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Abstract: Agroforestry is one nature-based solution that holds significant potential for improving
the sustainability and resilience of agricultural systems. Quantifying these benefits is challenging
in agroforestry systems, largely due to landscape complexity and the diversity of management
approaches. Digital tools designed for agroforestry typically focus on timber and crop production,
and not the broader range of benefits usually considered in assessments of ecosystem services and
natural capital. The objectives of this review were to identify and evaluate digital tools that quantify
natural capital benefits across eight themes applicable to agroforestry systems: timber production
and carbon sequestration, agricultural production, microclimate, air quality, water management,
biodiversity, pollination, and amenity. We identified and evaluated 63 tools, 9 of which were assessed
in further detail using Australia as a case study. No single tool was best suited to quantify benefits
across each theme, suggesting that multiple tools or models could be combined to address capability
gaps. We find that model complexity, incorporation of spatial processes, accessibility, regional
applicability, development speed and interoperability present significant challenges for the tools that
were evaluated. We recommend that these challenges be considered as opportunities to develop new,
and build upon existing, tools to enhance decision support in agroforestry systems.

Keywords: agroforestry; ecosystem services; natural capital benefits; nature-based solutions; decision
support tools

1. Introduction

The concept of nature-based solutions is gaining increased traction within agricultural
industries to address the global challenges of climate change, biodiversity loss and land
degradation. A nature-based solution is one that aims to address sustainability challenges
through the protection, sustainable management and restoration of both natural and
modified ecosystems, benefiting both biodiversity and human wellbeing [1]. This approach
contrasts with more traditional solutions that focus solely on enhancing yields of target
products such as food or wood, because it also considers net ecosystem benefits over long
periods. Approximately 47.8 million km2 of the global land surface area (36.7% of total)
is used for agriculture [2], and therefore the opportunity for nature-based solutions to
improve sustainability is potentially very large. These opportunities are supported by a
range of financial mechanisms such as certification schemes, green loans and bonds, and
existing and emerging markets for carbon and biodiversity [3,4].

Agroforestry is one nature-based solution that holds considerable potential for ad-
dressing sustainability challenges in agricultural landscapes. Defined as the deliberate
integration of woody perennial systems within the existing plant and/or livestock en-
terprise [5], agroforestry has been recognised for its potential to increase the resilience
and profitability of agricultural systems [6–9]. Agroforestry builds natural capital on
farms and thus can enhance the supply of provisioning, regulating and cultural ecosys-
tem services (e.g., carbon sequestration, climate regulation, supply and diversification of
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habitats [10–12]). These benefits have long been acknowledged qualitatively [13]; however,
the availability of suitable quantitative data to support decision-making on the supply
of these services under different configurations of species, farming systems and manage-
ment goals is limited. This has presented a significant barrier to the broader adoption of
agroforestry [14].

Despite these challenges, there has been a resurgence of interest in the use of agro-
forestry as a nature-based solution that can improve the resilience and sustainability of
agricultural enterprises. This is supported by the recognised need for ethical and sustain-
able supply chains [15–17]. Accompanying this, there is a growing appetite for investment
into nature-based solutions from private equity [18] that holds considerable potential to
facilitate the adoption of agroforestry within the agricultural sector. Thus, understanding
and quantifying the natural capital benefits generated from agroforestry systems is impor-
tant in building the business case for adoption and unlocking the potential of emerging
equity markets. However, this also means that there is a need for credible, feasible and
accessible methods for quantifying these natural capital benefits.

The long history of research on agroforestry and ecosystem services has seen the emer-
gence of many resources designed to address knowledge gaps, support decision-making,
and build the case for the adoption of agroforestry [19,20]. These include knowledge
databases, software packages, mathematical models, and guidance materials to support
decision-making. The array of potential interactions and configurations in agroforestry
systems, however, means that many of these resources can be difficult to apply in spe-
cific situations. Another challenge is that many of these resources are no longer actively
maintained, and therefore may not be accessible to land managers. Tools such as WaN-
uLCAS [21], Hi-SAFE [22], SCUAF [23] and HyPAR [24] have been developed to quantify
tree-crop interactions at field scale using process-based models; however, these can be
difficult to implement in practice due to their complexity. The Agricultural Production
Systems sIMulator APSIM; [25,26] is a modular modelling framework that been suggested
as one option for simplifying and overcoming this complexity [27,28], and it has been
applied to agroforestry [29,30]. The Imagine tool [31] was developed to understand the
effects of trees on the economics of agricultural systems and has the flexibility to bring
in other aspects of natural capital (Mendham, 2018). Despite the availability and utility
of these existing tools, there are many more resources available in the ecosystem services
modelling domain that can quantify the broader natural capital benefits of agroforestry
systems [7].

Many tools have been developed to model ecosystem services, quantify pools of natu-
ral capital, and provide standardised methodologies in support of market-based offsetting
schemes. While some of these tools comprise methods libraries and guidance materials
(e.g., https://cdm.unfccc.int/, accessed 13 August 2022, TESSA; [32]) that require the user
to implement their own technical workflows, many are distributed via software packages
or digital platforms. Two prominent examples from the ecosystem services modelling
and natural capital accounting literature are ARIES (ARtificial Intelligence for Ecosystem
Services; [33]) and InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs; [34]).
These tools bring together an assortment of ecosystem services models and have been
applied from local to national scales [35–39]. Others have focused more strongly on carbon
storage and sequestration services in support of national reporting requirements and carbon
offsetting mechanisms (e.g., FullCAM, FLINT; [40,41]). These tools are useful for quanti-
fying natural capital; however, they are not always fit-for-purpose [42] and many have
historically required significant expertise and time to operate [43]. These challenges have
been broadly recognised and have driven the ongoing development of desktop software and
APIs, web platforms (e.g., ARIES for SEEA explorer, https://aries.integratedmodelling.org,
accessed 1 September 2021; LOOC-C, https://looc-c.farm/, accessed 15 September 2021;
FlintPro, https://flintpro.com/, accessed 1 October 2021), and data repositories that lower
the resources required to produce quantitative estimates of ecosystem services.

https://cdm.unfccc.int/
https://aries.integratedmodelling.org
https://looc-c.farm/
https://flintpro.com/
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Despite the wide range of tools that have been developed to quantify the various
elements of natural capital in agroforestry systems, it can be difficult to determine which
are best fit for purpose. Existing tools have often been designed for specific regions of the
world, with different target spatial scales, data requirements and modelling capabilities.
Agroforestry is practiced in complex managed systems, often with a small spatial footprint
(e.g., shelterbelts), and therefore spatial scale and configuration are particularly important
to represent the variety of land uses and interactions that may occur. Many of the tools
specifically designed for modelling agroforestry systems are focused on biophysical pro-
cesses (e.g., water balance, uptake of soil nutrients, productivity) or are narrow in scope
(e.g., specific crop types), and therefore the range of natural capital benefits are not well
represented [28]. The objectives of this review were to:

1. Identify tools that quantify natural capital benefits of agroforestry and shortlist those
best suited to farm-scale applications in Australia;

2. Evaluate the modelling capabilities of the shortlisted tools; and
3. Identify key capability gaps and opportunities for future development.

We first consider a broad range of the available tools to evaluate existing international
capabilities but focus in detail on Australia as a case study to reflect the need for locally
applicable models. The strengths and limitations of each approach to quantifying the
natural capital benefits of agroforestry are evaluated, followed by a discussion of the key
findings and recommendations for future development.

2. Methods
2.1. Review Scope

The natural capital approach extends the economic notion of capital (resources that
enable economic production) to the natural environment. The term ‘natural capital’ concep-
tualises nature as assets: stocks of resources such as clean air, water, soil and living things
which produce flows of ecosystem services that have value because they benefit humans
(households or firms). For clarity, in this paper, we use the term ‘natural capital benefits’
(NCBs) to refer to these benefits.

A distinction was made between digital tools or platforms, stand-alone datasets,
bespoke mathematical models, and guidance materials in identifying the tools to include
in this review. This distinction was made to constrain the scope of analyses and to focus on
tools that facilitate the computation of agroforestry NCBs. Bespoke mathematical models or
analyses that are found in the scientific literature were excluded as they are often calibrated
for specific applications or case studies and often require significant effort to reproduce.
Guidance materials (e.g., pdf tools and instructional videos) were also excluded because
they do not allow for the direct computation of natural capital benefits. Stand-alone
datasets were not considered as they are a result, rather than an implementation, of applied
methods. By the term tool, we refer to software and platforms that provide access to digital
implementations of models or functions that can be used to quantify biophysical, economic,
and social or cultural variables of interest.

The capabilities of each tool were evaluated on eight key themes based on our under-
standing of agroforestry systems [7,27,28]. These were selected to reflect existing modelling
capabilities and the importance of different natural capital benefits in agroforestry systems.
These themes were:

1. Timber production and carbon sequestration;
2. Crop, pasture, and livestock production;
3. Wind, shelter, and microclimate;
4. Air quality and pollution;
5. Erosion, runoff, and flood mitigation;
6. Biodiversity;
7. Crop pollination; and
8. Amenity and recreation.
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This review was designed to capture a broad range of tools that can quantify the
NCBs of agroforestry systems. Tools designed specifically for agroforestry typically focus
on timber and food production, with mechanisms to model tree-agriculture interactions.
While these tools have been considered, detailed reviews of these tools are also provided
by Luedeling et al. [27] and Kraft et al. [28]. Both reviews note the limited ability of existing
agroforestry tools to quantify the broader range of NCBs. These recognised limitations
were a significant factor in reviewing such a wide range of potential tools.

