
land

Article

Towards the Use of Land Use Legacies in Landslide Modeling:
Current Challenges and Future Perspectives in an Austrian
Case Study

Raphael Knevels 1,* , Alexander Brenning 1 , Simone Gingrich 2 , Gerhard Heiss 3, Theresia Lechner 2,
Philip Leopold 3, Christoph Plutzar 2,4, Herwig Proske 5 and Helene Petschko 1

����������
�������

Citation: Knevels, R.; Brenning, A.;

Gingrich, S.; Heiss, G.; Lechner, T.;

Leopold, P.; Plutzar, C.; Proske, H.;

Petschko, H. Towards the Use of

Land Use Legacies in Landslide

Modeling: Current Challenges and

Future Perspectives in an Austrian

Case Study. Land 2021, 10, 954.

https://doi.org/10.3390/land10090954

Academic Editors: Matej Vojtek,

Andrea Petroselli and

Raffaele Pelorosso

Received: 4 August 2021

Accepted: 4 September 2021

Published: 8 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geography, Friedrich Schiller University Jena, 07743 Jena, Germany;
alexander.brenning@uni-jena.de (A.B.); helene.petschko@uni-jena.de (H.P.)

2 Department of Economics and Social Sciences, University of Natural Resources and Life Sciences,
1070 Vienna, Austria; simone.gingrich@boku.ac.at (S.G.); t.lechner@mysynergis.com (T.L.);
christoph.plutzar@umweltbundesamt.at (C.P.)

3 Center for Low-Emission Transport, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
Gerhard.Heiss@ait.ac.at (G.H.); Philip.Leopold@ait.ac.at (P.L.)

4 Division of Conservation Biology, Vegetation Ecology and Landscape Ecology, University of Vienna,
Rennweg 14, 1030 Vienna, Austria

5 Remote Sensing and Geoinformation Department, JOANNEUM RESEARCH Forschungsgesellschaft mbH,
8010 Graz, Austria; herwig.proske@joanneum.at

* Correspondence: raphael.knevels@uni-jena.de

Abstract: Land use/land cover (LULC) changes may alter the risk of landslide occurrence. While
LULC has often been considered as a static factor representing present-day LULC, historical LULC
dynamics have recently begun to attract more attention. The study objective was to assess the effect of
LULC legacies of nearly 200 years on landslide susceptibility models in two Austrian municipalities
(Waidhofen an der Ybbs and Paldau). We mapped three cuts of LULC patterns from historical
cartographic documents in addition to remote-sensing products. Agricultural archival sources were
explored to provide also a predictor on cumulative biomass extraction as an indicator of historical
land use intensity. We use historical landslide inventories derived from high-resolution digital terrain
models (HRDTM) generated using airborne light detection and ranging (LiDAR), which are reported
to have a biased landslide distribution on present-day forested areas and agricultural land. We asked
(i) if long-term LULC legacies are important and reliable predictors and (ii) if possible inventory
biases may be mitigated by LULC legacies. For the assessment of the LULC legacy effect on landslide
occurrences, we used generalized additive models (GAM) within a suitable modeling framework
considering various settings of LULC as predictor, and evaluated the effect with well-established
diagnostic tools. For both municipalities, we identified a high density of landslides on present-day
forested areas, confirming the reported drawbacks. With the use of LULC legacy as an additional
predictor, it was not only possible to account for this bias, but also to improve model performances.

Keywords: land use/land cover legacy; airborne LiDAR-based HRDTM; generalized additive model;
landslide susceptibility modeling; historical landslide inventory bias; biomass extraction

1. Introduction

Landslides pose a threat to human lives and infrastructure. A changing climate
and land use/land cover (LULC) alter the landslide risk and thus have societal conse-
quences [1,2]. In Austria, landslides are relevant natural hazards preconditioned by factors
such as lithology, geomorphology, tectonic structures and LULC, and are mainly triggered
by long-lasting heavy rainfall and rapid snowmelt [3]. Therefore, understanding the factors
that increase the chance of landslide occurrence is crucial for spatial planning in the face of
ongoing and expected future climate and LULC changes.
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LULC types, and their changes, are reported to have different hydrological and
geomechanical effects controlling slope stability [4]. While forest is often considered to
stabilize slopes [5], forest harvesting or road construction undercutting slopes may reduce
slope stability [6,7]. However, in landslide studies, LULC has often been considered as
a static factor representing solely the present-day LULC [8] (i.e., latest available LULC).
Recently, more studies have begun to account for historical LULC in landslide analysis,
assigning LULC dynamics an important role in explaining landslides [9–12]. Beguería [9]
and Persichillo et al. [11] discovered a high landslide susceptibility on abandoned cultivated
land, even after revegetation by shrubs or trees in the Spanish Pyrenees and in the Oltrepò
Pavese (Italy), respectively. Gariano et al. [10] and Pisano et al. [12] found evidence that
land management reduced landslide occurrences in Southern Italy (Calabria and Molise),
supporting the importance of LULC changes in spatial planning practice. However, due
to the availability of mainly remote-sensing products (aerial or satellite imagery), these
landslide analyses were only able to consider historical LULC since the mid-20th century
(e.g., since 1954 in [12] or since 1957 in [9]). To the authors’ knowledge, only one study
used historical cartographic documents as additional sources (e.g., Napoleonic cadastral
map) to assess the long-term legacy effects of LULC on mass movements [13].

In general, legacy effects describe the influence of past events or processes on later
states, often spanning decades to centuries [14,15]. Long-term legacy effects of past LULC
have been shown to exist in the context of socio-ecological dimensions such as contempo-
rary forest structure, management and disturbance risk [16] or biodiversity [17,18]. For
mass movements, Lopez-Saez et al. [13] revealed the potential of historical LULC changes
in explaining the paradoxical observation of reduced rockfall hazards despite an increased
urban exposure in the Grenoble conurbation since 1850. Especially the forest densification
at the upper part of the slope was considered to contribute to the identified decrease in
rockfall frequency and energy for volumes up to 5 m3 [13].

For landslide analysis and modeling, landslide inventories are a fundamental source to
improve the understanding of the factors that precondition and trigger landslides. In the last
decade, low-cost, airborne LiDAR-based high-resolution digital terrain models (HRDTM)
became available area-wide for all federal provinces of Austria (≤10 m × 10 m) [19]. Many
studies demonstrated the potential of LiDAR HRDTM and its derivatives to identify
landslides, and thus to substantially improve conventionally created landslide invento-
ries [20–22], especially underneath the forest cover, where passive remote-sensing sensors
are of limited utility [23].

