwise multiple regression, we obtained the multiple linear regression equations
for EHW125d, EHW125n, EHW135d, and EHW135n (see Supplementary Materials), which
showed that urban land and DEM were predictors that enter into each resulting equation.
This indicated that urban land and DEM were the variables most associated with EHW125d,
EHW125n, EHW135d, and EHW135n compared to other variables. The significance values
of the four multiple linear regression equations by F-test ANOVA are all less than 0.01,
indicating that the equations are highly significant. R2 are 0.72 (EHW125d), 0.77 (EHW125n),
0.73 (EHW135d), and 0.74 (EHW135n), respectively, indicating that the fitting degree of the
model is good. The fitting quality for nighttime (EHW125n and EHW135n) is better than that
for daytime (EHW125d and EHW135d).
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Figure 2. Correlation coefficients between the area of each land-use type in the 1–100 km buffer
zones of the 225 MSs with EHW125d, EHW125n, EHW135d, and EHW135n. (EHW125d represents the
cumulative hours of daytime extreme heat waves during the 12th Five-Year Plan period, EHW125n

represents the cumulative hours of nighttime extreme heat waves during the 12th Five-Year Plan
period, EHW135d represents the cumulative hours of daytime extreme heat waves during the 13th
Five-Year Plan period, and EHW135n represents the cumulative hours of nighttime extreme heat
waves during the 13th Five-Year Plan period).

3.2. Spatial Pattern Analysis of Cumulative Hours of Extreme Heat Waves during the Day/Night

The spatial distributions of EHW125d, EHW125n, EHW135d, and EHW135n all show the
pattern “high inside and low outside; high in the south and low in the north” (Figure 3),
with a circle-layer structure that diverges from the central city to the suburbs. We resampled
the raster map with a resolution of 1 km to the township scale and calculated the cumulative
hours of extreme heat waves for each township. Then, divided the accumulated hours of
extreme heat waves into 10 levels (Figure 3), where levels 1, 2, and 3 are low levels; levels
4, 5, and 6 are medium levels; levels 7, 8, and 9 are high levels; and level 10 is very high.
Counted the number of townships that belong to the cumulative hours of extreme heat
waves at different levels (Table 1). In 2011–2015, during the day, 68 townships were at
low levels, 236 towns were at medium levels, and 27 towns were at high levels. At night,
94 townships were at low levels, 107 townships were at medium levels, and 130 townships
were at high levels. In 2016–2020, during the day, 33 townships were at low levels, 35 towns
were at medium levels, 102 towns were at high levels, and 161 towns were at the very
high level. At night, 33 townships were at low levels, 38 townships were at medium
levels, 129 townships were at high levels, and 131 townships were at the very high level.
Compared with 2011–2015, from 2016 to 2020, there were 95 more high-level townships and
161 more extremely high-level townships in daytime, one less high-level townships and
131 more extremely high-level townships at night. This is because temperatures generally
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increased between 2011 and 2020, and daytime temperatures increased even more. This
is due to the general increase in temperature between 2011 and 2020, so the number of
townships that are at extremely high-level during the daytime and nighttime has increased.
In addition, the temperature rises more during the daytime compared to the nighttime, so
the number of townships at extremely high-level during the daytime increases more.
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Figure 3. Spatial distribution maps of EHW125d, EHW125n, EHW135d, and EHW135n in Beijing with a
resolution of 1 km. (EHWn represents EHW125d, EHW125n, EHW135d, or EHW135n).

Table 1. The number of townships that belong to the cumulative hours of extreme heat waves at
different levels.

