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Abstract: Carbon footprint is emerging as an effective tool for carbon emission management, espe-
cially that from fossil energy consumption. In addition, decoupling analysis is important to keep
a high pace of economic growth while reducing carbon emission and its carbon footprint. Taking
the Yangtze River Delta (YRD) urban agglomeration in China as a case, this paper examined the
changes in carbon footprint and carbon footprint pressure by incorporating land resource limits.
On this basis, we further analyzed the decoupling relationships between carbon footprint, carbon
footprint pressure and economic growth. The GeoDetector was also employed to detect the spatial
heterogeneity of the carbon footprint pressure. The results showed that despite the decrease of carbon
emissions from 2011 to 2019 in the YRD, carbon footprint pressure still revealed an increased trend in
this period. As to the decoupling relationships between carbon footprint, carbon footprint pressure
and economic growth, they were improved in most of the cities in the YRD, changing from expansive
coupling to weak decoupling to strong decoupling. However, the descending trend of decoupling
elasticity coefficient for carbon footprint pressure is smaller than that of the carbon footprint. This
result could be explained by the fact that not only carbon emission but also carbon sequestration (by
productive lands including forests and grasslands) pose large impacts on carbon footprint pressure.
The findings indicate the necessity not only to reduce carbon emission, but also to protect productive
lands to realize low carbon economy.

Keywords: decoupling; fossil energy consumption; carbon footprint; urban agglomeration; Yangtze
River Delta

1. Introduction

The global land surface temperature increased rapidly, at a rate of 1.59 ◦C between 1850
and 1900 and between 2011 and 2020 [1]. The warming is likely mainly due to a continuous
increase in fossil energy consumption and thus its carbon emission [2,3]. The carbon
emission from fossil energy consumption is of wide concern by scientific communities
in recent years. For instance, Luderer et al. (2018) explored the residual carbon dioxide
(CO2) emissions from fossil fuels to hold global warming well below 2 ◦C while pursuing
efforts to limit it below 1.5 ◦C to reach the goals of the Paris Agreement [4]. Christophe
and Paul (2015) analyzed the emission limit from fossil fuel to limit global warming to
2 ◦C in different regions [5]. Taking the U.S. as an example, Deutch (2017) argued that it is
misleading to avoid the risks of climate change by only reducing energy consumption and
carbon intensity [6].

In recent years, carbon footprint became one of the widely recognized methods to
evaluate the impact of carbon emission on environment pressure. For instance, Simion
et al. (2013) proposed an ecological footprint indicator by integrating land occupation,
CO2 emissions from fossil energy and nuclear energy use to perform environmental sus-
tainability assessment in European countries [7]. Zhao et al. (2014) estimated the urban

Land 2021, 10, 923. https://doi.org/10.3390/land10090923 https://www.mdpi.com/journal/land

https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0001-8239-9542
https://doi.org/10.3390/land10090923
https://doi.org/10.3390/land10090923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land10090923
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land10090923?type=check_update&version=2


Land 2021, 10, 923 2 of 15

carbon footprint to assess the impact of human activities on urban environment pressure
in Nanjing City, China during 2000–2009 [8]. Wiśniewski and Kistowski (2017) assessed the
role and importance of carbon footprint as a tool in local planning of a low carbon economy
at local levels in Poland [9]. Ma et al. (2018) analyzed the carbon footprint in passenger
transport in China over the period 2006–2015 [10]. Carbon footprint (CF) frequently reflects
the measure of carbon dioxide emissions directly or indirectly caused by an activity or
accumulated over the life stages of a product [11,12]. There are many ways to measure
carbon emission: CO2 physical emissions, CO2 equivalents (CO2eq), or by translating them
into biologically productive areas indirectly [13–15]. In comparison with direct carbon
emission, indirect carbon footprint measurement tracks energy or resource throughput
of economy development and translates it into biologically productive areas necessary to
produce these flows [13,16,17]. In this paper, carbon footprint refers to the carbon emission
measurement using productive lands indirectly. Concretely, the carbon footprint represents
the productive land area to absorb the carbon emission from fossil energy consumption.
Thus, as for different cities, natural resource endowments such as productive lands have
different effects on carbon footprint [17].