Generally, landslide inventories have an unknown level of incompleteness [24] and
thus may be biased. Inventory biases have previously been studied for remotely-sensed,
event-based or archival inventories, and can be caused by focusing solely on administrative
boundaries, damage reports or on a single triggering event [25,26]. While most authors re-
ported the usefulness of LiDAR-derived historical landslide inventories, only few analyzed
drawbacks of the data source [26,27]. For example, it is very challenging or even impossible
to determine a landslide’s exact extent, absolute age, trigger, and potential for reactiva-
tion when using only HRDTM derivatives [28,29]. Additionally, according to Petschko
et al. [27], forest cover may have a conservation effect on the landslide morphology (i.e.,
“young” morphology of a “very old” landslide), while landslides may be underrepresented
on agricultural land and near infrastructure due to land rehabilitation (i.e., “very young”
morphology but no visibility on orthophoto) resulting in a landslide inventory that is
substantially biased towards a high landslide density in recently forested areas. Analyzing
the effect of systematically incomplete landslide inventories, Steger et al. [26] discovered
that landslide susceptibility models emphasized bias-describing predictors (e.g., larger
regression coefficients), and as a consequence the bias was directly propagated into the
landslide predictions. While Petschko et al. [27] recommended to exclude inventory-biasing
observations (i.e., “old” and “very old” landslides) or to drop the bias-describing predictor
(i.e., present-day land cover) from modeling, Steger et al. [26] included the bias-describing
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predictor (e.g., forested area) as a random effect and used only the fixed effects to make
model predictions.

In this study, we investigated the association between LULC legacies and landslide
susceptibility using an airborne LiDAR-derived historical landslide inventory in two
municipalities in Austria (Waidhofen an der Ybbs and Paldau). We addressed the following
main questions: (i) are long-term LULC legacies important and reliable predictors of
landslide susceptibility? And (ii) can LULC legacies help to understand and account for
possible inventory biases in modeling present-day landslide susceptibility? Additionally,
we analyzed the transferability of landslide models between study areas and the effect of
dropping inventory-biasing observations.

For the analysis, we digitized and classified LULC patterns for three-time cuts com-
prising nearly 200 years using various spatial data sources. In addition, yields and livestock
statistics were compiled from archival sources and statistical publications, and summarized
as socio-ecological variables reflecting plot-level LULC legacies. For the assessment, we
used generalized additive models (GAM) within a modeling framework considering differ-
ent combinations of LULC legacy implementations while also accounting for land surface
variables (e.g., slope angle, etc.) and lithological conditions as possible confounders. We
evaluated the effect of LULC legacies using well-established diagnostic tools for model
assessment and interpretation.

2. Materials and Methods
2.1. Study Area

The study was conducted in two municipalities in Austria: Waidhofen an der Ybbs
(referred to as Waidhofen) in Lower Austria, and Paldau in Styria. The two municipalities
represent different landscapes (Figure 1A,C).

Waidhofen is located in the Ybbstaler Alps from 14◦39′ E 47◦52′ N to 14◦56′ E 48◦01′ N,
covers an area of 131 km2 and has a population of about 13,000 inhabitants [30]. Its elevation
rises towards the south with a relative relief of 54–651 m/km2. In the limestone-dominated
south, up to 1205 m above the Adriatic (m AA) are reached; towards the flysch zone in
the north the mountains transition into gentle hills (302 m AA) [31]. In contrast, Paldau
lies in the East Styrian Basin with a relative relief of 6–138 m/km2 (282 to 465 m AA),
characterized by unconsolidated sediments of the Neogene to Quaternary period [32].
The municipality is an agriculturally favorable region mainly with corn and pig farming.
Paldau has a population of 3000 inhabitants [33], it extends from 15◦43′ E 46◦54′ N to
15◦51′ E 46◦59′ N and covers 39 km2.

The geological setting coupled with the characteristic very local, frequent and intense
rain events in summertime create conditions that make both study areas particularly prone
to landslides of different types and magnitudes [34–36]. In the last decades, landslide
occurrences have caused substantial damage to settlements and infrastructure in both
study areas [37,38].

2.2. Data

This study is based on land surface and landslide data from various sources and at
different spatial resolutions. As our target resolution, we used 10 m × 10 m to account for
the dependence of landslide susceptibility on local-scale topography.
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Figure 1. Overview of study area. (A): Location of study areas in Austria. (B): Landslides visible in Waidhofen’s slope map 
(red rectangle in C). (C): HRDTM and derived landslide inventory. (D): A landslide on cropland in the district South East 
Styria, which occurred after an extreme rainfall event in June 2009, and “disappeared” in the following years. Photo taken 
on 23 July 2009. 
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Figure 1. Overview of study area. (A): Location of study areas in Austria. (B): Landslides visible in Waidhofen’s slope map
(red rectangle in (C)). (C): HRDTM and derived landslide inventory. (D): A landslide on cropland in the district South East
Styria, which occurred after an extreme rainfall event in June 2009, and “disappeared” in the following years. Photo taken
on 23 July 2009.

2.2.1. Land Surface Data

For both study areas, airborne LiDAR-based HRDTMs of 1 m × 1 m resolution were
available, which were provided by the GIS department of the Styrian government for
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Paldau (acquisition year: 2009), and by the provincial government of Lower Austria for
Waidhofen (acquisition year: 2017), respectively (Table A1).

Datasets of hydrologic and hydropedologic characteristics were compiled by the Aus-
trian Research Centre for Forests in 2014 for Waidhofen [39] (50 m × 50 m resolution) and
in 2017 for Paldau [40] (100 m × 100 m resolution), respectively, and were made available
by the respective federal states. The datasets include information on soil parameters such
as soil type, total pore volume, and hydraulic conductivity of the topsoil (0–20 cm).

Geological basemaps at a 1:50,000 scale were provided by the Geological Survey of
Austria for Waidhofen and by the Styrian GIS department for Paldau, respectively. In
both geological basemaps, alluvial deposits were corrected in order to match valley floors
visible in the HRDTM. Furthermore, we reclassified the geological units into a smaller
number of relevant classes. In Waidhofen the reclassification was based on lithology and
geomechanical properties which resulted in seven lithological units of (i) alluvial deposits,
(ii) talus and glacial deposits, (iii) Inneralpine Neogene, (iv) Klippen zone, (v) flysch zone,
(vi) Upper Austroalpine marls, and (vii, reference level) Upper Austroalpine limestone.
In Paldau, we specified five geological units based on grain size distribution and age of
origin: (i, reference level) Neogene formations with coarse-grained layers, (ii) Neogene
formations dominated by fine-grained sediments, (iii) pre-Würmian Pleistocene formations,
(iv) Würmian and Holocene sediments, and (v) other units.

2.2.2. LULC Legacy

By combining unique historical spatially explicit information on LULC in the two
study areas and numerical information on land use intensity, we were able to create informa-
tion on LULC legacies that could be used as an input in landslide susceptibility modeling.
This is, to our knowledge, the first study that uses such a long, multi-temporal and spatially
explicit LULC record to better understand regional-scale landslide susceptibility.

To generate this dataset, we collected, digitized and harmonized data depicting dif-
ferent spatial patterns for the years 1820, 1960 and 2015 (Table 1). Our data sources
included the Franciscan Cadastre of 1820, aerial photographs of 1960, and aerial orthopho-
tos combined with Integrated Administration and Control System (IACS) data of 2015
(“present-day”). Numerical information on LULC intensity (e.g., agricultural yields and
machinery numbers) was collected at communal, district or provincial levels from archival
sources and both historical and recent statistics, and was up- or downscaled to match the
municipal level. The data sources assigned to a time cut slightly differed in their year
of origin between the municipalities (Table 1). The selection of the time cuts was based
on characteristic socio-economic framework conditions of the Central European cultural
landscape following Bender [41] (i.e., time cuts around 1850, 1914, 1960 and present age) as
well as on the availability and temporal proximity of data.