2.2. Identifying Tools That Quantify Natural Capital Benefits of Agroforestry

Tools were identified using web search engines supplemented by recommendations
from the authorship team. Search terms were constructed by combining each of the NCBs
with ‘agroforestry’, ‘tool’, ‘calculator’, and ‘platform’. The terms ‘natural capital’ and
‘ecosystem services’ were also used in conjunction with the NCB descriptions to identify
many relevant tools. All web searches were conducted from September to October 2021.
Many of the tools that were identified are frequently updated or modified, therefore all
subsequent tool evaluations did not consider software changes after these dates. Tools
were not considered where sufficient information could not be found, for example where
web links were no longer functional.

Each of the identified tools was assessed to determine which of the eight key NCB
themes listed above could be quantified. The evaluation was performed by either down-
loading and testing the software, reading technical manuals or scientific manuscripts, or by
assessing the information that could be found online at the websites for each respective
tool. Any economic measures were also noted, as these were common features of many
tools.

2.3. Shortlisting Tools Best Suited to Farm-Scale Agroforestry Applications in Australia

The list of tools was screened to identify those likely to be most effective in quantifying
NCBs at the farm scale in Australia. Tools were considered suitable for farm-scale analyses
where outputs could be either directly (e.g., high precision mapping) or indirectly (e.g., area-
weighted scaling) attributed to specific landscape features (e.g., shelterbelts, paddocks).
This shortlist was created by process of elimination using a series of six criteria. Tools were
included in this shortlist where they:

1. Quantify at least one of the selected natural capital benefits of agroforestry;
2. Use methods or data that are compatible with farm-scale analyses;
3. Include, or allow the user to provide, supporting datasets (where required) that can

be applied in Australia;
4. Use methods and models that are suitable for Australian applications, or can be

applied without extensive parameterisation;
5. Provide functionality not implemented by existing Australian tools; and
6. Are currently available for use as open-source software, via collaboration, or by web

application.

Each of the tools meeting these criteria were selected for further evaluation of mod-
elling capabilities.

2.4. Evaluating the Modelling Capabilities of Shortlisted Tools

Each of the eight NCB themes was assessed in further detail for the shortlisted tools.
The name of the model (or tool module), a short description of the methodological approach,
and a summary of the key outputs that are quantified were described. Models were
described separately where a shortlisted tool provided multiple options for quantifying one
of the NCBs. Where available, the economic valuation capabilities of the shortlisted tools
were discussed for each NCB. The strengths and limitations of each approach is briefly
discussed, followed by a summary of potential alternative approaches that are present in
other tools or the scientific literature.
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3. Results
3.1. Identifying Tools That Quantify Natural Capital Benefits of Agroforestry and Shortlisting
Those Best Suited to Farm-Scale Applications in Australia

A total of 63 candidate tools were identified and evaluated (Table A1), 9 of which were
shortlisted after meeting the required criteria (Figure 1; Table 1). Timber production and
carbon sequestration were the most frequently included natural capital benefits and were
quantified by 62% of identified tools and 89% of those shortlisted. The biodiversity, erosion,
runoff, and flood mitigation NCBs were the next most common, included by 40% and 32%
of identified tools, respectively. Methods for providing an economic valuation of NCBs
were common across all identified (48%) and shortlisted (78%) tools; however, this did not
mean that methodologies had been implemented for all NCBs modelled by each tool. For
example, carbon and timber production was often valued where biodiversity was not.

 

 

 

 
Figure 1. Total number of identified and shortlisted tools that quantify each of the selected
natural capital benefits of agroforestry, in addition to those with the capability for calculating
economic measures.
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Table 1. Summary of shortlisted tools that can quantify the potential natural capital benefits of agroforestry.
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APSIM A Desktop app,
command line Point or area x x x x x x [25,26], https://www.apsim.info/

ARIES (for SEEA
explorer) B

Web app, k-LAB
software AI-selected grid x x x x x x [33],

https://aries.integratedmodelling.org/
Farm Forestry
Toolbox Desktop app Point or area x x [44],

https://www.farmforestrytoolbox.com/

FullCAM 2020 Desktop app,
command line Point or area x x x

[41], https://www.industry.gov.au/data-
and-publications/full-carbon-
accounting-model-fullcam

Imagine Desktop app Point or area x x x x x [31,45]

InVEST Desktop app,
python API

User-selected
grid and/or area x x x x x x [34], https://naturalcapitalproject.

stanford.edu/software/invest

i-Tree Eco Desktop app Point or area x x x x x x [46], https:
//www.itreetools.org/tools/i-tree-eco

LUCI ArcGIS plugin User-selected
grid and/or area x x x [47,48], https://lucitools.org/

SolVES ArcGIS/QGIS
plugin

User-selected
grid x [49], https://pubs.er.usgs.gov/

publication/tm7C25

Notes: A Two versions of APSIM were considered, as not all modules developed for v7.1 [26] have been implemented in NextGen [25]. B ARIES was evaluated using ‘ARIES for SEEA
explorer’ as it is the most recent available implementation of the tool and is highly accessible.

https://www.apsim.info/
https://aries.integratedmodelling.org/
https://www.farmforestrytoolbox.com/
https://www.industry.gov.au/data-and-publications/full-carbon-accounting-model-fullcam
https://www.industry.gov.au/data-and-publications/full-carbon-accounting-model-fullcam
https://www.industry.gov.au/data-and-publications/full-carbon-accounting-model-fullcam
https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest
https://www.itreetools.org/tools/i-tree-eco
https://www.itreetools.org/tools/i-tree-eco
https://lucitools.org/
https://pubs.er.usgs.gov/publication/tm7C25
https://pubs.er.usgs.gov/publication/tm7C25
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Each of the 9 shortlisted tools and a summary of their features are described in Table 1.
Of these tools, ARIES, InVEST, LUCI and SolVES are designed to operate spatially and
produce spatial outputs (e.g., gridded raster data, polygons). For ARIES, we focused on
the ARIES for SEEA explorer web application due to the increased accessibility of the tool,
though notionally users can provide their own data. InVEST includes a broad range of well-
documented ecosystem services models that are similar in scope to the ARIES offerings,
though vary in their implementation. LUCI is designed to model ecosystem services and
identify optimal land use configurations at very high resolution (i.e., 5 m pixels). It has
a strong focus on hydrology, erosion, and nutrient transport. SolVES is unique in that it
focuses specifically on statistically linking social values, including amenity and recreation,
to spatially explicit environmental layers. The remainder of the shortlisted models produce
outputs that are representative of a single point or area; however, can typically be run in
batch mode or otherwise post-processed to form a spatially continuous output. FullCAM
is used to calculate Australia’s greenhouse gas emissions in the land sector and allows
users to calculate carbon storage and sequestration under a wide range of management and
disturbance scenarios. APSIM is a modular framework for modelling agricultural systems
and has been demonstrated in agroforestry applications [29,30]. The i-Tree suite of tools
rely heavily on datasets that are only currently available for North America. We focused on
i-Tree Eco as it includes several unique approaches to relevant NCBs and can be applied
internationally. The remaining two tools, the Farm Forestry Toolbox and Imagine, have a
much stronger focus on economic performance and trade-offs. While the Farm Forestry
Toolbox is focused on timber production, Imagine considers the broader farming system.
Imagine has a suite of its own algorithms for predicting crop, pasture, and livestock growth
as well as interactions between alternative land uses (based on climate), and it can also
accept input from more detailed models such as APSIM and GrassGro [50].

There were 54 tools that did not meet each of the shortlisting criteria. The frequencies
of criteria not met across all identified tools are shown in Figure 2. The natural capital
benefits of agroforestry were not adequately quantified by 32% of tools (a). These included
the Atlas of Living Australia and Integrated Biodiversity Assessment Tool, that despite
both describing biodiversity assets, do not quantify their relationship with agroforestry.
Many tools also rely upon datasets that are not available for Australia (c, 21%), or models
that are not suitable for Australian applications or cannot be applied without significant
parameterisaton (d, 25%). For example, many of the tools have been designed for use in
specific regions such as North America (e.g., i-Tree Design, i-Tree Landscape, InForest) or
the United Kingdom (e.g., Pollution removal by vegetation, B£ST, EFISCEN, Greenkeeper)
and rely upon regionally specific datasets and models. The typical spatial resolution of
analysis was a limiting factor for many tools that use gridded input data; however, it was
the dominant reason for exclusion for only two models (b, LUTO and Co$ting Nature).
Several of the tools that were ultimately shortlisted are usually run at a resolution that
is too coarse for farm-scale analyses (e.g., 250 m grid cells); however this is offset by the
ability to provide user-defined data (e.g., ARIES, InVEST) or apply area-weighted scaling
(e.g., APSIM, FullCAM 2020) for farm-scale applications.
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3.2. Evaluating the Modelling Capabilities of Shortlisted Tools
3.2.1. Timber Production and Carbon Sequestration

All but one (SolVES) of the shortlisted tools quantify timber and/or carbon sequestra-
tion, though with methods of varying complexity (Table 2). The models range from simple
methods that link land cover to carbon stocks via lookup tables (ARIES, InVEST, LUCI), to
biophysical models that track the storage and transport of carbon between the soil, atmo-
sphere, vegetation (branches, bark, twigs, leaves and roots), debris and harvested products
(i.e., ‘pools’). The biophysical models CABALA (when used externally by Imagine), the
Farm Forestry Toolbox and APSIM model stand volumes, enabling timber production
estimates. The potential for timber sales, trade of carbon offsets and the social cost of
carbon mean that economic measures are commonly included in these tools.