To promote sustainability development, many studies explored the changes in car-
bon emission and their decoupling relationships with economic growth. For instance,
Mikayilov et al. (2018) analyzed the decoupling relationships between CO2 emissions
and Gross Domestic Product (GDP) for a group of European economies [18]. Karakaya
et al. (2019) analyzed the CO2 emission trends and the decoupling performance between
CO2 emissions and economic growth in Turkey [19]. Engo (2021) explored the decoupling
indicators for carbon emissions in Egypt, Morocco, Algeria and Tunisia [20]. However, few
works addressed carbon footprint, carbon footprint pressure and their decoupling rela-
tionships with economic growth by incorporating natural resource limits (e.g., productive
lands) [15,21].

The Yangtze River Delta (YRD) is one of the most developed and densely populated
regions in China. It is also one of the largest urban agglomerations worldwide. Taking the
YRD as an example, this paper examined spatiotemporal changes in the carbon footprint
and their carbon footprint pressure from fossil energy consumption. The decoupling effects
between carbon footprint pressure and economic growth were analyzed at both urban
and regional scales. Geodetector has many advantages for measuring spatial stratified
heterogeneity and exploring their determinants [22,23]. In this study, the drivers of the
change of carbon footprint pressure were analyzed using the Geodetector. The objectives
of this study were to understand the decoupling relationships among economic growth,
carbon footprint and carbon footprint pressure by accounting for land resource limits to
realize low carbon development.

2. Study Area and Data Preprocessing
2.1. Study Area

In this paper, the study area is located in the Yangtze River Delta (YRD), China
(Figure 1). The YRD lies between 118–123◦ E and 28–34◦ N, with an area of 104.985 km2.
Furthermore, it encompasses the entire Shanghai City, the southern part of Jiangsu Province
(i.e., Suzhou, Wuxi, Changzhou, Nanjing, Zhenjiang, Nantong, Taizhou, Yangzhou) and the
northern part of Zhejiang Province (i.e., Hangzhou, Ningbo, Shaoxing, Jiaxing, Huzhou,
Taizhou and Zhoushan). The major vegetation type includes subtropical evergreen broadleaf
forest, cropland, urban land, grasslands, and so on. Since economic reform in China in
1978, the YRD has witnessed fast industrialization and unprecedented urbanization. The
gross domestic product (GDP) in the YRD reached US $1.74 trillion in 2016 (approximately
16.2% of the total GDP in China). The overall pattern of energy consumption in the YRD
was dominated by raw coal and electricity, occupying about 40–45% and 22–33% of the
total energy consumption, respectively [24].
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Figure 1. Location of the Yangtze River Delta (SH: Shanghai; SZ: Suzhou; WX: Wuxi; CZ: Changzhou;
NJ: Nanjing; ZJ: Zhenjiang; NT: Nantong; TZj: Taizhou in Jiangsu Province; YZ: Yangzhou; HZ:
Hangzhou; NB: Ningbo; SX: Shaoxing; JX: Jiaxing; HuZ: Huzhou; TZz: Taizhou in Zhejiang Province;
and ZS: Zhoushan).

2.2. Data Sources and Preprocessing

The data in this study includes the dataset on fossil energy consumption by cities, a
land use/cover dataset, a terrestrial net primary productivity dataset (NPP) and statistical
datasets (Table 1). The fossil energy consumption dataset, which spans 2001–2019, was
collected from statistical yearbooks for the 16 cities separately (e.g., Shanghai statistical
yearbook, Suzhou statistical yearbook, Nanjing statistical yearbook, Hangzhou statistical
yearbook, and so on). In addition, other statistical datasets, including the proportion of
urban population, permanent population, urban population, GDP and built-up area, were
collected by cities from several statistical yearbooks, including the Shanghai statistical
yearbook, the Jiangsu statistical yearbook and the Zhejiang statistical yearbook (Table 1).
Regarding the land use/cover data and the NPP data, the Moderate Resolution Imaging
Spectroradiometer (MODIS) products (i.e., MCD 12Q1 and MOD17A3) were downloaded
from NASA’s Land Processes Distributed Active Archive Center (LP DAAC). The original
data were obtained from their original sinusoidal projection to geographic grid cells using
the MODIS Reprojection Tool (MRT).
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Table 1. Data sources in this study.