We created a vector GIS database with LULC polygons from these sources using ESRI
ArcGIS. We distinguished between forest area, cropland and grassland, and classified the
remaining LULC as “settlement and other” (for details refer to Table A2 in the Appendix A).
Due to varying data quality (Q, Table 1), in the first step, the cadastral maps (1820) and
orthophotos (2015) were georeferenced and digitized (EPSG: 32633) since these allowed us
to map boundaries between distinct land uses. In a second step, we used these layers as
base maps for digitizing the less distinct areas from greyscale aerial photographs (1960).
Spatially persistent natural and built structures were kept unchanged for all time cuts.
Furthermore, we consistently used a display scale of 1:1000 to keep the digitization error
constant. The estimated overall positional error is up to 3–5 m for 1820, 5–10 m for 1960,
and less than 3 m for 2015.
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Table 1. Sources of land use legacy information of at least acceptable spatial and thematic quality identified for the case
study areas.

Year Study Area Source Source Holder Q Q-Explanation

Land use and land cover

1820
Wh Maps of Franciscan

Cadastre

Provincial Archive of Lower
Austria ++ Sharp delimitation of utilization

unit
P Federal Office for Calibration and

Measurement ++

1962 Wh Aerial images Federal Office for Calibration and
Measurement

~ Differentiation based on greyscale
aerial photography1953 P ~

2015 Wh,
P Orthophotos & IACS * Open Data Austria ++ Parcel-sharp delimitation of

arable land and grassland

Agricultural yields (cereal and grassland)

1820 Wh Text records of
Franciscan Cadastre

Provincial Archive of Lower
Austria + based on two cadastral

municipalities of Waidhofen
1820 P Sandgruber [42] ~ average of Styria

1960 Wh,
P Agricultural statistics Statistics Austria Library ++ data on municipality level

2015 Wh,
P IACS * Open Data Austria + data of farms in municipality

Wood yields

1820 Wh Text records of
Franciscan Cadastre

Provincial Archive of Lower
Austria + based on two cadastral

municipalities of Waidhofen
1820 P Gingrich et al. [43] ~ average of Styria

1965 Wh,
P Weiss et al. [44] ~ Austrian average

2015 Wh,
P Forest inventory Federal Forest Office ~ state averages

Wh: Waidhofen, P: Paldau; * Data status of temporal extent of 2016; Quality (Q): ++: high spatial and thematic quality, +: high spatial or
thematic quality, ~: acceptable spatial and thematic quality. Adapted from Knevels et al. [45].

Based on the numerical information, we quantified biomass extraction as yields (kg
fresh weight per ha and year, kg FW/ha/a) at the lowest possible administrative level and
allocated it to cropland, grassland and forests. Biomass extraction represents the output
from the agricultural production system and is thus an indicator of the LULC intensity
during historical time periods [46]. For the biomass extraction from cropland, we employed
the cereal yields as proxy; data on harvest from meadows was collected for grassland yields,
and wood extraction was derived from forest yields.

We finally intersected the three vector datasets for 1820, 1960 and 2015 successively
to one final file, keeping all available attributes, and converted the result to raster format
at the uniform target resolution. Biomass extraction was summed over the time cuts to
obtain a cumulative land use intensity (Figure A1 in Appendix A). This is an innovative
approach for this socio-ecological indicator in the context of landslide science as other
authors calculated cumulative materials flows [47] or greenhouse gas emissions [48] in
other application contexts. To avoid artifacts due to geometric inaccuracies inherent in the
vector files and from sliver polygons, isolated pixels were identified, and the affected grid
cells were excluded from the landslide sampling design described below (see Section 2.2.3).
The estimated digitization errors (3–10 m) might partly be counteracted by using a target
resolution of 10 m × 10 m (i.e., resolution corresponds to largest estimated error).

The created historical LULC legacy dataset was made publicly available [49].

2.2.3. Airborne LiDAR-Derived Landslide Inventories

For both study areas, we derived historical landslide inventories by mapping land-
slides visible in the HRDTM following the approach proposed by Schulz [22]. We included
landslides in earth and debris materials, focusing on the slide type with possible transitions
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to complex slide flows according to the classification scheme by Cruden and Varnes [50].
Landslides were digitized as polygon features also distinguishing between landslide body
and scarp (Figure 1B). Selected mapped landslides were inspected in the field for validation,
and we corrected the inventory where necessary. In total, in Waidhofen, 621 landslides
were mapped, covering 5.31% of the municipal area, and in Paldau, 418 landslides (4.14%
of the area; Figure 1C; Table A3 in the Appendix A).

Following Hussin et al. [51], we randomly sampled landslide presence points in the
landslide scarp area using the recommended 50-m distance constraint, and attributed the
point to the corresponding grid cell in our target grid (in total 974 and 559 landslide points
in Waidhofen and Paldau, respectively). For sampling non-landslide points, we defined
the landslide-free area by excluding the mapped landslides and a surrounding 50-m buffer
to account for digitization errors. We furthermore excluded so-called trivial areas—areas
considered as not susceptible to landsliding (e.g., floodplains, flat areas) [52]. Isolated
grid cells (see Section 2.2.2.) and anthropogenic structures with similar geomorphometric
characteristics as landslides (e.g., quarries) were also masked. For the landslide absence
locations, we distributed random points in a 1:1 sampling ratio using a minimum nearest-
neighbor distance of 50 m to reduce spatial autocorrelation.

2.3. Methods

The relationships between LULC legacies and landslide distribution were analyzed
using GAMs [53,54] while also accounting for the local topography as an important prepara-
tory factor for landslides [8]. GAMs have become popular in landslide susceptibility studies
due to their ability to model nonlinear relationships while allowing for a separate interpre-
tation of additive effects in terms of odds ratios and variable importance [55].

Our analysis was conducted in the free and open source computing environment R (R
version 3.5.3) [56]. We used the GAM implementation of the mgcv package [54] and the
mlr package [57] as the modeling framework. Furthermore, for terrain analysis we used
System for Automated Geoscientific Analysis (SAGA) GIS 6.3.0 [58] through RSAGA [59]
and Terrain Analysis Using Digital Elevation Models (TauDEM) 5.3 [60] via R system calls.

For downscaling the input data to the target resolution, we applied bilinear interpo-
lation for resampling using SAGA GIS. However, we acknowledge that we are unable to
capture local-scale patterns of geology or soil parameters.

2.3.1. Landslide Susceptibility Modeling Design

For landslide susceptibility modeling, we related land surface variables, soil parame-
ters, lithological units and LULC legacies as predictors to landslide occurrences (Table 2 for
overview).

Our model design enabled us to explore relationships between LULC legacy and
landslide distribution, and to improve the understanding of the potential biases in airborne
LiDAR-derived landslide inventories. We created landslide susceptibility models with
different sets of input variables: (i) The baseline model ‘GAM-Base’ excludes LULC legacy
variables; for the assessment of the LULC legacy effect, we built (ii) a GAM using the
present-day LULC as an additional predictor (GAM-2015), (iii) a GAM based on the LULC
legacy information from 1960 to 2015 (GAM-1960), and (iv) a GAM based on the LULC
legacy information since 1820 (GAM-1820). Moreover, we tested (v) a GAM using the
setting of GAM-2015, but excluding potentially inventory-biasing observations following
the recommendations of Petschko et al. [27] (GAM-2015-Masked; i.e., all observations
located in continuously forest-covered areas). Furthermore, we allowed modeled landslide
occurrences to be dependent on the combined effect of the historical biomass extraction
and present-day LULC class rather than modeling LULC legacy variables as additive
terms. Thus, the predictor of LULC legacy information in GAM-1820 and GAM-1960 was
implemented as a parametric, linear interaction term between the LULC of 2015 and the
historical biomass extraction (sum since 1820 or 1960). Moreover, we tested the model’s
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transferability between study areas, but excluded predictors that are specific to each area
(i.e., lithology).