Timber production and carbon sequestration are among the most tangible NCBs
that can be provided by agroforestry. The models described above represent an array
of different approaches that have strong foundations in both policy instruments and
scientific literature. They enable estimates of carbon storage and sequestration in data-poor
environments (e.g., lookup tables), but also include much more complex empirical and
process-based biophysical models that explicitly incorporate management and disturbance
regimes. The lookup table-based approach is limited in that it relies heavily on mean values
(typically without consideration for spatial variations in productivity) and cannot track
fluxes between carbon pools over time. Empirical and biophysical models also variously
rely upon many assumptions, and the importance of site-specific conditions (e.g., soil
properties, groundwater access, climatic variability, pests and disease, species) means that
local monitoring and validation can be required to verify expectations.
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Table 2. Summary of the shortlisted tools and associated models that quantify timber production
and carbon sequestration.

Tool Model Name Description Relevant Output Variables

APSIM Eucalyptus, Pinus, Gliricidia Biophysical tree models calibrated for
specific genotypes within each genus.

Biomass and carbon (soil,
aboveground and belowground
plant pools); stem diameter,
height, and volume.

ARIES Carbon storage

Carbon stocks are estimated by linking
land cover/use, ecofloristic regions,
continents, forest cover, and fire history
to lookup tables following Ruesch and
Gibbs [51]. Soil carbon stocks are taken
from the global ISRIC database.

Carbon (total stored in
aboveground vegetation,
belowground vegetation, first
200 cm of soil).

Farm Forestry
Toolbox Site productivity

Annual indices of site productivity,
integrated with species-specific
empirical growth models.

Stand volume, mean annual
increment, basal area, mean
dominant height, diameter at
breast height.

FullCAM 2020 FullCAM

The Full Carbon Accounting
Model [41] is used for modelling
Australia’s national greenhouse gas
emissions in the land sector. It is used
to estimate carbon stocks, sequestration
and emissions associated with
vegetation and soil.

Biomass and carbon storage
(aboveground and belowground
by pool), emissions
(decomposition, fire).

Imagine CArbon BALAnce
(CABALA)

A dynamic forest growth model that
incorporates water, carbon and nutrient
balances designed for decision support
in silvicultural systems [52].

Biomass (aboveground and
belowground by pool), stand
volume, height, basal area,
diameter at breast height.

InVEST Carbon storage and
sequestration

Carbon storage and sequestration are
estimated using a land cover/use
lookup table. Sequestration is
calculated using linear interpolation
where a future scenario is available.

Carbon (total stored and
sequestered in aboveground
vegetation, belowground
vegetation, soil, and dead
biomass)

i-Tree Eco Carbon storage and
sequestration

Models carbon stocks and sequestration
rates by applying allometric equations
to tree structural characteristics.

Carbon (total stored, sequestered
annually, and emitted due to
decomposition)

LUCI Carbon stocks and fluxes

Carbon storage in biomass and soil is
estimated as steady state for different
combinations of and land cover/use
classes and soil type. Net emissions or
sequestration based on alternative
scenarios.

Carbon (total stored in biomass
and first 30–100 cm of soil, net
emissions, or sequestration)

Notes: Imagine includes a simple tree growth algorithm. It is not described here as there are more suitable options
such as CABALA for use in agroforestry contexts. CABALA outputs are imported into Imagine [45] and must be
run separately.

The long history of research into silviculture and the distribution and density of global
biomass has supported the development of many models. International initiatives such
as the United Nations Programme on Reducing Emissions from Deforestation and Forest
Degradation (UN-REDD) and Intergovernmental Panel on Climate Change (IPCC) Task
Force on National Greenhouse Gas Inventories (TFI) have also formalised a hierarchy of
methodologies for carbon accounting in the land sector. The process-based 3-PG model [53],
used to estimate site productivity indices required by FullCAM, has been widely applied
in Australia and internationally for modelling forest growth [54–56]. LOOC-C (https:
//looc-c.farm/, accessed 15 September 2021) is a user-friendly web-application designed
to rapidly identify carbon abatement project opportunities under Emissions Reduction
Fund (ERF) and Land Restoration Fund (LRF) in Australia. It rapidly provides users an
estimate of emissions reductions for different project activities across Australia; however,

https://looc-c.farm/
https://looc-c.farm/
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it is currently focused on soil carbon, livestock, and regeneration of native vegetation.
Remotely sensed estimates of biomass are also increasingly becoming available [57–61];
however, the relative error of these products can be high and they describe current or
past conditions, so therefore alone are of limited use in evaluating alternative agroforestry
configurations.

3.2.2. Crop, Pasture, and Livestock Production

Crop, pasture, and livestock production can be modelled in Australian agroforestry
systems by three of the shortlisted tools (Table 3). APSIM is widely used in Australia and
internationally for modelling crop biomass and food production [25] and can also be used
to predict pasture and livestock productivity. FullCAM includes modules for modelling
crops, pasture, and grazing-based emissions; however, it does not explicitly allow for
tree-crop interactions. Imagine includes several integrated options for estimating crop,
pasture, and livestock productivity, and can incorporate predictions from more complex
models. Both APSIM and Imagine allow for competition and interactions between trees,
crops, and pasture, and therefore are well suited to agroforestry modelling.

Table 3. Summary of the shortlisted tools and associated models that quantify crop, pasture, or
livestock production.

Tool Model Name Description Relevant Output Variables

APSIM
Active tree in strip crop
system, using Eucalyptus,
Pinus or Gliricidia

Simulates competition between one tree zone
and one crop zone; several tree, crop, pasture
and livestock options.

Crop, pasture, or livestock
production

APSIM Tree proxy in multi-zone
system

Simulates competition with user-defined tree
characteristics; multiple tree and crop zones;
several crop, pasture, and livestock options.

Crop, pasture, or livestock
production

FullCAM Various options for crops,
pastures, and grazing

The Full Carbon Accounting Model [41] is used
for modelling Australia’s national greenhouse
gas emissions in the land sector. It is used to
estimate carbon stocks, sequestration and
emissions associated with vegetation and soil.

Biomass and carbon storage
(aboveground and belowground
by pool), emissions
(decomposition, fire).

Imagine N/A

Simple, integrated crop, pasture, and livestock
production models that simulate
spatial-temporal competition via yield factor
adjustments.

Crop, pasture, or livestock
production

Notes: Imagine is designed to allow external inputs, and therefore more advanced models such as GrassGro [50]
and APSIM may be used in place of the integrated models.

Imagine allows for spatial interactions via yield-based adjustment factors that can be
modified for water availability. This approach is flexible in that it can be used to incorporate
productivity modifiers without the need for running complex biophysical models. These
interactions can be simulated in APSIM using two key approaches. The first approach
simulates productivity in adjacent tree and agriculture zones. It accounts for competition
for light, water and nitrogen using climate, soil, and management as key inputs [62], and
can simultaneously predict timber production for the tree species selected. In the second
approach, the competitive impacts of trees are simulated by defining the behaviour of a
generic tree proxy. Competition for light, water and nitrogen is then used to constrain
pasture and crop productivity [30,63]. Multiple tree and agricultural zones are allowed
when using tree proxies; however, timber production is not simulated.

APSIM is highly modular and has been used to simulate a range of tree-crop transects
in Australia and internationally. The current range of tree, crop, pasture, and livestock
types does, however, remain somewhat limited. While contributions to the development
of APSIM are welcomed, the development and calibration of new models can be resource
intensive. Functionally similar plant or livestock types may be suitable where dedicated
modules have not yet been developed. The integrated productivity functions that are
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provided with Imagine are limited in comparison to more complex biophysical models like
APSIM. This is offset by the ability to import predictions from secondary models.

Many models and tools have been developed to predict crop, pasture, and/or livestock
production. GrassGro is an alternative pasture and livestock production modelling tool that
is commonly used in Australian beef and sheep grazing systems [50]. AussieGRASS [64]
simulates pasture growth across Australia, quantifying biomass, grass curing and fire
risk, among other variables. DSSAT [65] shares similarities with APSIM and is used
internationally for crop and pasture modelling, but it does not currently support trees or
agroforestry options. STICS [66] is also much like APSIM and includes agroforestry options;
however, it is not used widely in Australia as it is designed for European applications.
Comprehensive reviews of tools developed for process-based modelling of agroforestry
systems are provided by Luedeling et al. [27] and Kraft et al. [28], many of which are briefly
described in Table A1.

3.2.3. Wind, Shelter, and Microclimate

The impacts of trees on wind, shelter, and microclimate could be quantified by three
shortlisted tools (Table 4). Microclimate here refers to weather experienced locally as af-
fected by trees, i.e., underneath and adjacent to trees at different distances across a farm.
Each tool quantifies a different aspect of this potential NCB. APSIM includes three key
modules that are typically applied in sequence. APSIM AgroforestrySystem estimates
relative changes in wind speed following [29] in a transect of zones away from a tree
row, which are then used in the next module (APSIM LocalMicroClimate) to simulate the
corresponding impacts on weather variables such as evapotranspiration within a zone.
APSIM MicroClimate then computes water and energy balance characteristics across multi-
ple competing canopies within a zone; however, it assumes horizontally uniform canopy
layers. Imagine draws directly upon experimental evidence to relate the characteristics of
shelterbelts to changes in livestock mortality [14] and pasture productivity [45]. The impact
of tree cover on shade availability and ultraviolet radiation (UV) is quantified by i-Tree
Eco based on [67]; however, this is limited in that it is based on the average vegetation
characteristics across an area and has been designed for describing impacts on human
health in urban environments.