Data Category Spatio-Temporal Resolution Sources

1 Land use dataset 500 m, 2001–2019 NASA’s LP DAAC
2 NPP dataset 500 m, 2019 NASA’s LP DAAC

3

Fossil energy
consumption (raw
coal, gasoline and

diesel)

By cities, 2001–2019 Statistical yearbooks
of the 16 cities in the

YRD
-

Shanghai statistical
yearbooks [25]

Jiangsu statistical
yearbooks [26]

Zhejiang statistical
yearbooks [27]

4 Proportion of urban
population By cities, 2001–2019

5 Permanent
population By cities, 2000, 2005–2019

6 Urban population By cities, 2000, 2005–2019
7 GDP By cities, 2001–2019
8 Built-up area By cities, 2001–2019

3. Methods
3.1. IPCC Carbon Inventory Method to Estimate Carbon Emission from Fossil
Energy Consumption

By using the data on fossil energy consumption from statistical yearbooks, this paper
estimated the carbon emission from 2001 to 2019 in the YRD. The fossil energy consumption
in the YRD was mainly raw coal, gasoline/gasoline products, coke, and so on [24]. For
assuring the temporal continuity and consistency of the energy data for the 16 cities, raw
coal, gasoline and diesel were selected for analyzing the carbon emission from fossil energy
consumption. There are many ways to estimate carbon emissions, including life cycle
assessment (LCA), the input output method (IO), the Kaya carbon emission identity method
and the IPCC carbon inventory method [28–31]. In this paper, carbon emission from fossil
energy consumption was estimated using the carbon inventory method recommended by
IPCC. For the i-th energy, its carbon emission (Ei, ton) is calculated as:

Ei= Mi × Fi (1)

where Mi is the total amount of i-th type of energy consumption (104 ton of standard coal
equivalent, tce); and Fi is the carbon emission coefficient of the i-th energy (t C tce-1).
Table 2 shows the standard coal coefficient and carbon emission coefficient of raw coal,
gasoline and diesel.

Table 2. Carbon emission factor for different types of fossil energy.

Types Standard Coal Coefficient Carbon Emission Coefficient

Raw coal 0.7143 (kgce/kg) 0.7559 (104 t/104 tce)
Gasoline 1.4714 (kgce/kg) 0.5538 (104 t/104 tce)

Diesel 1.4571 (kgce/kg) 0.5921 (104 t/104 tce)

3.2. Estimate the Carbon Footprint of Fossil Energy Consumption and Carbon Footprint Pressure

The terrestrial vegetation in the YRD is mainly forest, croplands, urban lands, grass-
lands, and so on. In particular, the carbon that is absorbed into crops is frequently released
back into the atmosphere through food consumption. This implies that croplands do not
contribute to a net carbon sequestration [32–34]. On the contrary, forests and grasslands
show a mainly carbon sequestration effect while affecting carbon footprint changes. In this
paper, a carbon footprint model was employed by incorporating the changes in natural
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resource endowment such as productive lands to address the spatial changes of land
use/cover. The carbon footprint of fossil energy consumption was calculated as follows:

CF =
3

∑
i

Ci × Fi × Perf
EPf

+
Ci × Fi × Perg

EPg
(2)

where CF is the total carbon footprint of fossil energy consumption (hm2) of the i-th
region; Ci is fossil energy consumption (1 × 104 tce) of the i-th energy type: raw coal,
gasoline or diesel; Fi is the carbon emission coefficient of the i-th energy type (tC tce−1);
EPf and EPg are the net ecosystem production (NEP) of the forest and grasslands, re-
spectively. In this study, EPf and EPg were determined as the global average NEP of the
corresponding vegetation type (i.e., 3.809592 t C per hm2 for forest and 0.948229 t C per
hm2 for grasslands) [35,36]; Perf and Perg are the carbon absorption ratios of forest and
grasslands in the YRD respectively. The ratios of forest and grasslands were calculated to
estimate the productive land as follows:

Perf =
Af × EPf

Af × EPf + Ag × EPg
(3)

Perg =
Ag × EPg

Af × EPf + Ag × EPg
(4)

where Perf and Perg are the forest and grasslands carbon absorption ratios, respectively, Af
and Ag are the total area of the forest and grasslands, respectively. The carbon footprint
pressure index (CFP) was calculated based on estimated carbon footprint (CF) and existing
productive lands as follows:

CFP =
CF

Af × EFf + Af × EFg
(5)

where EFf and EFg are the equilibrium factors for forest and grasslands, respectively. The
global equilibrium factor is used to facilitate the addition of the actual area of the forest and
the grasslands. Concretely, the equilibrium factors of the forest (EFf) and the grasslands
(EFg) are set to 1.34 and 0.49, respectively.