EHW125d EHW125n EHW135d EHW135n

Level 1, 2, 3 68 94 33 33

Level 4, 5, 6 236 107 35 38

Level 7, 8, 9 27 130 102 129

Level 10 - - 161 131

3.3. Comparison of Accumulated Hours of Day/Night Extreme Heat Waves for Different
Land-Use Types

The average values of EHW125d, EHW125n, EHW135d, and EHW135n on the surface of
each land-use type in the whole Beijing, Beijing’s urban areas, and Beijing’s suburbs, were
obtained through the spatial overlay of the land-use type vector map with EHW125d, EHW125n,
EHW135d, and EHW135n. It can be seen in Figure 4 that the order of the average of cumulative
hours of extreme heat waves on the surface of each land-use type in Beijing during the 12th
and 13th Five-Year Plans was: urban land > cropland > water > grassland > woodland. During
the 12th and 13th Five-Year Plan period, the order of the average of cumulative hours of
extreme heat waves on the surface of each land-use type in Beijing’s suburbs was as follows:
urban land > cropland > water area > grassland > woodland. During the 12th Five-Year
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Plan period, the order of the average of accumulated hours of extreme heat waves on the
surface of each land-use type in the urban area of Beijing during the day was as follows:
urban land > water > woodland > cropland > grassland. Additionally, the order of the
average of accumulated hours of extreme heat waves on the surface of various land-use
types in urban areas of Beijing at night was as follows: urban land > water > cropland >
woodland > grassland. During the 13th Five-Year Plan period, the order of the average
of accumulated hours of extreme heat waves on the surface of each land-use type in the
urban area of Beijing during the day was as follows: urban land > water > cropland >
grassland > woodland; the order of the average of cumulative hours of extreme heat waves
corresponding to the surface of each land-use type in Beijing urban area at night was: urban
land > water > cropland > woodland > grassland.
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3.4. Influence of Different Spatial Combination Patterns of Land-Use Type on the Cumulative
Hours of Day/Night Extreme Heat Waves

In order to further explore the impact of the spatial pattern of land-use types on the
cumulative hours of day/night extreme heat waves, the land use pattern was represented
by the proportions of the area occupied by the land-use types within a 1 km grid, and we
analyzed their relationships with EHW125d, EHW125n, EHW135d, and EHW135n. First, the
area proportion of each land-use type in each grid and the values of EHW125d, EHW125n,
EHW135d, and EHW135n in each grid were calculated. Then, the mean values of EHW125d,
EHW125n, EHW135d, and EHW135n of each land-use type at various proportions in the grid
were counted at intervals of 20% for comparative analysis. From the change curves of the
average values of EHW125d, EHW125n, EHW135d, and EHW135n under different proportions
of each land-use type (Figure 5), it can be seen that during the 12th and 13th Five-Year Plans,
with the increase in the proportion of cropland in the grid, the average values of EHW125d,
EHW125n, EHW135d, and EHW135n of the grid also increased. Additionally, the increase
rate during the day was greater than that at night, and the increase rate during the 13th
Five-Year Plan period was greater than that during the 12th Five-Year Plan period. During
the 12th and 13th Five-Year Plan period, with the increase in the proportion of woodland
in the grid, the average values of EHW125d, EHW125n, EHW135d, and EHW135n of the grid
decreased, and the rate of decrease at night was greater than that during the day. The
rate of decrease in the five-year period was greater than that in the 12th five-year period.
During the 12th Five-Year Plan and the 13th Five-Year Plan (when the area proportion of
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water in the grid was greater than 40%), as the proportion of water in the grid increased,
the average values of EHW125d, EHW125n, EHW135d, and EHW135n of the grid increased.
During the 12th Five-Year Plan period, the rate of decrease at night was greater than that
during the day, and during the 13th Five-Year Plan period, the rate of decrease during
the day was greater than that at night. During the 12th and 13th Five-Year Plans, as the
proportion of urban land in the grid increased, the average EHW125d, EHW125n, EHW135d,
and EHW135n of the grid also increased. Additionally, the increase rate at night was greater
than that during the day, and the increase rate during the 13th Five-Year Plan period was
greater than that during the 12th Five-Year Plan period.
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3.5. Mitigation Effects of Woodland and Water on Cumulative Hours of Day/Night Extreme Heat
Waves in Beijing

The above analysis showed that the woodland and water area have key functions in
alleviating the accumulated hours of extreme heat waves in Beijing, so the relationships
between the areas of woodland and water and the accumulated hours of urban extreme
heat waves were further analyzed. The grid-by-grid statistical analysis results of EHW125d,
EHW125n, EHW135d, and EHW135n (Table 2) show that the grids without woodland and
water had the highest average values of EHWn, which were 444 (EHW125d), 418 (EHW125n),
849 (EHW135d), and 812 (EHW135n), respectively. The second highest average values
of EHWn were for grids that were entirely water areas: 277 (EHW125d), 202 (EHW125n),
548 (EHW135d), and 533 (EHW135n). The average values of EHWn of the grids that were com-
pletely woodland were the lowest, which were 33 (EHW125d), 0 (EHW125n), 97 (EHW135d),
and 68 (EHW135n). The average values of EHWn of the grids with woodland proportions
greater than 50% were 114 (EHW125d), 57 (EHW125n), 251 (EHW135d), and 218 (EHW135n),
and the average values of EHWn of grids with water proportions greater than 50% were
291 (EHW125d), 226 (EHW125n), 565 (EHW135d), and 549 (EHW135n). It can be found that,
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regardless of the spatial distribution of woodland and water, the average values of EHW125n
are smaller than that of EHW125d, and the average values of EHW135n is smaller than that
of EHW135d. It can be seen that the woodland and water areas have obvious effects on
alleviating the accumulated hours of extreme heat waves, and the mitigation effect at night
is stronger than that in the daytime, and the mitigation effect of woodland is stronger than
that of water area.