Table 4. Summary of the shortlisted tools and associated models that quantify wind, shelter, and
microclimate.

Tool Model Name Description Output Variables

APSIM
AgroforestrySystem,
LocalMicroClimate and
MicroClimate

Calculates weather inputs to each zone, and
the energy and water balance parameters
across competing canopies within each
zone [29].

Proportional reduction in wind speed.
Rainfall and radiation interception,
canopy conductance, potential
transpiration.

Imagine N/A

Empirical adjustment of livestock
mortality [14] and pasture production, based
on distance from tree belt in units of tree
heights; [45].

External feed requirement of a fixed
herd based on change in pasture
production, reduction in livestock
mortality.

i-Tree Eco Ultraviolet radiation

Estimates the reduction in ultraviolet radiation
provided by tree shade across an area based
on [67] using vegetation characteristics and
weather data.

Protection factor, reduction in UV
index, percent reduction, overall UV
index, shaded UV index

The complexity of interactions between the structural attributes of tree cover and
wind, shelter, and microclimate means that these NCBs are difficult to quantify with
confidence [14]. Each of the approaches implemented by the shortlisted tools are therefore
simple by necessity, despite having been developed based on credible scientific studies.
This simplicity can be an advantage where the assumptions and limitations are made
explicit. For example, the empirical adjustment method applied with Imagine acts directly
on the final service (i.e., change in pasture production and livestock mortality), allowing
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for the direct calculation of gross margins and net present value across the farming system.
There are, however, many potential factors to consider that can make such approaches
difficult to generalise. None of these methods explicitly consider the spatial configuration
and porosity of trees, the spatial and temporal variations in wind speed and direction, or
corresponding impacts on temperature and humidity, each of which are important factors
in determining how any potential benefits are realised [68–73].

Several alternative methods have been applied by other tools and in the scientific
literature. EcoServ-GIS [74] applies simple buffers to trees and greenspaces of varying
patch size to quantify local climate services in the United Kingdom, largely based on
studies conducted in urban environments. Field-scale agroforestry modelling frameworks
such as WaNuLCAS [21], Hi-SAFE [22], and HyPAR [75] allow for canopy interactions
and the various associated impacts on wind, shelter and microclimate; however, their
complexity and extensive parameterisation requirements can present significant barriers to
implementation (see [27]). The TOPEX index [76] characterises topographic exposure using
digital elevation models and is used for forest and windthrow risk assessments [77–79],
though does not directly quantify the benefits that shelterbelts may provide. The wind
chill index [80,81] has been associated with risk of lamb mortality, and shelterbelts best
offset this risk in locations where wind speed drives the calculation more strongly than
temperature or precipitation [72].

3.2.4. Air Quality and Pollution

Of the shortlisted tools, only i-Tree Eco and APSIM quantify effects on air quality
and pollution (Table 5). Three models are available in i-Tree Eco. The first estimates
the change in concentration of air pollutants by dry deposition on vegetation following
Nowak et al. [82] and can be used to draw direct links between trees and human health
impacts [83,84]. The second model estimates oxygen production by trees though this
is likely to be negligible given the large amount of oxygen present in the atmosphere,
significant contributions of algae and other photosynthetic organisms that inhabit marine
ecosystems to global oxygen production (conservatively over 50%; [85]), and comparatively
small scale of typical agroforestry plantings (e.g., shelterbelts). The final model estimates
the production of biogenic volatile organic compounds (BVOCs) by trees (see [86]) that
can be indirectly linked to impacts on human health as precursors to ozone and secondary
organic aerosols [87–89].

APSIM simulates nitrous oxide (N2O) production, an important greenhouse gas.
Simulated production of N2O has been tested in several agricultural contexts [90]. Reliable
predictions require local calibration and potential improvements have been identified [91].
The main purpose of simulating N2O in APSIM is to maintain the N balance of the simulated
system and to quantify losses by this mechanism.

Table 5. Summary of the shortlisted tools and associated models that quantify air quality and pollution.

Tool Model Name Description Output Variables

APSIM Nutrient Daily emissions-based soil N, water, and temperature. Mass of N2O-N released.

i-Tree Eco Air pollution removal

Estimated air pollution (CO, NO2, O3, SO2, PM10 and
PM2.5) removed by grasses, shrubs, and trees. Model
requires species, vegetation cover, and both weather and
pollutant observations.

Change in pollutant
concentration.

i-Tree Eco Oxygen production Estimated net oxygen production as a proportion of net
carbon sequestration. Net oxygen produced.

i-Tree Eco
Volatile Organic
Compound (VOCs)
emissions

Estimated biogenic volatile organic compounds (BVOCs;
isoprene and monoterpene) emitted by trees. Model
requires species, height (total and crown to base) crown
width and percentage canopy missing.

Isoprene and
monoterpene emissions.
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The proportion of air pollutants that are removed by vegetation is typically less than
1% [82,92], and it can be overestimated by i-Tree [93,94]. The air pollution removal model
relies upon point-source data for both weather and pollutant concentrations. These data
vary in availability, both spatially and temporally, across different parts of the world.
Furthermore, they do not consider the contribution of BVOC emissions to the production
of ozone and secondary organic aerosols. Despite these limitations, an advantage of the
air pollution removal model is that the results can be associated with impacts on human
health (or externality costs not captured by the source processes), and therefore a financial
value can be applied to the benefits of trees. The valuation provided by i-Tree is based on
data and modelling from the United States so is of limited direct use for international case
studies, but could be substituted for regionally appropriate statistics (e.g., [93,95]).

Few alternative approaches to quantifying air quality and pollution were identified in
other candidate tools. The Pollution Removal by Vegetation tool follows Jones et al. [93]
and uses an atmospheric transport model (EMEP4UK; [96]) to better characterise the spatial
and temporal distribution of air pollutants, though is limited to the United Kingdom.
Ecoserv-GIS quantifies the relative capacity and demand for air pollution reduction based
on land cover characteristics and population density in conjunction with varying buffer
distances. The Green Infrastructure Valuation Toolkit, Greenkeeper and InForest each use,
or are based upon, the i-Tree air pollution removal method.

3.2.5. Erosion, Runoff, and Flood Mitigation

The impacts of trees and vegetation cover on erosion, runoff and flood mitigation
are modelled by five of the shortlisted tools (Table 6). These models estimate various
components of the water balance, soil loss, and nutrient transport. Both APSIM and i-
Tree Eco use point or area-based models and therefore do not explicitly consider spatial
dependencies. The Revised Universal Soil Loss Equation (RUSLE; [97]) and related forms
are used by most models quantifying soil loss or nutrient transport. The RUSLE predicts
annual soil losses by sheet and rill erosion as a function of rainfall erosivity, soil erodibility,
topography, land use management and erosion control practices. InVEST and LUCI also
include spatial models that route the transport of materials across watersheds and into
stream networks or water bodies. This allows for more complex model behaviour that
considers both the composition and configuration of land cover types across a study region,
but typically will require very fine resolution terrain data and suitable calibration for reliable
results [98,99]. Economic valuation is provided by both InVEST (annual water yield) and i-
Tree, based on the potential production of hydroelectricity and cost of stormwater treatment
in the United States, respectively.

Table 6. Summary of the shortlisted tools and associated models that quantify erosion, runoff, and
flood mitigation.

Tool Model Name Description Output Variables

APSIM Erosion Estimated soil erosion using the modified
USLE [100]. Soil loss.

APSIM SoilWater

A daily water balance model based on
CERES [101] and PERFECT [102] with additional
improvements including allowing for
unsaturated flows.

Evapotranspiration, runoff,
infiltration, drainage, surface
ponding, lateral outflow, etc.

ARIES Soil erosion control
Soil loss and volume avoided by the presence of
vegetation, estimated using the RUSLE [97] in
conjunction with land cover data.

Soil loss, soil loss avoided by
vegetation.

InVEST Annual water yield
Sub-watershed scale water yield, calculated
using annual precipitation and the Budyko curve
(following [103,104])

Actual and potential
evapotranspiration, water
yield, total extraction.
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Table 6. Cont.

Tool Model Name Description Output Variables

InVEST Seasonal water yield
Estimates the relative contribution of pixels to
baseflow (during dry weather) and quickflow
(during or post-rain).

Relative baseflow, recharge
and quickflow.

InVEST Nutrient delivery ratio Estimates the transport of nitrogen and
phosphorus to streams.

Nutrient loads and export by
watershed, per-pixel nutrient
load reaching streams.

InVEST Sediment delivery ratio
Estimates soil loss using RUSLE [97] and the
proportion of sediment reaching streams
(following [105])

Soil loss, sediment exported,
sediment deposition and
retention.

i-Tree Eco Stream flow and water quality Estimates components of the water balance
using a tree-based ecohydrological model.

Interception, evaporation,
transpiration, potential
evapotranspiration, avoided
runoff.

LUCI Erosion and sediment

Identifies areas with high risk of gully and rill
erosion or depositing sediments into nearby
water features using the Topographic Wetness
Index (TWI; [106]).

Erosion vulnerability risk.

LUCI Flood mitigation

Identifies parts of the landscape where water is
likely to accumulate following large rainfall
events and characterises features that mitigate
flows.

Flood mitigation and
interception capacity classes.

LUCI Nitrogen and phosphorus Estimates nutrient loads and transport using
topographic flow routing.

Nutrient loads, accumulated
loads, stream and lake
concentrations.

LUCI RUSLE Estimates soil loss and erosion risk using the
RUSLE [97].

Soil loss, erosion risk,
sediment delivery risk.