3.3. Tapio Decoupling Model to Analyze the Coupling or Decoupling Effects between Carbon
Footprint, Carbon Footprint Pressure and Economic Growth

To decouple environmental pressure from economic growth, the Organisation for Eco-
nomic Cooperation and Development (OECD) defined the term “decoupling” as breaking
the link between “environmental bads” and “economic goods” [37]. That is, the decoupling
effects of carbon emission with economic growth were assessed using the Tapio decoupling
model [38,39]. Concretely, the elasticity coefficient (ε) is defined as the ratio of the change
rate of carbon emission (∆CO2) to the change rate of GDP (∆GDP) as follows:

ε =
%∆CO2

%∆GDP
(6)

%∆CO2 =
CO2t+1 −CO2t

CO2t
(7)

%∆GDP =
GDPt+1 −GDPt

GDPt
(8)

In this paper, environmental pressure (i.e., CO2 emissions) (∆CO2) was reflected
by the carbon footprint and carbon footprint pressure. In addition, economic growth
was represented by using per Capita GDP (∆GDP) as an indicator. In order not to over
interpret slight changes as significant, Tapio (2005) put forward the Tapio decoupling
model, which gives an improvement that ±20% variation of the elasticity values around
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1.0 are regarded as coupling [40]. On this basis, decoupling states in the Tapio model can
be further divided into three subcategories: negative decoupling, decoupling and coupling
(Table 3). Concretely, decoupling occurred when the growth rate of environmental pressure
is less than that of economic driver over a specific period. In particular, decoupling is
strong when economic growth increases and environmental stress decreases (elasticity
<0). On the contrary, decoupling is weak when both economic growth and environmental
stress increase, but the growth rate of environmental stress is less than that of economic
growth (0 < elasticity < 0.8). In addition, it is recessive when both economic growth and
environmental stress decrease, but the decrease rate of environmental stress is bigger than
that of economic growth (elasticity >1.2). Expansive negative decoupling occurs when both
economic growth and environmental stress increase, but the increase rate of environmental
stress is bigger than that of economic growth (elasticity >1.2). In strong negative decoupling,
economic growth decreases while environmental stress increases (elasticity <0). When both
economic growth and environmental stress decrease (0 < elasticity < 0.8) and the decreased
rate of environmental stress is smaller than that of economic growth, there is weak negative
decoupling [38].

Table 3. The degrees of coupling and decoupling.

∆CO2 ∆DGP ε Decoupling State

Negative decoupling
>0 >0 >1.2 Expansive negative decoupling (END)
>0 <0 <0 Strong negative decoupling (SND)
<0 <0 0–0.8 Weak negative decoupling (WND)

Decoupling
>0 >0 0–0.8 Weak decoupling (WD)
<0 >0 <0 Strong decoupling (SD)
<0 <0 >1.2 Recessive decoupling (RD)

Coupling >0 >0 0.8–1.2 Expansive coupling (EC)
<0 <0 0.8–1.2 Recessive coupling (RC)

3.4. Driving Forces of Carbon Footprint Pressure Based on the GeoDetector Method

Many methodologies were frequently employed to explore the drivers of carbon
emission, including Kaya identity, structural decomposition analysis (SDA) and logarithmic
mean Divisia index (LMDI) decompose model [41–44]. The GeoDetector is a statistical
method to detect spatial stratified heterogeneity and elucidate the driving factors behind it.
The method has many advantages: (1) it works without the assumption of linearity of the
association; and (2) it has a straight physical meaning [22,23]. Four detectors, including
risk detector, factor detector, ecological detector and interaction detector, are defined in
the GeoDetector [22]. The risk detector compares the difference of average values between
sub-regions. The factor detector compares the accumulated dispersion variance of each
sub-region with the dispersion variance of the entire study region. The smaller the ratio,
the stronger the contribution of the stratum. The ecological detector compares the variance
calculated from each sub-region divided according to one determinant with that divided
according to another determinant. The interaction detector compares the sum of the
contribution of two individual attributes vs. the contribution of the two attributes when
taken together.