For both study areas, the airborne LiDAR-derived historical landslide inventory and
the created landslide susceptibility models are available as Supplementary Materials.

Table 2. Predictor variables for landslide susceptibility modeling.

Variable(s) Software Setting Method

land surface variable
convergence index (100 m, 500 m) SAGA GIS r = 100 m, 500 m [61]

curvature (plan, profile) SAGA GIS [62]
flow accumulation, D-Infinity TauDEM log-transformed [63]

normalized height SAGA GIS w = 5; t = 2; e = 2 [64]
slope angle SAGA GIS [62]

slope angle, catchment area SAGA GIS [65]
slope aspect (S-N, W-E) SAGA GIS cosine, sine transformed [62,66]

topographic position index (TPI) SAGA GIS r = 500 m [67]
topographic wetness index (SWI) SAGA GIS [65]

soil
total pore volume up to 20 cm depth, median

hydraulic conductivity up to 20 cm depth, median
lithology

geology * ref: Waidhofen (vii),
Paldau (i)

land use/land cover legacy
LULC 2015 ref: ‘Forest’

biomass extraction (1820, 1960) sum since 1820 and 1960

Setting, scale-dependent parameters: r: radius; w,t,e: Parameters in SAGA GIS module Relative Heights and Slope Positions; * ref =
reference level (see Section 2.2.1).

2.3.2. Assessment of the Effect of Land Use Legacy

The empirical effect of LULC legacy on landslide occurrence was assessed in terms
of model performance, variable importance, odds ratios (OR) of the LULC classes, and
transformation function plots of the three most important predictor-response relationships.

For the model assessment, we applied a k-fold spatial cross-validation (SpCV) to
achieve independent test areas and thus a bias-reduced predictive performance as a mea-
sure of model generalization [55]. For SpCV, we partitioned the data into five disjoint folds
using k-means clustering of the coordinates (k = 5), and repeated this procedure 100 times.
In each repetition, subsequently, four folds were used as training data while the remaining
fold was used for validation until each fold was used once for validation (i.e., k models
per repetition, 500 models in total). Furthermore, we ensured comparability between the
models’ performance estimates using identical training and validation data for each study
area and repetition.

The area under the receiver operating characteristic curve (AUROC) was computed as
the performance measure. The AUROC is a quality measure suitable for binary response
data and is a common evaluation tool for landslide susceptibility models [55]. AUROC
values lie between 0.5 (no discrimination) and 1.0 (perfect discrimination), and were inter-
preted following the recommendations of Hosmer et al. [68]. Additionally, differences in
model performances were tested using Wilcoxon signed-rank tests (α = 0.05; R coin pack-
age) [69,70], and p-values were adjusted for multiple comparisons according to Benjamini
and Hochberg [71].

As a measure of variable importance, we extracted for each variable the mean decrease
in deviance explained (mDD, %) under the consideration of all SpCV models. The mDD
indicates the explanatory contribution of a variable to the overall explained deviance of the
corresponding model [72,73]. The higher the mDD value, the greater is the contribution of
a variable, and thus its importance. To compute the mDD, we left the variable of interest
out while fixing the remaining smoothing parameters (mgcv::gam sp argument) during
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model (re-)training, and subsequently measured the percentage differences of the deviance
explained [73].

Transformation function and OR plots were used to explore the relationships between
landslide distribution and the three most important predictors as well as LULC legacy of
each model setting. Additionally, we extracted comparative predictor-response relation-
ships reported in studies of the same area [73,74]. A transformation function plot shows
the predictor-response relationship as a parametric (linear) or non-parametric smoothing
function by using the additive structure of a GAM. We visualized predictor-response rela-
tionships on the logit scale (i.e., linear predictor scale). An OR indicates the chance that
an outcome occurs given a specific exposure, relative to a reference exposure [75]. An OR
less than one means an exposure with lower odds of the outcome while an OR higher than
one shows an exposure with higher odds of the outcome, while accounting for the other
variables in the model; an OR of one is associated with no influence of the exposure [75].
We calculated ORs for the LULC classes with ‘forest’ as reference level. Additionally, we
derived ratios of ORs (rOR) by dividing a model’s predictor-response relationships by
the corresponding relationship in GAM-Base. rOR enables a more sensitive comparison
between models.

3. Results
3.1. LULC Change

The analysis of almost 200 years of changes in LULC displayed distinct trends in the
two municipalities (Figure 2).

Even though forest covered more than one third of the total land area in both case
studies throughout the investigation period (Figure 2A), in Paldau, its area decreased by
113.2 ha (8%) from 1820 to 2015, while in Waidhofen, the forest area increased by more than
1000 ha (18%) from 1820 to 2015. In both areas, cropland extent declined while grassland
and “settlement and other” expanded. In Waidhofen, in 2015 only 1% of the area was used
as cropland (1820: 26%), while in Paldau, the share diminished from 43% to 37%. Areas
classified as “settlement and other” increased in Waidhofen more than fivefold from 1820
to 2015 (246 ha to 1431 ha) and in Paldau more than sevenfold (104 ha to 750 ha).

Biomass extraction nearly doubled in both municipalities from one time cut to the
next (Figure 2A; Paldau: 4969 to 10,630 to 18,674 kg/ha/a, Waidhofen: 4661 to 8410 to
16,773 kg/ha/a). Cereal yields increased most strongly in both municipalities (factors 9.8
and 7.9 in Waidhofen and Paldau, respectively). Grassland yields increased less strongly
and reached their maximum in 1960. In both study areas, wood extraction declined slightly
from 1820 to 1960 (Waidhofen: −6%, Paldau: −2%), but it more than doubled from 1960 to
2015 (Waidhofen: 5067 kg/ha/a, Paldau: 5667 kg/ha/a). In 1820, wood extraction had the
largest share in biomass extraction in both municipalities.