The erosion, runoff, and flood mitigation models used by each of the shortlisted tools
have solid foundations in the scientific literature and most will be suitable for farm-scale
applications where high-quality input data is available. Topographic data resolution can
have significant impacts upon the results of hydrological flow [98,107] and soil loss mod-
els [99,108]. Finer grained data can better represent microtopography that is important for
farm scale analyses; however, the optimal resolution is ultimately a balance of data availabil-
ity, processing times, and intended use of model outputs [109]. The spatial scale, underlying
uncertainty, and adequate representation of soil properties, land cover, and weather present
additional sources of error, e.g., [110,111]. The nature of these processes also means that
they should usually be modelled at watershed scale, which is unlikely to correspond to
the farm boundary. Validation using streamflow or water quality observations is critical to
modelling these NCBs with confidence and credibility.

Many alternative approaches to quantifying erosion, runoff and flood mitigation have
been developed. The RUSLE does not describe several important mechanisms, and models
for estimating wind [112], gully [113] and streambank erosion [114] have been developed
that could provide a more complete representation of the NCBs provided by agroforestry.
Alam and Dutta [115] describe additional nutrient pollution models designed for point-
to-catchment scale applications that have been commonly applied to agricultural systems.
The Soil and Water Assessment Tool (SWAT; [116]), Catchment Analysis Tool (CAT; [117]),
Australian Water Resources Assessment (AWRA; [118,119]) and the Vegetation Optimality
Model (VOM; [120]) are biophysical models that quantify and include interactions between
water balance and vegetation processes.

3.2.6. Biodiversity

Variables relating to biodiversity are modelled by four shortlisted tools (Table 7). The
models variously quantify habitat attributes, indices of species abundance, and habitat
suitability for birds. ARIES quantifies forest fragmentation based on post-processing [121]
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of the European Space Agency Climate Change Initiative Land Cover (ESA-CCI-LC) prod-
ucts [122] at a spatial resolution of 300 m, and therefore is of limited use for decision making
in farm-scale agroforestry. LUCI is designed to maintain connectivity and optimise the
establishment of new habitat for species of interest. The wildlife habitat model from i-Tree
Eco predicts habitat suitability for 9 bird species based on land cover/use and vegetation
characteristics. InVEST includes three separate approaches that quantify mean species
abundance, known risks to existing ecosystems, or the relative magnitude of habitat quality,
rarity and degradation based on land use change and proximal threats.

Table 7. Summary of the shortlisted tools and associated models that quantify measures of biodiversity.

Tool Model Name Description Output Variables

ARIES Forest fragmentation

Sourced directly from the global relative
magnitude of forest fragmentation dataset based
on the entropy-based local indicator of spatial
association (ELSA; [121]).

N/A

InVEST Habitat quality
Estimates habitat quality and rarity from
information on threats, land use, and land cover
mapping.

Relative habitat degradation,
quality, and rarity.

InVEST Habitat risk assessment
Assesses risk for species or habitats based on an
analysis of exposure to threats and magnitude of
consequence.

Habitat and ecosystem
specific risk.

InVEST GLOBIO

Estimates the proportional change to the
abundance of individual species, relative to the
same location in pristine condition, in response
to stressors (e.g., land use change, development
activity, habitat fragmentation).

Mean species abundance.

i-Tree Eco Wildlife habitat
Predicts habitat suitability for 9 bird species
using land use, building cover and vegetation
characteristics [123].

Habitat suitability (0–1).

LUCI Habitat connectivity
(BEETLE)

Characterises habitat connectivity using known
species habitat, patch size requirements, and
dispersal ability using a cost-path technique.

Habitat connectivity
classification (e.g., existing
habitat, conservation priority,
expansion possible, or outside
of dispersal range).

Notes: The forest fragmentation metrics used by ARIES are calculated separately and made available as part of
the source dataset. Of the bird species considered by the i-Tree Eco wildlife habitat model, only the common
starling (Sturnus vulgaris) is present in Australia (non-native).

The models used by each of the shortlisted tools can be feasibly implemented with
modest data requirements; however, the methods applied are not always appropriate for
farm-scale applications in Australia and are relatively simple compared to what is available
in the scientific literature. For example, of the habitat suitability models provided by
i-Tree Eco only the common starling (Sturnus vulgaris) can be found in Australia, and it
is non-native. Individual species may not be a suitable proxy for biodiversity [124,125],
and validation is required to ensure the credibility of this assumption even where there are
strong similarities in taxonomy and ecological requirements between species [126]. This
means that the GLOBIO model [127,128] used by InVEST needs to be implemented with
careful consideration of species composition, despite the broader focus on threats to biodi-
versity. The habitat quality and risk assessment models are conceptually aligned with the
historical use of habitat as a proxy for biodiversity [129], Australian state conservation list-
ings [130,131] and the IUCN Red List of Ecosystems [132]. These methods are tractable, but
will be sensitive to how habitat classifications reflect species ecological requirements [133].
The LUCI approach is well-suited to scenario analysis and developing spatial optimisation
strategies; however, it remains dependent on the assumptions regarding proxy species and
habitat classifications.

Biodiversity has been quantified using a broad spectrum of methods in the scien-
tific literature. Two common approaches to quantifying biodiversity are stacked species
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distribution models and macroecological models [134]. Species distribution models pre-
dict suitability of habitat using the known presence-absence or occurrence records [135],
whereas macroecological models predict emergent properties of biodiversity such as species
richness [136] or compositional turnover [137]. Both approaches seek to link dependent
variables (e.g., habitat suitability, species richness, compositional turnover) to environ-
mental conditions, often using data-driven statistical techniques, and draw upon many
of the same data sources (e.g., Global Biodiversity Information Facility, Atlas of Living
Australia) that would typically be required to run the GLOBIO model. Building on well-
supported ecological principles, frameworks exist to translate patterns of biodiversity into
meaningful indicators of biodiversity status and trend (e.g., https://research.csiro.au/
macroecologicalmodelling/research-areas/indicators-biodiversity-change/, accessed 24
March 2022, [138]). These can facilitate conservation planning [139], provide estimates of
extinction risk in the face of future climate change and land use scenarios [140] and be used
to support global biodiversity reporting requirements [141].

Other approaches identified by the remaining candidate tools often used habitat
mapping as a proxy for biodiversity, though there were exceptions. The Natural Environ-
ment Valuation Online quantifies species richness using known occurrence records for
pre-selected species. Many techniques for quantifying fragmentation and connectivity are
provided by FRAGSTATS [142] and GuidosToolbox [143]. While useful in some cases (e.g.,
tracking forest fragmentation; [144]), the calculated metrics are difficult to link to ecological
processes [145–147].

3.2.7. Crop Pollination

Spatially explicit pollination modules are available in ARIES and InVEST (Table 8).
The methods used by both tools have origins in Lonsdorf et al. [148], which is focused on
wild bees as pollinators. They rely upon nesting site availability and floral resources as key
inputs to estimate pollinator supply. Demand for pollination is quantified as the proportion
of crop production attributable to animal pollinators (e.g., [149]). InVEST uses guild-
specific attributes to control pollinator behaviour (i.e., active seasons and travel distance).
It also incorporates central place foraging theory (based on [150]) such that pollinators will
more frequently visit patches with higher quality floral resources given the same travel
distance. ARIES implies foraging distance through differences in the spatial resolution
of land cover (finer pixel size) and crop type layers (coarser pixel size). It also includes
modifiers that increase floral resources near freshwater and accounts for the impacts of
temperature and radiation on insect activity levels [151]. Both ARIES and InVEST can
provide valuation where commodity prices are available by estimating the proportion of
crop yield attributable to pollinators; however, economic measures of pollination services
are known to be highly uncertain [152].

Table 8. Summary of the shortlisted tools and associated models that quantify crop pollination.

Tool Model Name Description Output Variables

ARIES Crop pollination

Calculates indexes of pollinator supply using
nesting sites, floral resources, distance to fresh
water and pollinator activity, and demand using
weighted sum of crop dependencies.

Pollinator supply and demand

InVEST Pollinator abundance

Calculates indexes of pollinator supply and crop
yields using habitat suitability (nesting sites and
floral resources), and guild attributes (incl.
foraging distance) and farm characteristics.

Pollinator supply and relative
abundance indices, crop yield
index for managed and wild
pollinators.

The methods implemented by both ARIES and InVEST for quantifying pollination
are flexible enough to run using global or locally developed datasets; however, there are
limitations to how these models can be interpreted. There are many dynamic factors that
impact pollination but are not captured in these models. These include actual pollinator

https://research.csiro.au/macroecologicalmodelling/research-areas/indicators-biodiversity-change/
https://research.csiro.au/macroecologicalmodelling/research-areas/indicators-biodiversity-change/
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abundance, the impact of stressors such as drought and pesticides, changes in population
viability over time, inter and intra-species competition, resource depletion, and prefer-
ences for different floral resources. While this information is rarely available and would
therefore be difficult to implement, it necessitates the use of relative indices that must be
treated carefully without field validation. The spatial scale of analyses is another source
of uncertainty. For example, spatial grain of land cover information may be too coarse
to effectively represent pollinator habitat, floral resources, and suitable substrates. While
these limitations are recognised and there have been ongoing efforts to improve upon
these models in the scientific literature (e.g., [153]), data for field validation is limited and
unlikely to be available outside of specific case-studies or without data collection in the
field.