The spatial stratified heterogeneity is adopted by the q-statistic in the GeoDetector.
Assuming that a study area is composed of N units and is stratified into h = 1, 2, . . . , L
stratum. It is composed of Nh units in the stratum h. The q-statistic is defined as:

q = 1− ∑L
h =1 Nhσ

2
h

Nσ2 (9)

where σ2
h and σ2 are the stratum variance of effect Y or determinant D for the layer h and

the whole region, respectively. The value range of q is [0, 1]. When applying different
driving forces of carbon footprint pressure, the explanatory power of the determinant is
stronger when the q value is larger. In this paper, five drivers were examined, including
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the rate of gross domestic product (X1), the rate of built-up area (X2), the urbanization
rate (X3), the rate of energy consumption per unit of GDP (X4) and the terrestrial NPP
(X5), were examined to analyze the driver forces of carbon footprint pressure from the
perspective of economic development, social development, technological progress and
terrestrial productivity, respectively.

In addition, interaction detection is also used to evaluate whether the interaction
of different drivers can enhance or weaken their explanatory power to carbon footprint
pressure. Concretely, the GeoDetector firstly calculates the q value of two judgemental
factors X1 and X2, and marks them as q(X1) and q(X2). The combined q-statistic of the two
factors are then calculated and marked as q(X1 ∩ X2). The relationship between the two
factors is shown in Table 4. The details of the GeoDetector can be found in the studies by
Wang et al. (2010) and Wang et al. (2016) [22,23].

Table 4. The interactive relationships in the GeoDetector.

Description Interaction

q(X1 ∩ X2) < Min(q(X1), q(X2)) Weakened, nonlinear
Min(q(X1), q(X2)) < q(X1 ∩ X2) <

Max(q(X1), q(X2))
Weakened, single factor nonlinear

q(X1 ∩ X2) > Max(q(X1), q(X2)) Enhanced, double factors
q(X1 ∩ X2) = q(X1) + q(X2) Independent
q(X1 ∩ X2) > q(X1) + q(X2) Enhanced, nonlinear

4. Results
4.1. Changes of Productive Lands and Carbon Footprint in the YRD
4.1.1. Temporal Changes of Productive Lands, Carbon Emission and Carbon Footprint
Pressure in the YRD

According to our results, total productive lands showed an increase in the YRD since
the year of 2001. It peaked at 7.32 × 106 hm2 in 2009, then gradually fell, and shrank to
6.70 × 106 hm2 in 2019 (Figure 2a). In addition, there existed a large amount of carbon
emissions owing to fossil energy consumption, with an average of 1.56 × 108 t C over the
period 2001–2019. An overall increasing trend of carbon emission was found in this period
in the YRD, at a rate of 5.85 × 106 t C a−1 (p = 0.000) (Figure 2a). Furthermore, the average
carbon footprint was 4.24 × 107 hm2 in the YRD between 2001 and 2019, which was about
six times the amount of the average productive lands there. This indicates the severe
environmental stress in the YRD in the past decades. Furthermore, a similar increasing
trend was found in the past 19 years between the carbon footprint from fossil energy
consumption (not shown in this paper) and the corresponding carbon footprint pressure
(Figure 2b). Concretely, both total carbon footprint and carbon footprint pressure in the
YRD revealed increasing trends before 2011 and then peaked in 2013. That is, the carbon
footprint reached 5.25 × 107 hm2 in 2013, which is 2.46 times that in the year 2001. Thus,
despite the decreased carbon emission in the YRD from 2011 to 2019, both carbon footprint
and carbon footprint pressure were still enhanced simultaneously. The phenomena could
be associated with the decreased productive lands over the period of 2011–2019 in the YRD
(Figure 2a).
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Figure 2. Changes in (a) productive lands and carbon emission, and (b) carbon footprint pressure in
the YRD from 2001 to 2019.