The landslide distribution for the different LULC classes and time cuts showed con-
trasting patterns in Waidhofen and Paldau (Figure 2C). While in Waidhofen, the change
pattern in landslide distribution and LULC distribution by LULC category was similar
(Figure 2A,C), in Paldau the change pattern showed clear differences. There, 82.4% of the
landslides were located in present-day (2015) forest areas, which also showed the highest
landslide frequency ratio (FR) of 2.5 (Figure 2C); in Waidhofen, 42.2% of the landslides
were found in present-day forested areas with a FR of nearly 1. In Waidhofen in 2015,
grassland showed the highest FR of 1.14 (Paldau: FR of 0.78). Furthermore, in Paldau,
69% of the landslides were located in continuously forest-covered areas (28.7% for LULC
change pattern) and in Waidhofen 20.7% (27.5% for LULC change pattern), respectively. In
both study areas, landslides were least frequent on present-day cropland (Paldau: FR 0.05,
Waidhofen: 0.31).
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3.2. LULC Legacy Effects on Landslide Occurrence
3.2.1. Model Performance and Transferability

We applied SpCV with the AUROC as performance measurement to gain information
on the model’s capabilities to discriminate landslides from non-landslides observations.
The performance assessment showed distinct differences between the study areas (Figure 3,
Table A4 in the Appendix B).
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For Waidhofen the median AUROC (mAUROC) in SpCV ranged between 0.78 for
GAM-1820 and 0.80 for GAM-2015-Masked, i.e., acceptable to excellent discrimination
capabilities. In contrast, in Paldau, GAM-Base had the lowest mAUROC of 0.88 and GAM-
2015-Masked the highest mAUROC of 0.93, i.e., excellent to outstanding discrimination.
AUROC estimates for Waidhofen were substantially more variable than for Paldau (in-
terquartile ranges, IQR, 0.13 to 0.14 versus 0.03 to 0.06). Model transfer to the other study
area resulted in a strong drop in model performance, with a decrease of 0.11–0.14 for model
transfer to Waidhofen and 0.05–0.12 in Paldau. As in SpCV, GAM-2015-Masked performed
best (Waidhofen: 0.69, Paldau: 0.85), followed by GAM-Base (Waidhofen: 0.65, Paldau:
0.83) in both study areas.

In the performance assessments for the combined data, the mAUROC and IQR values
of the combined validation data fall in between the estimates of Paldau and Waidhofen
(Figure 3B, Table A4 in the Appendix B). GAM-Base had the lowest mAUROC of 0.81 and
GAM-2015-Masked the highest mAUROC of 0.84.

Regarding the effect of LULC legacy predictors on the performance, for Paldau the
performance estimates were marginally, but yet significantly higher with the inclusion of
legacy information (order of significant “<” and non-significant “=” differences in AUROCs:
GAM-Base < GAM-1960 < GAM-1820 = GAM-2015 < GAM-2015-Masked, Table A5 in the
Appendix B). However, for Waidhofen, such a tendency was not identifiable (GAM-2015 <
GAM-1820 = GAM-Base < GAM-1960 < GAM-2015-Masked, Table A5 in the Appendix B).
Furthermore, for both study areas the landslide model excluding observations located in
continuously forest-covered areas (i.e., GAM-2015-Masked) showed the highest estimates
in SpCV (combined and non-combined data) and transferability assessment.

3.2.2. Variable Importance

The assessment of variable importance showed differences in the variable ranking of
the study areas, although slope angle was shared as a top-tier predictor (Figure 4, Table A6



Land 2021, 10, 954 12 of 28

in the Appendix B). In Waidhofen, the top three ranks were identical across all settings:
1. slope angle (mDD 7.45–8.63%), 2. lithology (mDD 3.72–6.38%), and 3. plan curvature
(mDD 2.09–2.83%). In Paldau and across all settings, four different variables occurred in
the top three ranks: slope angle (mDD 4.38–7.68%), profile curvature (mDD 3.05–6.37%),
slope aspect (S-N, mDD 3.94%), and a LULC legacy variable (LULC 2015 or LULC legacy
1820/1960, mDD 3.64–3.92%). In all models, slope angle was the most important variable,
except for Paldau’s GAM-2015-Masked, where profile curvature was more important
(mDD 6.37%).
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The top-ranked variable was always a land surface variable, specifically slope angle
and in one setting profile curvature (Table A6 in the Appendix B). Soil variables were less
important with a highest rank of 11 with 0.62% mDD in Waidhofen (hydraulic conductivity
in GAM-2015-Masked), and of 7 with 1.3% mDD in Paldau (hydraulic conductivity in
GAM-2015-Masked), respectively. LULC legacy variables were less important in Waidhofen
(mDD 0.26–1.07%), while for Paldau, they showed a high mDD of 3.64–3.92%. Lithology,
in contrast, was only important in Waidhofen (mDD 6.34–6.38%; Paldau: 0.25–0.39%).

3.2.3. Predictor-Response Relationships

In both study areas, based on the transformation function plots in logit scale, we found
a general agreement on the predictor-response relationships among all model settings,
except for the GAM-2015-Masked (Waidhofen: Figure A2, Paldau: Figure A3). However,
some differences in the predictor-response relationships for the three most important
variables could be identified (Figure 5).
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In both study areas, the chance of landslide occurrence was higher on steeper slopes.
Among the model settings, the predictor-response relationship of GAM-Masked-2015
indicated the comparatively highest rOR compared to GAM-Base (e.g., for 15◦, Paldau: 1.4,
Waidhofen: 1.6). Minor differences of the other models in reference to GAM-Base were
mostly at lower and upper quartiles of the value ranges (Figure 5a,g), but fell within its
95% Bayesian credible interval.

In Waidhofen, for the variable plan curvature, the chance of landslide occurrence was
higher on concave than on convex surfaces, but without substantial differences between
the models (Figure 5b). Regarding the variable lithology (Figure 5c), each lithological unit
showed a higher chance of landslide occurrences relative to Upper Austroalpine limestone
(e.g., GAM-Base: OR of 13 for flysch zone). However, among the model settings, the rORs
of GAM-Masked-2015 were generally lower by a factor of 0.6, and fell partially outside the
Bayesian credible interval of GAM-Base.

In Paldau, for the variable profile curvature, the chance of landslide occurrence was
lower on concave than on convex surfaces (Figure 5h). Substantial differences between the
models were identifiable only for GAM-2015-Masked on convex surfaces with a curvature
greater than 0.005 m−1 (e.g., landslides were 1.3 times more likely relative to GAM-Base).
Among the model settings, south-exposed slopes were less susceptible to landslides than
north-exposed slopes, with only marginal differences between models (Figure 5i).
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Regarding the LULC variables, in Waidhofen LULC 2015 was significant only in
the GAM-2015-Masked setting for “settlement and other” with an OR of 0.43 relative
to forest areas (Figure 5d). Using additionally the biomass extraction as LULC legacy
interaction term (i.e., GAM-1960 and GAM-1820), the predictor was significant and showed
a higher chance of landslide occurrence with higher biomass extraction for each LULC
class (Figure 5e,f). Compared to forest areas, landslides were more likely on cropland and
less on grassland and “settlement and other”. However, using the long-term legacy in
GAM-1820, the contrast relative to forest areas showed higher ORs for cropland (e.g., for
10,000 kg FW/ha/a: OR of 2.95 for GAM-1820 and of 2.53 for GAM-1960), but lower OR
for grassland (OR of 0.83 for GAM-1820 and of 0.46 for GAM-1960) and “settlement and
other” (OR of 0.67 for GAM-1820 and of 0.43 for GAM-1960) compared to GAM-1960.