Ecosystem services modelling tools such as InVEST have been widely used for quanti-
fying crop pollination [154], though distinct approaches have been developed. Both ASSET
(https://assist.ceh.ac.uk/, accessed 15 February 2021) and Perennes et al. [154] incorporate
species distribution models for bee pollinators and use species richness as a proxy for
pollination supply. Co$ting nature [155] uses dry matter productivity on non-croplands
in conjunction with simple distance decay functions as a proxy for pollination and pest
control. Ecoserv-GIS uses habitat and a distance-based visitation probability to quantify
pollination supply and demand, based on Schulp et al. [156].

3.2.8. Amenity and Recreation

Amenity and recreation benefits are modelled by three of the shortlisted tools (Table 9).
Trees in agricultural landscapes can provide amenity benefits (through improved aesthet-
ics/scenic outlooks) and recreation benefits (through the opportunity for undertaking
recreational activities, such as walking and cycling). These can be provided to both private
landowners and the public (if the sites are openly accessible). Trees can also have indirect
influences on recreation activities, for example, through interactions with water quality
(which can influence opportunities for recreational fishing, swimming, or boating), biodi-
versity (which can influence bird watching and nature viewing), and through providing
shading and shelter from extreme weather for recreation activities [157].

Table 9. Summary of the shortlisted tools and associated models that quantify amenity and recreation.

Tool Model Name Description Output Variables

Imagine N/A Amenity value of farms engaged in agroforestry.
Assumes 10% increase in land value over 5 years. Adjusted land value ($)

InVEST Scenic quality
Viewsheds are used to quantify and categorise
the impact of offshore developments on scenic
quality.

Categorical (unaffected/very
low/low/medium/high)
estimates of scenic quality.

InVEST Visitation: Recreation and
Tourism

Linear regression models are used to estimate
the key determinants (e.g., natural features,
infrastructure, land uses) of visitation rates
(user-provided, or collated from public domain
geotagged images).

Photo-user-days/visitation
rate per year/month.
Regression coefficients.

SolVES N/A
Statistical modelling (MaxEnt) of social values
acquired from survey data as a function of
environmental layers.

Value index (0–10).

Notes: Amenity values for Imagine are based on the methods described by Mendham [45].

Imagine incorporates amenity values transferred from Polyakov et al. [158], who demon-
strated that trees on farms tended to increase the land value. InVEST includes a model for
conducting a viewshed analysis which can be used to estimate visual impact (visual dis-
amenity) or visual quality (visual amenity). The model assumes a negative impact on views
(due to its framing on offshore infrastructure impacts on coastal scenic beauty), however, it
is flexible enough to also estimate positive visual quality benefits. InVEST also includes a
model for quantifying the benefits of recreation and tourism. It predicts the relative rate of

https://assist.ceh.ac.uk/
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visitation across a landscape and estimates the contribution of features of the natural and
built environment to visitation rates using a simple linear regression. It also allows for the
prediction of visitation rates under alternative or future scenarios. SolVES statistically links a
range of social values, including aesthetic and recreation values (plus perceptions of cultural,
economic, and historic value amongst others), to spatially explicit environmental layers. Public
attitude and preference surveys are used to elicit social value responses and to link those
responses to specific locations on a study area map. It then uses Maxent (maximum entropy)
modelling to derive a quantitative 10-point, social-values index.

The methods implemented by both InVEST and SolVES for quantifying amenity and
recreation are flexible enough to run at different scales; however, there are limitations in the
outputs produced and in their interpretation. Neither tool directly estimates the number of
visits, or the welfare enjoyed by individuals as a result of having access to the recreation site.
Estimating the number of visits made to recreation sites across a broad spatial landscape
typically requires large-scale visitor surveys, however, these can be both time-consuming and
expensive. InVEST uses a proxy measure of visitation by relying on the relationship between
geotagged photographs uploaded to the website Flickr and the number of people who visit
a location. While Wood et al. [159] provide evidence that a reasonably good relationship
exists, there are also several potential biases in the use of photograph information. For
example, photograph locations typically capture visual hotspots, but not areas closer to home
or more commonly visited. Different recreational activities may also be more or less suited to
taking photographs. There is also a spatial discrepancy inherent in geotagged photograph
information as it indicates the position of the photographer and not of the subject. Finally,
both visitor presence and the sharing of images to social media are known to be socially
biased [160]. For InVEST the spatial scale of analyses is another source of uncertainty; the
density of photographs varies spatially, and this has ramifications for the cell-size that can be
chosen for analysis. SolVES relies on smaller scale primary survey data and combines this
with a value transfer model to enable expansion of the analysis to other locations [49,161].
A discussion of various caveats and problems associated with such transfers, such as the
compounding of errors in original study data, and requirements that the transfer location
should be both biophysically and socially similar to the original site, can be found in Sherrouse
et al. [162] and Semmens et al. [161].

A range of alternative approaches have been developed. Several models predict the
potential capacity and demand for amenity and recreation using features of the landscape
and accessibility. For example, EcoServ-GIS identifies areas where potential recreation
capacity and recreation demand coincide and differ; and ARIES covers several case study
areas for both visual amenity and recreation services. Other models combine amenity and
recreation capacity and demand information with social media data [163] or mobile phone
tracking data [164]. For example, Co$ting nature estimates potential recreation services
through linking features of the nature landscape with its accessibility to populations and
then combines this with geotagged photograph database similar to InVEST.

Finally, there exists a range of approaches that can be used to estimate monetary
values. The travel cost method is commonly used to model the environmental quality
of recreational sites along with people’s expenditure on travelling to sites to deduce a
monetary estimate of the welfare of recreational experiences [165,166]. ORVal [167] uses a
sophisticated travel cost-method and a large national-scale recreation visitation survey to
estimate visits and value for every open access park, path and beach in England and Wales
and combine this information into an interactive map-based web tool.

4. Discussion
4.1. Identifying Tools That Quantify Natural Capital Benefits of Agroforestry and Shortlisting
Those Best Suited to Farm-Scale Applications in Australia

None of the identified tools could quantify all the natural capital benefits that were
assessed. In their respective reviews, Luedeling et al. [27] and Kraft et al. [28] found that
agroforestry tools had restricted options for quantifying important ecosystem services and
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NCBs. Both studies focused on a smaller number of tools (n = 6 and n = 13, respectively)
typically designed for modelling tree-crop interactions and production. Our analyses
considered a broader range of tools and modelling strategies. Those that were shortlisted
were designed for a range of different purposes and provided a broad range of techniques
for quantifying NCBs. Despite this, multiple tools are still currently required to address
each of the different NCBs that were assessed. Furthermore, few of the tools identified met
our suitability criteria for farm-scale modelling in Australia.

The maximum proportion of tools not meeting any single suitability criterion was just
32%, despite 86% not being shortlisted for any reason. This reflects the range of tools evalu-
ated and demonstrates that the reasons why different tools are limited are variable. The
lack of ability to quantify NCBs of agroforestry was most common and was typically asso-
ciated with tools designed for closely aligned but tangential purposes (e.g., for agroforestry
design, economic analyses, recording biodiversity assets, crop and pasture productivity
in non-agroforestry context). This was a consequence of considering many potential tools
representing diverse methods. A lack of suitability for Australian applications or the need
for extensive parameterisation was second most common. This is not surprising given
the complexity of process-based agroforestry models and the recognised challenges in
extending or calibrating niche models for new species and environments [27,28]. Over
one fifth of the tools evaluated were also dependent upon pre-calculated, location-specific
datasets (e.g., for the UK, or North America) that would in many cases require significant
efforts to develop and apply to new regions. Tool availability and maintenance is a sig-
nificant challenge, also recognised by Luedeling et al. [27] and Kraft et al. [28], meaning
that several impactful tools that would otherwise have been shortlisted were not (e.g.,
SPIF, EnSym). Unexpectedly, the spatial resolution of the data and model outputs was
only rarely a limiting factor. Most tools (93%) were, at least notionally, compatible with
farm-scale analyses, though some user intervention may be required (e.g., user-provided
data or post-processing).

4.2. Evaluating the Modelling Capabilities of Shortlisted Tools

Each of the natural capital benefits that we evaluated were quantified using techniques
that vary in their maturity, assumptions, and complexity. There was a trade-off between
the generality and complexity of models available. For example, APSIM and FullCAM
dynamically allocate and transport carbon between different biomass pools, whereas ARIES
and InVEST use much simpler lookup tables to assign carbon stocks. Similarly, InVEST
and LUCI incorporate spatial methods for flow routing, yet simplify interactions with
vegetation and soil moisture that would otherwise be modelled by APSIM or other more
nuanced process-based models. Flow routing is not typically considered in more complex
point or area-based models. These kinds of trade-offs mean that there was no single tool
identified that could best represent each NCB that was assessed.

Timber production, carbon sequestration, erosion, runoff, and flood mitigation, and
crop, pasture and livestock productivity included the most well-developed models among
the shortlisted tools. These NCBs are backed by decades of scientific research, with tangible
biophysical and/or economic impacts, and have strong links to environmental policy
and governance mechanisms (e.g., UN Sustainable Development Goals, [168] Reef 2050
Long-Term Sustainability Plan, [169], UN-REDD). Many quantitative methodologies and
data sources have been developed that can often be applied in data-poor environments to
support decision-making. A significant advantage of using more complex process-based
models such as CABALA or APSIM, however, is coupling of carbon and water cycles in
vegetation models. This means that both types of natural capital benefits can be quantified
simultaneously and with internal consistency. Despite the modularity and flexibility of
tools such as APSIM, these models are not commonly extended to incorporate the broader
suite of NCBs (but see for example [29,170]) that may be supported by agroforestry.