4.1.2. Changes of Productive Lands, Carbon Emission and Carbon Footprint Pressure at
City Scale

To further elucidate the change of carbon footprint pressure, spatial heterogeneities of
productive lands, carbon emission from fossil energy consumption and its carbon footprint
pressure were analyzed by cities, respectively. As shown in Figure 3a, total productive
lands show large differences in different cities in the YRD. For example, there is a large
amount of productive lands (mainly forests) in the southern YRD (e.g., northern Zhejiang
Province). This is especially the case in Hangzhou, Ningbo, Shaoxing and Taizhou cities.
In contrary, it has a small amount of productive lands in the northern YRD (e.g., southern
Jiangsu Province). The phenomenon can be associated with the wide distribution of forest
lands in the northern Zhejiang Province and croplands in the southern Jiangsu Province
(Figure 1). Regarding the average carbon emission from fossil energy consumption during
2001–2019, it is obviously large in several cities including Shanghai, Suzhou and Ningbo
(Figure 3b). For average carbon footprint pressure, it is relatively small in the northern
Zhejiang Province in the southern YRD (Figure 3c). The result could be associated with
the wide distribution of forest lands there. In comparison, carbon footprint pressure is
more severe in the northern YRD. This is especially the case in Shanghai City. We found
that both the averages and the slopes of the carbon footprint pressure in Shanghai City
are particularly bigger due to its excessively high carbon emissions in past decades. In
addition, although the average carbon footprint pressure in Suzhou and Wuxi is not very
large as in Shanghai City, the slope of the corresponding carbon footprint pressure reveals
a growing trend over the two cities in comparison to most other cities over the period of
2001–2019 (Figure 3d). This phenomenon could be mainly caused by the sharp decrease
of productive lands in the two cities. That is, productive lands witnessed a decrease, at
rates of 4153 and 4040 hm2a−1 from 2001 to 2019 in Wuxi and Suzhou, respectively. The
cumulative decreases in the past 19 years accounted for 33.64% and 26.86% of the total
productive lands in the two cities in 2001. This result indicates the necessity to protect
productive lands (e.g., forests and grasslands) to realize low carbon economy.
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4.2. Decoupling Analysis on Carbon Footprint, Carbon Footprint Pressure and Economic Growth
4.2.1. Decoupling analysis on the Relationships between Carbon Footprint, Carbon
Footprint Pressure and Economic Growth

The decoupling relationships between carbon footprint and economic growth were
analyzed by comparing their relative changes as well as the elasticity change of the carbon
footprint and the carbon footprint pressure in the YRD from 2001 to 2018. As shown in
Figure 4, the change rate of GDP in the YRD was all positive from 2001 to 2018. This
indicates the continuous economic growth in the past 19 years. In addition, both the
carbon footprint and the carbon footprint pressure revealed growing trends over the
period of 2001–2019. The elasticity coefficients were therefore decreasing from 2001 to 2019.
Consequently, the decoupling relationships between the carbon footprint and economic
growth mainly changed from expansive coupling to weak decoupling to strong decoupling.
Similar changes were also found for the carbon footprint pressure. Despite it, the elasticity
coefficient of the carbon footprint pressure is bigger than that of the carbon footprint before
2009. However, the relationship was reversed after 2009. That is, the descending trend of
the carbon footprint pressure is smaller than that of the carbon footprint. This difference
could be associated with the changes in productive lands in the YRD.
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Figure 4. The change rate of GDP and CO2, as well as the elasticity change of the carbon footprint and carbon footprint
pressure of fossil energy consumption.

4.2.2. City-Based Decoupling Analysis on Carbon Footprint Pressure and
Economic Growth

We further analyzed the decoupling relationships between carbon footprint pressure
and economic growth in the YRD by cities. It is observed that the decoupling relationships
were improved in most of the cities in the YRD in the past 19 years. For instance, Figure 5a
shows the decoupling characteristics according to the average elasticity coefficient from
2001 to 2009 for different cities. We found that 12 of 16 cities were in a weak decoupling
stage over this period. Meanwhile, 4 cities, including Taizhou in Jiangsu Province, Suzhou,
Jiaxing and Taizhou in Zhejiang Province, were in an expansive coupling stage. However,
the decoupling relationships were then improved in most of the cities over the period
of 2010–2018 (Figure 5b) as: (1) from expansive coupling to weak decoupling stage (e.g.,
in Taizhou in Jiangsu Province, Suzhou, Jiaxing and Taizhou in Zhejiang Province); (2)
from weak coupling to strong decoupling stage (e.g., in Shanghai, Wuxi, Changzhou,
Yangzhou, Hangzhou, Shaoxing and Ningbo). Despite these improvements, the decoupling
relationships could also be degraded in the YRD. For instance, the decoupling relationship
in Zhoushan experienced a conversion from the weak decoupling stage to the expansive
coupling stage.