In Paldau, for the variable LULC 2015 in GAM-2015 and GAM-2015-Masked, all LULC
classes were significant terms and also showed a similar pattern with minor differences
with respect to forest area (reference level; Figure 5j): For GAM-2015, the chance of landslide
occurrence on cropland was only 0.07 times as high as in forest areas (OR of 0.06 for GAM-
2015-Masked), 0.32 times as high on grassland (OR of 0.33 for GAM-2015-Masked), and
0.26 times as high on “settlement and other” (OR of 0.25 for GAM-2015-Masked). Including
the biomass extraction as LULC legacy interaction term (i.e., GAM-1960 and GAM-1820;
Figure 5k,l), for both models, the coefficients of grassland and “settlement and other” were
not significant anymore, while with a higher biomass extraction the chance of landslide
occurrences on cropland was lower (e.g., for 10,000 kg FW/ha/a: OR of 0.16 for GAM-1960
and of 0.27 for GAM-1820) and higher on forest areas (OR of 3.4 for GAM-1960 and of 3.7
for GAM-1820), respectively. Using the long-term legacy in GAM-1820, the ORs of the
LULC classes relative to forest areas were generally lower compared to GAM-1960 (e.g.,
for 10,000 kg FW/ha/a on cropland: OR of 0.05 for GAM-1960 and of 0.07 for GAM-1820).

We extracted reported relationships of comparative studies, in which the landslide
dates were known (for Paldau: event-based landslide inventory of southeast Styria in [73])
or the relative landslide age could be approximated (Waidhofen: remotely-sensed landslide
inventory based on [21] used e.g., by [74]). For the land surface variables, we generally
found a good match in the shape of the predictor-response relationships in both study
areas (Figure 6), with the exception of slope aspect (S-N) in Paldau. Contrary to our results,
in Knevels et al. [73] the predictor slope aspect was less influential with south-exposed
slopes being slightly more susceptible to landsliding than north-exposed slopes.

Regarding the LULC variables, for Waidhofen, Steger et al. [74] reported that land-
slides were 1.7 to 2.0 times more likely on arable land or pastures compared to forests,
while in our study, LULC was only significant when biomass extraction was included
(i.e., GAM-1960 and GAM-1820). For southeast Styria, Knevels et al. [73] found non-forest
areas more than three times as susceptible to landsliding as forest areas (OR > 3.6). Yet,
in Paldau’s GAM-2015 and GAM-2015-Masked, we found contrasting results (OR < 0.33
outside forest).
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4. Discussion
4.1. Initial Objective: Effect of LULC Legacy on Modeling and Biases

We were able to successfully link the historical LULC characteristics covering a period
of almost 200 years in two Austrian municipalities to landslide occurrences identified in an
airborne LiDAR-derived HRDTM. The established landslide susceptibility models showed
performances with acceptable to outstanding discrimination capabilities, confirming the
proposed modeling approach. Landslide models including LULC legacy predictors had
significantly higher (for Paldau) or at least equal (for Waidhofen) performances compared to
a reference model without LULC (GAM-Base, Table A5 in the Appendix B), demonstrating
the potential of LULC legacies for explaining landslide susceptibility today.

The use of LULC legacies may improve the understanding of LULC dynamics and
landslide occurrences. The LULC legacy categories were generally more susceptible to
landsliding with a higher biomass extraction (excluding cropland in Paldau; Figure 5e,f,k,l).
In particular, present-day forested areas previously used for agricultural activities were
more prone to landsliding than continuously forested areas, confirming findings for less
extensive historical time periods by Beguería [9] and Persichillo et al. [11]. Thus, the effect
of LULC legacies on landslide occurrences might be a good explanation of contradictory
empirical observations such as landslide events in forests [23]. Additionally, for Waidhofen,
we conclude that forest areas are more susceptible to landsliding than grassland, after
accounting for biomass extraction. While Goetz et al. [7] reported that forest harvesting
may temporally lead to open or semi-open forest types and thus reduced slope stability due
to different soil hydrological and mechanical conditions (e.g., reduced rainfall interception
and root cohesion), Tasser et al. [76] found managed grassland to be significantly less
erodible than abandoned areas. However, we acknowledge that potentially landslide
mitigating land management strategies are not incorporated in the analysis, and that the
difference between forest and grassland may also be related to inventory biases.

Inventory biases are a known issue in landslide modeling [25,26]. We suggest that the
identified substantial difference in the predictor-response relationship for LULC compared
to other studies, is due to the underlying airborne LiDAR-derived historical landslide
inventory. In particular, we assume that in Paldau, the high number of landslides in
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continuously forest-covered areas (69%, FR of 2.5 in 2015) can be explained by an inventory
bias, which ultimately produces biased predictor-response relationships (OR of 0.33 for
outside forest relative to forest areas vs. OR of >3.6 in Knevels et al. [73]). A bias was
also detectable in Waidhofen’s inventory, albeit weaker (about 20% of the landslides in
continuously forested-covered areas). This is consistent with the reported drawbacks of
such landslide inventories [26,27]. Unreflecting model interpretation might thus lead to the
conclusion that forest areas are more susceptible for landslides than other LULC categories
(i.e., contrasting the findings of [4,5,13,73]). We assume that the inventory bias results from
the fact that landslide traces on agricultural land are quickly “tilled away” (Figure 1D), and
that landslides affecting the built environment are removed during reconstruction, while
in forests, they are preserved for an extended period of time (see Figure 12 in [28]).

For bias mitigation, we explored three approaches. Following the recommendations
of Petschko et al. [27], (i) dropping the bias-describing predictor from modeling (i.e., LULC;
GAM-Base) had only minor effects on the predictor-response relationships compared to the
other models (excluding GAM-2015-Masked). We assume that confounding effects may
explain these minor differences (e.g., slope angle: forest area more likely located on steeper
slopes [26]). Besides, (ii) excluding inventory-biasing observations (i.e., continuously forest-
covered areas; GAM-2015-Masked) led to substantial differences of predictor-response
relationships for some variables (e.g., slope angle in both study areas, profile curvature in
Paldau, lithology in Waidhofen, Figure 5), yet the OR of the LULC categories in reference
to forest were similar to GAM-2015. However, since the relationships are in general
agreement with other research results [73,74] (Figure 6), further research might help to
evaluate and identify the “true” relationship. Moreover, reducing the models’ training
data may not always be suitable (e.g., sparse inventories), and might even decrease model
performances [77,78]. (iii) Using LULC legacy information (i.e., biomass extraction, GAM-
1820 and GAM-1960), the predictor-response relationships matched GAM-Base except for
the minor differences mentioned above, and we could reduce the bias of a higher landslide
chance on forest area relative to other LULC categories. Additionally, we identified a
tendency towards relatively lower OR in forests using long-term legacies. Albeit the
landslide inventory bias still had an effect on the landslide models for all approaches, for
studies based on airborne LiDAR-derived landslide inventories we recommend to exclude
bias-describing predictors (e.g., LULC) in the first place, or to enrich the feature space with
a bias-reducing information predictor (e.g., LULC legacies).

Moreover, when considering LULC as a predictor, it should be kept in mind that
each study area has its unique legacy. The transferability assessment showed a poorer
transferability of landslide models that were fit only in one study area (AUROC loss
up to 0.14, Figure 3). While the transformation functions of slope angle, plan curvature
and the LULC legacy category forest matched between study areas, for other important
variables they were partly (e.g., concave profile curvature) or even completely opposed
(e.g., slope aspect, S-N and other LULC legacy categories; Figures A2 and A3). Moreover,
landslide models using the combined data did not improve performances compared to
both area-specific models. However, for event-based landslide modeling with especially
sparse inventories, the opposite may be true (see Figure 4 in [73]).