Biodiversity, wind, shelter and microclimate, and recreation and amenity were each
modelled using a variety of published methods; however, these natural capital benefits also
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presented the greatest opportunity for further development. Few of the tools quantified
biodiversity well from a macroecological perspective, focusing mostly on individual species
or habitat types. There are an increasing number of biodiversity indicators becoming
available (e.g., the Biodiversity Indicators Partnership, https://www.bipindicators.net/,
accessed 24 March 2022) and tools designed for farm-scale applications are currently under
development (e.g., https://looc-b.farm/, accessed 24 March 2022). A key purpose of
shelterbelts is to provide a windbreak, yet the shortlisted tools cannot quantify the impacts
well under dynamic configurations. Representing the spatial-temporal dynamics (see [68])
of these windbreaks under varying spatial configurations would be particularly useful for
developing agroforestry decision support tools that can be applied at scale. The recreation
and amenity models are heavily restricted by the availability of suitable survey data and
could benefit from the exploration of additional non-linear modelling techniques that can
account for variable interactions. For example, data on visitation rates and travel distance
would enable monetary valuation of recreation and amenity using methods applied to
existing, but regionally specific, tools such as ORVal [167] and NEVO. Implementing or
building new approaches to quantifying these natural capital benefits in agroforestry
systems would provide significant decision support capabilities.

Further challenges and limitations are likely for quantifying crop pollination and air
quality. There are many uncertainties associated with pollination models, necessitating
the use of proximal variables with relative indices of potential pollination. These models
focus on the potential spatial-temporal distribution of pollinators rather than the process of
pollination. Developing centralised, accessible databases on regionally important pollina-
tors (not only bees), including their behaviour, occurrence and preferences (e.g., habitat,
crop types), would however further facilitate the use of accessible models such as InVEST.
Atmospheric transport and pollution models [96,171] may improve capacity for quantifying
potential air quality improvements provided by agroforestry, as existing approaches pre-
dominantly rely upon point source information. Efforts to improve air quality modelling is
likely better targeted towards larger forestry operations given the relatively small footprint
of typical agroforestry plantings.

4.3. Key Capability Gaps and Opportunities for Future Development

Few capability gaps emerged that equally affected each of the tools assessed given
their diversity, though there were common themes that arose. One key capability gap was
the lack of dynamic responses to landscape configuration. Agroforestry is associated with
many spatially dependent processes, and it was clear that these are usually not captured
well, beyond models designed for quantifying hydrological processes. While biophysical
modelling frameworks such as APSIM do allow for various spatial interactions to occur,
they are usually simplified (but see Hi-sAFe; [22]). In APSIM for example, competition for
light, nutrients and water are controlled by tree, crop, and pasture parameters that assume
horizontally uniform conditions. Any regions where spatial interactions occur need to be
considered and parameterised explicitly, and the appropriate distances to consider will
differ depending on both variables (e.g., light, wind) and site-specific conditions (e.g., tree
height, species composition, habitat). Wind speed reductions have been demonstrated with
APSIM using distance-based zones of influence; however, the current implementation does
not allow for changes in wind direction, interactions with varying spatial configurations
and assumes fixed tree porosity. Allowing flow routing, wind speed, shading, and inter-
species competition, for example, to dynamically respond to changing site conditions
would enable a range of scenario and design-based questions to be explored; however,
these are not trivial challenges to solve.

Tool and model complexity, accessibility, regional applicability, and interoperability
present additional challenges for quantifying the NCBs of agroforestry. This has been pre-
viously recognised [27,28] and is reflected in the range of reasons that arose for excluding
tools from the shortlist (see Table A1). Many of the more complex but well-developed mod-
els take considerable time investment and/or expertise to use. Furthermore, tools are often

https://www.bipindicators.net/
https://looc-b.farm/
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written in different programming languages and are not always well-maintained or made
available, limiting their accessibility without considerable additional efforts. The level of
complexity required to address user needs will vary by application and spatial-temporal
scale (e.g., decision support and risk management, natural capital accounting, scientific
research), and therefore there is a need for simplified, accessible models. Reducing the time
and resource overheads associated with this complexity and accessibility challenge was
among the key motivations for the development of tools such as ARIES and InVEST [43],
that have both enabled rapid natural capital and ecosystem services assessments globally.
The (relative) simplicity of models used by these tools means that they can often be applied
more generally in different locations, adapting to local data availability, or drawing upon
global data sources. There are strong arguments for building additional capabilities into
more complex modelling frameworks such as APSIM (e.g., to support process understand-
ing, internal consistency and feedback; see [27,28] for more detailed discussion); however,
there are significant resource requirements for developing and calibrating new modules.
It may be possible to meet the needs of many users and a broader range of NCBs by
leveraging the existing suite of models and tools that are available.

Hybridised approaches to quantifying the NCBs of agroforestry systems have the po-
tential to increase development speed and maximise flexibility by matching an appropriate
level of complexity with end user requirements. Such concepts have been implemented by
several of the tools that were evaluated (e.g., ARIES, InVEST, Imagine, Spatial Planning
and Investment Framework); however, accessibility, maintenance and interoperability
still present challenges. One way to support hybrid quantification of NCBs would be to
use open-source software as the ‘glue’ to bring together different tools or models on an
as-needed basis. There are many advantages to using open-source scripting languages such
as R or Python, for example. Both provide vast libraries of well-maintained packages that
provide an enormous diversity of modelling capabilities, strong support for many different
data types, and active developers building Application Programming Interfaces (APIs) to
integrate external software. For example, r3PG [172], 3-PG2Py [173] and APSIMX [174]
provide APIs for running the 3-PG forest growth model and APSIM in an R or Python
environment. A Python API is available for InVEST, and one is currently under devel-
opment for Imagine. It is also possible to alternate between these languages by calling R
from Python, or vice versa. The flexibility and interoperability provided by open-source
scripting languages could facilitate rapid quantification of natural capital benefits, while
enhancing accessibility, reducing maintenance overheads, and aligning tools and models
with a reduced set of programming languages.

5. Conclusions

Many opportunities exist for developing new or improving existing tools that quantify
the NCBs of agroforestry systems. Ultimately, the best tool for a given application will
depend on end-user requirements, and therefore improving flexibility and interoperability
are key to making these resources more accessible. We recommend that scientists, land
managers and software developers work together to:

1. Explore opportunities to build upon and streamline the implementation of tools like
APSIM to reduce the resources required to assess NCBs at farm scale;

2. Build capacity to represent spatially dependent processes that can dynamically adapt
to different scenarios and landscape configurations;

3. Develop and publish high quality spatial surfaces (e.g., productivity under alter-
native climate and management scenarios, biophysical remote sensing models), at
appropriate spatial and temporal scales, to support development of new tools;

4. Repurpose existing biophysical models where possible to increase development speed
and minimise barriers to adoption;

5. Explore opportunities for integrating observations with process-based models to
support monitoring and evaluation of existing agroforestry systems and improve
model calibration;
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6. Develop APIs and/or implement tools with widely used open-source scripting lan-
guages to promote uptake, enable further development, and to facilitate interoperabil-
ity; and

7. Design tools with a level of complexity that is appropriate for the required end use.

A better understanding of the NCBs associated with agroforestry systems and their
trade-offs can help to build more resilient and sustainable agricultural enterprises, guide
informed policy design, and significantly contribute towards interdisciplinary research on
nature-based solutions, natural capital and ecosystem services.
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Appendix A

Table A1. List of tools identified as part of this review and capacity for quantifying selected natural
capital benefits. Six screening criteria were used to evaluate the suitability of each tool for detailed
evaluation of modelling capabilities: (a) quantifies at least one of the selected natural capital benefits
of agroforestry; (b) uses methods or data that are compatible with farm-scale analyses; (c) includes,
or allow the user to provide, supporting datasets (where required) that can be applied in Australia;
(d) uses methods and models that are suitable for Australian applications, or can be applied with-
out extensive parameterisation; (e) provides functionality not implemented by existing Australian
tools; and (f) are currently available for use as open-source software, via collaboration, or by web
application.
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APSIM x x x x x x - [25,26], https://www.apsim.info/
(accessed 1 September 2021)

ARIES (for SEEA explorer) x x x x x x -
[33], https:

//aries.integratedmodelling.org
(accessed 1 September 2021)

Farm Forestry Toolbox x x -
[44], https:

//www.farmforestrytoolbox.com/
(accessed 7 September 2021)

FullCAM 2020 x x x -

[41], https://www.industry.gov.au/
data-and-publications/full-carbon-
accounting-model-fullcam (accessed 5
September 2021)

Imagine x x x x x - [31,45]

https://www.apsim.info/
https://aries.integratedmodelling.org
https://aries.integratedmodelling.org
https://www.farmforestrytoolbox.com/
https://www.farmforestrytoolbox.com/
https://www.industry.gov.au/data-and-publications/full-carbon-accounting-model-fullcam
https://www.industry.gov.au/data-and-publications/full-carbon-accounting-model-fullcam
https://www.industry.gov.au/data-and-publications/full-carbon-accounting-model-fullcam
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InVEST x x x x x x -
[34], https://naturalcapitalproject.
stanford.edu/software/invest
(accessed 1 September 2021)

i-Tree Eco x x x x x x -
[46], https://www.itreetools.org/
tools/i-tree-eco (accessed 1
September 2021))

LUCI x x x - [47,48], https://lucitools.org/
(accessed 15 September 2021)

SolVES x -
[49], https://pubs.er.usgs.gov/

publication/tm7C25 (accessed 9
October 2021)

Agroforestry Design Tool a https://www.agroforestryx.com/
(accessed 1 October 2021)

ASSET x x x x b,c,d
https://assist.ceh.ac.uk/asset-assist-
scenario-exploration-tool (accessed 20
September 2021)