4.3. Driving Factors of Carbon Footprint Pressure Changes

In this paper, we also examined the impacts of natural, environmental and socioeco-
nomic factors on the changes of carbon footprint pressure in the YRD. According to the
results of the factor detector in the GeoDectector, these factors were ranked according to
their effects on the carbon footprint pressure in the following order: the rate of built-up
area (0.290) > terrestrial NPP (0.241) > urbanization rate (0.135) > energy consumption per
GDP (0.134) > GDP rate (0.133) (Table 5).
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Table 5. The q values of different covariates under interaction detector.

NPP Urbanization Rate Energy Consumption per GDP GDP Rate Built-Up Area Rate

NPP 0.241
Urbanization rate 0.477 0.135

Energy consumption per GDP 0.483 0.971 0.134
GDP rate 0.482 0.933 0.344 0.133

Rate of built-up area 0.546 0.975 0.516 0.339 0.290

Table 5 also shows the response of the carbon footprint pressure to the interaction
between two of the driving factors according to the interaction detector in the GeoDetector.
According to the interactive detection analysis, all the interactive q values appeared to
be higher than any q value of a sole factor. It is obvious that the interaction based on the
urbanization rate is bigger than any other factors. In particular, the combined q value
of the rate of built-up area and urbanization rate was 0.975, that of energy consumption
per GDP and urbanization rate was 0.971, that of GDP rate and urbanization rate was
0.933, and that of terrestrial NPP and urbanization rate was 0.477. The combinations of
the above-mentioned factors can better explain spatial variability of the changes in the
carbon footprint pressure than most of the others. The results indicate that the urbanization
rate played critical roles on the carbon footprint pressure in the YRD. In addition, the
interactions between terrestrial NPP and other drivers are relatively strong. For instance,
the q value of the rate of built-up area and terrestrial NPP was 0.546, that of energy
consumption per GDP and the urbanization rate was 0.483, and that of the GDP rate and
the urbanization rate was 0.482. This indicates that, besides the urbanization rate, carbon
absorption that related to natural resource endowment (e.g., productive lands) can also be
important to ease the carbon footprint pressure.

5. Discussions

In general, absolute decoupling means that economic growth coincides with absolute
reduction in emission or resource use. On the contrary, relative decoupling denotes that
resource use or emission increase less so than does the GDP. Actually, relative decoupling
is frequent for most of the cases [45]. Regarding the carbon footprint and carbon footprint
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pressure, the decoupling relationships were also obvious for the cities in the YRD. We found
that the elasticity values revealed decreased trends in all the cities in the YRD. However,
the carbon footprint pressure revealed increased positive trends in most of the cities in the
YRD from 2001 to 2019, except for Hangzhou and Nantong. Thus, it mainly revealed a
relative decoupling for most of the cities in the YRD. This is consistent with the results of
Haberl et al. (2020) [45]. Regarding Hangzhou City and Nantong City, carbon footprint
pressure showed a continuously decreased trend after 2007 and 2010, respectively. Despite
a little fluctuation, absolute decoupling existed in the past decade. This could be associated
with the increased productive lands in the two cities. Thus, not only by reducing carbon
emission, it is also critical to increase productive lands and thus the uptake of CO2 by the
terrestrial biosphere to ease the environmental pressure [6].

The decoupling state is also found to be associated with the stages of economic
growth in different cities. Pilatowska and Wlodarczyk (2018) analyzed the decoupling
relationships between economic growth and CO2 emissions in the European Union (EU)
countries [46]. The EKC hypothesis, which assumes that environmental degradation
increases with per capita income during the early stages of economic growth, and then
declines with per capita income after passing beyond an income turning point [47], was
tested by dividing the EU countries into three groups depending on the level of knowledge-
based economy. They found that the EKC hypothesis is valid for the most high-level
and some middle level knowledge-based economies [46]. Moreover, these countries are
characterized by either a decreasing trend in energy intensity or the diversified energy
consumption mix with a significant share of nuclear and renewable energy and also a
smaller share of solid fuels. This phenomenon is consistent with the results of this study
on carbon footprint pressure. For example, four cities in the early stages of rapid economic
growth or low-level development, including Taizhou in Jiangsu Province, and Suzhou,
Jiaxing and Taizhou in Zhejiang Province, were in an expansive coupling stage from 2001 to
2009. In addition, other cities were in a weak decoupling stage over this period. However,
the decoupling relationships between carbon footprint pressure and economic growth
were then dramatically improved, especially in the cities with rapid economic growth and
increased productive lands (e.g., Shanghai, Wuxi, Hangzhou, Ningbo, and so on). This
indicates the necessity not only to reduce carbon emission, but also to protect productive
lands to realize low carbon economy.