Regarding the variable importance assessment, the results are in agreement with
findings in other studies despite different landslide inventories: For Waidhofen, Steger
et al. [74] also identified the slope angle as the most influential predictor, while present-day
land cover ranked last. In the landslide model of Knevels et al. [73] fitted in southeast
Styria (where Paldau is located), the present-day LULC (categorized into forest classes) and
slope angle ranked second and third, respectively. We conjecture that the lower influence
and different shape of the slope aspect relationship (Figure 5) could be due to effects such
as pre- or post-failure HRDTM or the specific rainfall event in the study of [73].
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4.2. Study Data: Challenges and Requirements

We encourage the use of long-term LULC legacy data in landslide studies. The pre-
sented LULC legacy predictor is not only a simple and comprehensible way to highlight
historical LULC dynamics but may also support spatial planning in preventive disaster re-
duction regarding future LULC changes. With historical cartographic documents of several
countries (e.g., Habsburg, Franciscan or Napoleonic cadastral map) [79] and information
on long-term biomass extraction [80,81] becoming increasingly available in a pre-processed
form, there is a real opportunity to further explore LULC legacies in future studies.

For the creation of LULC legacy data, we used data sources of different spatial,
temporal and thematic quality and resolution (Table 1). For the time cut of 1960, the
available greyscale aerial photographs for the municipalities were nine years apart (Paldau
1953 and Waidhofen 1962). Thus, LULC changes in the context of the “economic miracle”
(e.g., mechanized agriculture, urban growth and sprawl) beginning in 1955 may not yet
be present in Paldau [82]. Also, the interpretation of the greyscale aerial photographs
of low image quality was particularly challenging (especially grassland vs. cropland).
Additionally, the thematic resolution of the data sources used for the biomass extraction
(i.e., wood and agricultural yields) was very heterogeneous in terms of the aggregated
spatial statistical reference unit (e.g., the data availability for wood yields was for time
cut 1960 on a national scale and for 2015 on for federal states). Nevertheless, we suggest
that the data still allows conclusions to be drawn about long-term trends [43,45,81]. We
acknowledge that the digitization of LULC legacy data was a time-consuming process and
historical imagery at an appropriate scale may not be available everywhere.

The landslide inventories were separately created for each study area by local ex-
perts. There is evidence that landslide inventories are not only incomplete to an unknown
degree [24], but also that landslide inventories compiled by different experts may have
positional mismatches up to 70% [23]. Therefore, in this study, consistent rules were agreed
upon to ensure or at least strive for a homogeneous inventory quality (e.g., uniform dig-
itization scale, order of digitization: first landslide scarp, then body, etc.). To overcome
the drawbacks of the inventory (e.g., bias in forest areas) and to enhance the explanatory
power of the LULC legacy variables in modeling landslides, we encourage to collect and
analyze additional historical aerial photographs, orthophotos or satellite images in order
to estimate landslide ages [4,11,27].

5. Conclusions and Outlook

In this study, LULC and legacies of its change could successfully improve the ex-
planation of landslide distribution as we identified the LULC variable as a meaningful
predictor in landslide susceptibility modeling. Higher biomass extraction resulted in higher
landslide susceptibility (excluding cropland in Paldau), explaining different risk levels
in areas with the same present-day LULC. Furthermore, we could confirm that airborne
LiDAR-derived inventories may be biased towards currently forested areas (e.g., high
landslide density in Paldau with a FR of 2.5). Using long-term LULC legacy variables
accounting for changes for almost 200 years, we could successfully reduce the effects of
LULC-related inventory bias. However, without any information on the failure date or
at least an approximated time slice, the additional landslides preserved in forest areas
may still lead to an unknown bias in the model, and thus lead to potentially contradictory
relationships between landslide occurrences and LULC legacies (e.g., OR < 0.33 outside
forest relative to forest areas in Paldau). Other bias-avoiding strategies such as removing
inventory-biasing observation led to improved model performances, but also to different
predictor-response relationships. Thus, the implementation and interpretation of LULC
as a bias-describing predictor must be carefully considered. We highly encourage further
research using event-based landslide inventories with known landslide ages or age ranges
to avoid such biases.
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The construction of historical LULC datasets is relevant for future use both from
methodological and empirical perspectives. Methodologically, the approach chosen here
can be used in future analyses in cases where both geographic and statistical information on
LULC are available and can be combined. Empirically, the dataset established may be used
for future analyses of different issues related to long-term LULC change, in particular those
related to sustainable LULC intensification (e.g., cultural landscape change [45]). With the
publication of the historical LULC legacy dataset [49], we highly encourage future research
with this data and a replication of the analysis, especially once a reliable event-based
landslide inventory for the study areas is available.
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Appendix A. Descriptive Summary of Input Data

Table A1. Sources of land surface data.

Study Area Source Holder Resolution

airborne LiDAR-based high-resolution digital terrain model

Waidhofen provincial government of Lower Austria 1 m × 1 m, acquisition year: 2014
Paldau GIS department of the Styrian government 1 m × 1 m, acquisition year: 2009

hydrologic and hydropedologic parameters

Waidhofen
Austrian Research Centre for Forests

50 m × 50 m, year: 2014
Paldau 100 m × 100 m, year 2017

geological basemaps

Waidhofen Geological Survey of Austria 1:50,000
Paldau GIS department of the Styrian government 1:50,000

For downscaling to the target resolution of 10 m × 10 m, bilinear interpolation was applied.

Table A2. Overview of the classification and recording of land use classes according to time cut.

land Use/Land Cover
Category

Time Cut 1820 Time Cut 2015
LULC Types in the

Franciscan Cadastre * IACS, Orthophotos

forest (including forest pasture)
Hardwood forests, Coniferous forests, Mixed
forests, Chestnut forests, Meadows with fruit

trees
All forest types digitized from orthophotos

grassland Dry meadows, wet meadows, pastures,
community pastures, shrubs

IACS agricultural parcel: Grassland, alpine
pastures, pasture

cropland Orchards, vegetable gardens, vineyards, arable
land (with fruit trees, trees and vines) IACS agricultural parcel: arable land

settlement and other
Marshes, lakes, ponds, rivers and streams,
wastelands and bare rocks, buildings (all

types), trails (all types)

Remaining area, which includes, e.g.,
buildings, impervious surfaces, water

bodies, excavation pits and quarries, urban
green, near-natural areas

* LULC types not listed here are not present in the study area; LULC classes of the 1960 time cut were digitized in aerial photographs,
modified from Knevels et al. [45].

Table A3. Summary of the landslide inventory data.

Waidhofen Paldau

Number landslides 621 418
scarps 829 469
bodies 663 348

samples 974 559
Total Area [m2] (%) landslides 6,976,638 (5.31) 1,621,250 (4.14)

min mean max min mean max
Area [m2] landslides 113 11,235 1,163,088 30 3879 206,842

scarps 2 517 79,640 12 140 1518
bodies 52 9876 1,083,448 24 3949 206,842

Perimeter [m] landslides 44 451 7250 26 163 1821
scarps 7 101 3013 18 71 373
bodies 29 297 4548 28 168 1821
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Appendix B. Summary of Model Assessment Results

Table A4. Results of the model assessments within the study area with SpCV, and assessment of
model transferability between both areas.