Atlas of Living Australia (ALA) 1 x a https://www.ala.org.au/ (accessed 1
October 2021)

AusFarm Decision Support Software 2 x x a https://doi.org/10.25919/d07h-pr78
(accessed 20 September 2021)

B£ST x x x x x d
https://www.susdrain.org/
resources/best.html (accessed 20
September 2021)

CMSi Site Management a
https://www.esdm.co.uk/cmsi-
introduction (accessed 20 September
2021)

COMP8 a,f [175]

Co$ting Nature x x x x x x b
http://www.policysupport.org/
costingnature (accessed 22 September
2021)

Crop Livestock Enterprise Model
(CLEM) x a

[176];
https://www.apsim.info/clem/
Content/Details/Overview.htm
(accessed 3 September 2021)

Digital Agricultural Services (DAS) 2 x x a
https:
//digitalagricultureservices.com/
(accessed 5 September 2021)

Decision Support System for
Agrotechnology Transfer (DSSAT) 2 x x a [65]

DynACof x x x x d [177]

EcoServ-GIS x x x x x x c

https://www.nature.scot/doc/
naturescot-research-report-954-
ecoserv-gis-v33-toolkit-mapping-
ecosystem-services-gb-scale (accessed
20 September 2021)

EcoservR x x x x x x e
https:
//ecoservr.github.io/EcoservR/
(accessed 20 September 2021)

EnSym 3 x x x x f https://ensym.biodiversity.vic.gov.
au/cms/ (accessed 1 September 2021)

EPIC x x x x x x d,e [178]
ESAT-A x x x f [179]

European Forest Information Scenario
model (EFISCEN) x d

[180]; https://efi.int/knowledge/
models/efiscen/documentation
(accessed 27 September 2021)

FarmMap4D a https://www.farmmap4d.com.au/
(accessed 1 September 2021)

Farm-SAFE 4 x a [181]; https://www.agforward.eu/
(accessed 20 September 2021)

https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest
https://www.itreetools.org/tools/i-tree-eco
https://www.itreetools.org/tools/i-tree-eco
https://lucitools.org/
https://pubs.er.usgs.gov/publication/tm7C25
https://pubs.er.usgs.gov/publication/tm7C25
https://www.agroforestryx.com/
https://assist.ceh.ac.uk/asset-assist-scenario-exploration-tool
https://assist.ceh.ac.uk/asset-assist-scenario-exploration-tool
https://www.ala.org.au/
https://doi.org/10.25919/d07h-pr78
https://www.susdrain.org/resources/best.html
https://www.susdrain.org/resources/best.html
https://www.esdm.co.uk/cmsi-introduction
https://www.esdm.co.uk/cmsi-introduction
http://www.policysupport.org/costingnature
http://www.policysupport.org/costingnature
https://www.apsim.info/clem/Content/Details/Overview.htm
https://www.apsim.info/clem/Content/Details/Overview.htm
https://digitalagricultureservices.com/
https://digitalagricultureservices.com/
https://www.nature.scot/doc/naturescot-research-report-954-ecoserv-gis-v33-toolkit-mapping-ecosystem-services-gb-scale
https://www.nature.scot/doc/naturescot-research-report-954-ecoserv-gis-v33-toolkit-mapping-ecosystem-services-gb-scale
https://www.nature.scot/doc/naturescot-research-report-954-ecoserv-gis-v33-toolkit-mapping-ecosystem-services-gb-scale
https://www.nature.scot/doc/naturescot-research-report-954-ecoserv-gis-v33-toolkit-mapping-ecosystem-services-gb-scale
https://ecoservr.github.io/EcoservR/
https://ecoservr.github.io/EcoservR/
https://ensym.biodiversity.vic.gov.au/cms/
https://ensym.biodiversity.vic.gov.au/cms/
https://efi.int/knowledge/models/efiscen/documentation
https://efi.int/knowledge/models/efiscen/documentation
https://www.farmmap4d.com.au/
https://www.agforward.eu/
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Figured x a https://www.figured.com/ (accessed
1 September 2021)

FlintPro x e https://flintpro.com/ (accessed 1
October 2021)

Forecaster x x d
https://www.scionresearch.com/
services/software-and-applications
(accessed 20 September 2021)

Forest Investment Framework (FIF) x x x x x c,d,e [182]
FRAGSTATS 5 x a [142]
GrassGro 2 x x a [50]

Green Infrastructure Valuation Toolkit x x x x x d
https://www.merseyforest.org.uk/
services/gi-val/ (accessed 20
September 2021)

Greenkeeper x x x x x c,d
https://www.greenkeeperuk.co.uk/
the-tool/ (accessed 20 September
2021)

GuidosToolbox 3 x a
[143]; https://ec.europa.eu/jrc/en/
scientific-tool/guidos-toolbox
(accessed 2 September 2021)

Hi-SAFE x x x d,e [22]
HyPAR x x x d [75]
ICBM/N x d,e,f [183]

InForest x x x x c http://inforest.frec.vt.edu/ (accessed
20 September 2021)

Integrated Biodiversity Assessment
Tool (IBAT) 1 x a https://www.ibat-alliance.org/

(accessed 1 September 2021)

i-Tree Canopy a,c [46]; https://www.itreetools.org/
(accessed 1 September 2021)

i-Tree Design x x x x c [46]; https://www.itreetools.org/
(accessed 1 September 2021)

i-Tree Landscape x x x x c [46]; https://www.itreetools.org/
(accessed 1 September 2021)

Land Use Trade-Offs (LUTO) Model x x x x b [184]

LOOC-C x e https://looc-c.farm/ (accessed 15
September 2021)

MESH a

https://naturalcapitalproject.
stanford.edu/software/mesh; http:
//justinandrewjohnson.com/mesh/
(accessed 20 September 2021)

NEVO (Natural Environment
Valuation Online tool) x x x x b,c

https:
//www.leep.exeter.ac.uk/nevo/
(accessed 12 October 2021)

OPAL a
https://naturalcapitalproject.
stanford.edu/software/opal
(accessed 20 September 2021)

ORVal (Outdoor Recreation Valuation
Tool) x x c

[167]; https:
//www.leep.exeter.ac.uk/orval/
(accessed 12 October 2021)

Pollution removal by vegetation x c https://shiny-apps.ceh.ac.uk/
pollutionremoval/

SBELTS x x x x d,f [185]
Scenario Planning and Investment
Framework Tool (SPIF) x x x x f [186]

SCUAF x x x d,e,f [23]
SENCE (Spatial Evidence for Natural
Capital Evaluation) x x c,f https://www.envsys.co.uk/sence/

(accessed 20 September 2021)
Simulateur mulTIdisciplinaire pour
les Cultures Standard (STICS) 2 x a [66]

https://www.figured.com/
https://flintpro.com/
https://www.scionresearch.com/services/software-and-applications
https://www.scionresearch.com/services/software-and-applications
https://www.merseyforest.org.uk/services/gi-val/
https://www.merseyforest.org.uk/services/gi-val/
https://www.greenkeeperuk.co.uk/the-tool/
https://www.greenkeeperuk.co.uk/the-tool/
https://ec.europa.eu/jrc/en/scientific-tool/guidos-toolbox
https://ec.europa.eu/jrc/en/scientific-tool/guidos-toolbox
http://inforest.frec.vt.edu/
https://www.ibat-alliance.org/
https://www.itreetools.org/
https://www.itreetools.org/
https://www.itreetools.org/
https://looc-c.farm/
https://naturalcapitalproject.stanford.edu/software/mesh
https://naturalcapitalproject.stanford.edu/software/mesh
http://justinandrewjohnson.com/mesh/
http://justinandrewjohnson.com/mesh/
https://www.leep.exeter.ac.uk/nevo/
https://www.leep.exeter.ac.uk/nevo/
https://naturalcapitalproject.stanford.edu/software/opal
https://naturalcapitalproject.stanford.edu/software/opal
https://www.leep.exeter.ac.uk/orval/
https://www.leep.exeter.ac.uk/orval/
https://shiny-apps.ceh.ac.uk/pollutionremoval/
https://shiny-apps.ceh.ac.uk/pollutionremoval/
https://www.envsys.co.uk/sence/
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TESSA (Toolkit for Ecosystem Service
Site-based Assessment) 6 x x x x x a http://tessa.tools/ (accessed 15

September 2021)

Viridian HydroloGIS x x x x x x c,f https://viridianlogic.com/ (accessed
15 September 2021)

WaNuLCAS x x x d [21]
WIMISA x x f [187]
Yield-SAFE x x d [188]

1 The Atlas of Living Australia (ALA) and Integrated Biodiversity Assessment Tool (IBAT) do not quantify the
relationship between species occurrences and agroforestry, and therefore were considered not to meet criterion a.
2 AusFarm, DAS, DSSAT, GrassGro and STICS provide productivity modelling capabilities; however, they do
not account for interactions with trees and were not considered further. 3 A product licence for EnSym could not
be obtained at the time of this review and insufficient documentation was available to evaluate the full range of
models applied by the tool, therefore it was not considered for detailed review. 4 Farm-SAFE provides economic
modelling capabilities for biophysical SAFE models. 5 FRAGSTATS and GuidosToolBox provide various methods
for calculating fragmentation and connectivity using spatial analyses and mathematical morphometry; however,
there are no explicit links between these metrics and biodiversity in agroforestry systems, so were not considered
for the detailed capability review. 6 TESSA provides guidance documentation for evaluating ecosystem services.
It has not been considered for detailed capability review as it does not directly quantify the selected natural capital
benefits of agroforestry.
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