In addition, Li et al. (2021) classified the cities in the Yangtze River Economic Belt
according to the differences in the decoupling stage; they identified three categories:
pre-decoupling, post-decoupling, and unstable decoupling [48]. They inferred that pre-
decoupling cities are mainly dominated by high-tech industries or service industries, such
as Shanghai City. Our findings partly agree with the results from Li et al. (2021). For
instance, most of the cities in the YRD were in a weak decoupling stage between carbon
footprint pressure and economic growth over the period 2001–2009. After 2009, Shanghai,
Wuxi, Yangzhou, Hangzhou, Shaoxing and Ningbo experienced a strong decoupling
stage. The phenomena could be associated with decreased carbon emission, as well as the
increase of productive lands (especially in the northern Zhejiang Province) in these cities.
By comparison, post-decoupling cities are characterized by resources and geographical
advantages, and some cities have accelerated the decoupling by eliminating high-emission
industries, extending industrial chains, and nurturing new pillar industries (e.g., the
coal chemical industry) [48]. In the study area, similar results were found as well. For
example, several cities, including Taizhou in Jiangsu Province, Suzhou, Jiaxing and Taizhou
in Zhejiang Province, changed from expansive decoupling during 2001–2009 to weak
decoupling over the period 2010–2018. In addition, unstable decoupling cities were in a
critical period of industrialization with high-emissions and low-value-added industries [48].
This was especially the case for Zhoushan City in the YRD. We found that the carbon
emission in this city did not change from 2001 to 2010. However, its total carbon emission
in 2019 reached 4.2 times that in 2010.
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Decoupling relationships between economic growth and carbon emission were fre-
quently attributed to per capita GDP, urbanization rate, industrial structure, energy in-
tensity, etc. [49]. In this study, we found that the built-up area rate and terrestrial NPP
explained large amounts of the changes in the carbon footprint pressure. In addition, the
joint explanatory power mostly reached more than 93% based on the interaction analysis
between the urbanization rate and other drivers. The phenomena indicated that not only
carbon emission, but also carbon sequestration, posed large impacts on the carbon foot-
print, as well as carbon footprint pressure. Further concerns should be addressed about the
drivers of carbon sequestration such as changes in productive lands.

6. Conclusions

In past studies, few works addressed the decoupling relationship between the carbon
footprint and economic growth by incorporating natural resource limits. This paper
found that the decoupling relationships in the YRD were improved when incorporating
the changes in productive lands in the past decades. However, the descending trend of
decoupling the elasticity coefficient for carbon footprint pressure was smaller than that of
the carbon footprint. In addition, not only carbon emission, but also carbon sequestration,
posed large impacts on carbon footprint pressure. The findings appealed for a differential
strategy to coordinate economic development and environment protection according to
each city’s characteristic to realize a low carbon economy. Considering the electricity
transmission from one place to another, this study used only statistical data on fossil energy
consumption. However, it was subject to data limitations on fossil energy consumption at
the city scale. That is, for assuring the temporal continuity and consistency of the energy
data at different cities, we selected only raw coal, gasoline and diesel to reflect the changes
in carbon emission. More cases should be conducted using complete and comparable fossil
energy data on multiple energy types. Furthermore, the Tapio model only provides the
decoupling state from an elastic perspective in a certain period. However, the relationships
between economic growth and carbon footprint are variable and reflects different patterns
of economic development. An in-depth analysis (e.g., wavelet transform), is essential
to be conducted in the time-frequency domain for richer results [50]. This paper mainly
focused on the relationships between economic development and environmental factors
(i.e., carbon emission and carbon footprint); it is essential to pay more attention to the role
and importance of the indirect carbon footprint (e.g., biologically productive area as an
indicator) as a tool in spatial planning of a low carbon economy in future studies [9].
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