Model ~
x Min Max IQR Transfer

A: Waidhofen
GAM-Base 0.79 0.7 0.91 0.14 0.65
GAM-2015 0.79 0.69 0.91 0.14 0.64

GAM-2015-Masked 0.8 0.68 0.91 0.13 0.69
GAM-1960 0.79 0.7 0.91 0.14 0.65
GAM-1820 0.78 0.7 0.91 0.14 0.65

B: Paldau
GAM-Base 0.88 0.83 0.93 0.03 0.83
GAM-2015 0.89 0.85 0.94 0.06 0.8

GAM-2015-Masked 0.93 0.88 0.98 0.04 0.85
GAM-1960 0.89 0.85 0.94 0.06 0.78
GAM-1820 0.89 0.85 0.94 0.06 0.79

C: Combined
GAM-Base 0.81 0.74 0.91 0.07
GAM-2015 0.81 0.74 0.91 0.07

GAM-2015-Masked 0.84 0.75 0.93 0.07
GAM-1960 0.82 0.74 0.91 0.07
GAM-1820 0.81 0.74 0.91 0.07

AUROC Statistic: median (x̃), minimum (Min), maximum (Max), interquartile range (IQR), transferability
estimate (Transfer).

Table A5. Wilcoxon signed-rank tests for AUROC performance differences within each study area
estimated with SpCV.

Model mAUROC N * Z p-Values r

A: Waidhofen
GAM-2015 0.79

<GAM-1820 0.78 36 2.7 0.01 0.45
=GAM-Base 0.79 35 0.93 0.18 0.16
<GAM-1960 0.79 36 4.24 <0.001 0.72

<GAM-2015-Masked 0.80 36 2.24 0.02 0.37
B: Paldau

GAM-Base 0.88
<GAM-1960 0.89 66 5.01 <0.001 0.62
<GAM-1820 0.89 66 4.35 <0.001 0.54
=GAM-2015 0.89 66 1.54 0.06 0.19

< GAM-2015-Masked 0.93 66 7.03 <0.001 0.87
mAUROC: median AUROC of SpCV; N: Number of observations per group; * tied observations were removed;
Z: Z score;alternative hypothesis: greater, α = 0.05; <: Differences significantly greater from previous model, =: No
significant difference to the previous model.
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Table A6. Variable importance measured as mean decrease in deviance explained (%), rank of variable in parentheses.

Variable Study
Area GAM-Base GAM-2015 GAM-2015-

Masked GAM-1960 GAM-1820

land surface variable

convergence index, 100 m Wh 1.23 (5) 1.27 (5) 1.3 (6) 1.15 (5) 1.17 (5)
P 0.91 (7) 0.97 (8) 0.71 (11) 0.96 (8) 0.98 (7)

convergence index, 500 m Wh 0.87 (8) 0.86 (9) 0.99 (9) 0.83 (10) 0.86 (9)
P 0.93 (6) 1.16 (6) 3.25 (4) 1.2 (6) 1.18 (6)

curvature, plan Wh 2.09 (3) 2.1 (3) 2.83 (3) 2.17 (3) 2.17 (3)
P 2.38 (4) 1.43 (5) 0.84 (10) 1.46 (5) 1.49 (5)

curvature, profile Wh 1.45 (4) 1.58 (4) 1.78 (4) 1.65 (4) 1.57 (4)
P 3.32 (3) 3.2 (3) 6.37 (1) 3.08 (3) 3.05 (3)

flow accumulation
Wh 0.42 (13) 0.43 (12) 0.48 (14) 0.5 (13) 0.46 (12)
P 0.07 (15) 0.2 (16) 0.46 (13) 0.22 (16) 0.21 (16)

normalized height Wh 0.02 (15) 0.02 (16) 0.05 (16) 0.04 (16) 0.03 (16)
P 0.95 (5) 0.95 (9) 3.15 (5) 0.93 (9) 0.93 (9)

slope angle Wh 8.01 (1) 7.7 (1) 8.63 (1) 7.45 (1) 7.61 (1)
P 7.68 (1) 4.38 (1) 4.62 (2) 4.77 (1) 4.64 (1)

slope angle, catchment area Wh 1.11 (7) 1.15 (6) 1.1 (8) 1.07 (7) 1.15 (6)
P 0.55 (11) 0.47 (12) 0.2 (15) 0.44 (12) 0.43 (12)

slope aspect, S-N Wh 1.12 (6) 1.07 (7) 1.11 (7) 1.06 (8) 1.12 (7)
P 3.94 (2) 2.3 (4) 1.25 (8) 2.36 (4) 2.33 (4)

slope aspect, W-E Wh 0.61 (11) 0.58 (11) 0.84 (10) 0.52 (12) 0.56 (11)
P 0.32 (13) 0.29 (14) 1.68 (6) 0.27 (15) 0.27 (15)

TPI
Wh 0.86 (9) 0.89 (8) 1.64 (5) 0.89 (9) 0.91 (8)
P 0.7 (9) 0.84 (11) 0.14 (16) 0.84 (11) 0.84 (11)

SWI
Wh 0.66 (10) 0.66 (10) 0.39 (15) 0.68 (11) 0.67 (10)
P 0.66 (10) 0.39 (13) 0.95 (9) 0.35 (13) 0.35 (13)

soil

total pore volume Wh 0.35 (14) 0.31 (14) 0.51 (13) 0.29 (15) 0.31 (15)
P 0.47 (12) 0.86 (10) 0.68 (12) 0.87 (10) 0.87 (10)

hydraulic conductivity Wh 0.44 (12) 0.41 (13) 0.62 (11) 0.35 (14) 0.38 (14)
P 0.9 (8) 0.98 (7) 1.3 (7) 0.98 (7) 0.97 (8)

lithology

lithology/geology Wh 6.38 (2) 6.37 (2) 3.72 (2) 6.37 (2) 6.34 (2)
P 0.25 (14) 0.27 (15) 0.39 (14) 0.27 (14) 0.28 (14)

land use/land cover legacy

LULC 2015
Wh 0.26 (15) 0.6 (12)
P 3.64 (2) 3.92 (3)

biomass extraction, 1960 *
Wh 1.07 (6)
P 3.81 (2)

biomass extraction, 1820 *
Wh 0.43 (13)
P 3.85 (2)

* Biomass extraction in interaction with LULC 2015; Wh: Waidhofen, P: Paldau.
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Figure A2. Predictor-response relationships of landslide models in Waidhofen. Grey: 95% Bayesian credible interval of
GAM-Base. Reference level of LULC 2015: ‘Forest’; Lithological units: Reference: ‘Upper Austroalpine limestone’, 0: talus
and glacial deposits, 1: Inneralpine Neogene, 2: Klippen zone, 3: flysch zone, 4: Upper Austroalpine marls. Note: the y axes
are plot-dependent, and the x axes of non-parametric transformation functions are limited to the 5th to 95th percentile range.
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Figure A3. Predictor-response relationships of landslide models in Paldau. Grey: 95% Bayesian credible interval of GAM-
Base. Reference level of LULC 2015: ‘Forest’; Lithological units: Reference: ‘Neogene formations with coarse-grained layers’,
0: ‘Neogene formations dominated by fine-grained sediments’, 1: ‘pre-Würmian Pleistocene formations’. Note: the y axes
are plot-dependent, and the x axes of non-parametric transformation functions are limited to the 5th to 95th percentile range.
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