Table 2. Average values of EHW125d, EHW125n, EHW135d, and EHW135n under different proportions
of woodland and water area.

EHW125d (h) EHW125n (h) EHW135d (h) EHW135n (h)

Woodland (0%) & Water (0%) 444 418 849 812

Woodland (100%) 33 0 97 68

Water (100%) 277 202 548 533

Woodland (>50%) 114 57 251 218

Water (>50%) 291 226 565 549

4. Discussion

This study analyzed daytime and nighttime cumulative hours of extreme heat waves
under different land-use types in the representative metropolis of Beijing, and gave the
high-resolution spatial mapping of day/night extreme heat waves cumulative hours. This
study further explored influence of different land-use patterns on accumulated hours of
day/night extreme heat waves. The results provided important reference for alleviating
extreme heat waves in cities and for rational land planning. When cities expand rapidly, in
addition to considering the expansion of building sites (due to their potential for extreme
heat waves), other land use types (such as woodlands, grasslands, and water) should be
considered to mitigate extreme heat waves.

Based on land use data with a resolution of 30 m and socioeconomic data with a
resolution of 1km, this study established the urban day/night extreme heat waves interpo-
lation model. Both the significance test and R2 analysis showed that the model has good
performance. The interpolation quality for nighttime was better than that for daytime. It
can be a reference method for interpolating temperature data. In the final model, only the
two to three most influential and contributing predictors were selected from a broad set of
candidate predictors, mainly including DEM, population density, area of grassland and
area of urban land within a specific buffer width. This suggests that DEM, population
density, area of grassland, and urban land have the greatest correlation on urban extreme
heat waves. It is worth noting that the land use patterns in different regions are different,
so the obtained multiple regression interpolation models will also be different.

The spatial distribution of the cumulative hours of day/night extreme heat waves in
Beijing is “high inside and low outside; high in the south and low in the north”. In other
words, the cumulative hours of extreme heat waves in the eight districts of Dongcheng,
Xicheng, Chaoyang, Haidian, Fengtai, Shijingshan, Daxing, and Tongzhou were relatively
high, while the cumulative hours of extreme heat waves in the remaining eight districts
were relatively low. This is related to factors, such as land use, population density, DEM,
etc. The area ratio of urban land in the eight districts of Dongcheng, Xicheng, Chaoyang,
Haidian, Fengtai, Shijingshan, Daxing, and Tongzhou is 54.22%, the area ratio of woodland
is 5.15%, the average population density is 4301 persons/km2, and the average altitude is
44.83m. In the other eight districts, the proportion of woodland is 55.20%, the proportion
of urban land is 12.84%, the average population density is 518 persons/km2, and the
average altitude is 450.43 m. These differences are important reasons for this spatial
distribution pattern.

We simulated the spatial distribution pattern of accumulated hours of day/night
extreme heat waves in Beijing in 2011–2015 and 2016–2020. In 2016–2020, the average
annual cumulative hours of extreme heat waves were 95.06% (daytime) and 115.70%
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(nighttime) higher than those in 2011–2015. This is related to natural climate change and
human activities [26–28]. The WMO survey results show that 2011–2020 was the warmest
decade on record. The warmest six years were 2015 and subsequent years, with 2016,
2019, and 2020 making up the top three. This is an important reason why the accumulated
hours of extreme heat waves in 2015–2020 were much higher. Compared with 2011–2015,
the average annual resident population in 2016–2020 increased by 3.54%, and the GDP
increased by 64.41%. Compared with 2010, the urban land area by 2020 had increased by
55.43%. Human activities, such as population movement, urban land expansion, and fossil
fuel burning, are also another important reason why the cumulative hours of extreme heat
waves in 2016–2020 were much more than those in 2011–2015.

Our research shows that the order of land-use types based on the cumulative hours
of extreme heat waves from different land types in Beijing were as follows: urban land >
cropland > water > grassland > woodland. Urban land had the most cumulative hours of
extreme heatwaves during the day and night, the woodland had the fewest cumulative
hours of extreme heat waves during the day and night. Cropland and urban land can
increase the cumulative hours of extreme heat waves, whereas woodland and water areas
can reduce the cumulative hours of extreme heat waves. The effect of grassland on the
cumulative hours of extreme heat waves was not significant. The role of cropland in en-
hancing the cumulative hours of extreme heat waves is greater during the day than at night;
the role of urban land in enhancing the cumulative hours of extreme heat waves is greater
at night than in the daytime, and the role of woodland in alleviating the cumulative hours
of extreme heat waves is greater at night than in the daytime. This day–night difference is
related to the complex surrounding environment and the differences in day–night specific
heat capacities of the various land-use types [29–31]. Water has the highest specific heat
capacity, followed by woodlands and grasslands with higher water content (woodlands
have higher water content than grasslands) and least impermeable surfaces. Urbanization
leads to reduced evaporation and wind. In addition, the lower albedo of impervious surface
compared to vegetation increases daytime heat storage and enhances nighttime long-wave
heat release. It should be noted that our research shows that grassland has the effect of
enhancing the cumulative hours of extreme heat waves. As can be seen in the Figure 5, this
result was mainly caused by the high cumulative hours of extreme heat waves in grids
with grassland accounting for more than 80% of the area. Both 2010 and 2020, among
the 15,818 grids in Beijing, there were only approximately 80 grids that had more than
80% grassland. Nearly 2/3 of the 80 grids were close to cultivated land or urban land.
Environmental impacts lead to higher cumulative hours of extreme heat waves. It can be
seen in the Figure 5 that the cumulative hours of extreme heat waves for grids with water
areas less than 20% were significantly lower than those grids with larger water areas. This
is because the water area of Beijing is too small, only 0.92% (2010) or 1.45% (2020). As a
result, in 2010 and 2020, the proportions of grids with water area accounting for 0–20% were
extremely high, 98.8% and 98.1%, respectively. The grids with water areas of 0–20% are
numerous and continuously distributed, making them less susceptible to the surrounding
environment. On the contrary, grids with water areas greater than 40% are small in number
and scattered, and are easily affected by the surrounding environment, which makes the
cumulative hours of extreme heat waves relatively high. However, when the proportion of
the water area is greater than 40%, the cumulative hours of extreme heat waves is decreased
significantly as the proportion of the water area continues to increase, which reflects the
role of water area in relieving the cumulative hours of extreme heat waves. Different from
water, the area of woodland in Beijing accounted for 44.74% (2010) and 45.08% (2020), and
the distribution was concentrated. This difference between woodland and water in area
and spatial pattern may lead to Beijing’s woodland having a stronger mitigation effect on
the cumulative hours of extreme heat waves relative to water.
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5. Conclusions

The main conclusions of our study are summarized as follows:

1. The urban day/night extreme heat waves cumulative hourly interpolation models
were established; the correlations were highly significant at p < 0.01, both the signifi-
cance test and R2 analysis showed that the models have good performance, and the
accuracy of interpolation was high;

2. The spatial distribution of the cumulative hours of day/night extreme heat waves in
Beijing is “high inside and low outside; high in the south and low in the north”; a
circle structure radiates from the central city to the suburbs. During 2016–2020, the
annual cumulative hours of extreme heat waves in the daytime and in the nighttime
were 95.06% and 115.70% higher than those of 2011–2015;

3. The order of land-use types for cumulative hours of land-surface extreme heat waves
in Beijing was as follows: urban land > cropland > water > grassland > woodland. In
most cases, the cumulative hours of extreme heatwaves during the day were greater
than those at night for cropland, woodland, grassland, water, and urban land;

4. The increase associated with urban land in the cumulative hours of extreme heat
waves at night is greater than that in the daytime. The mitigation effects of woodland
and water on the cumulative hours of extreme heat waves are stronger at night than
in the daytime, and the mitigation effect of woodland is stronger than that of water.
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