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Abstract: A new methodology for shallow landslide forecasting in wildfire burned areas is proposed
by estimating the annual probability of rainfall threshold exceedance. For this purpose, extensive
geological fieldwork was carried out in 122 landslides, which have been periodically activated in
Western Greece, after the devastating wildfires that occurred in August 2007 and burned large areas
in several parts of Western Greece. In addition, daily rainfall data covering more than 40 years
has been collected and statistically processed to estimate the exceedance probability of the rainfall
threshold above which these landslides are activated. The objectives of this study are to quantify the
magnitude and duration of rainfall above which landslides in burned areas are activated, as well as
to introduce a novel methodology on rainfall-induced landslide forecasting. It has been concluded
that rainfall-induced landslide annual exceedance probability in the burned areas is higher when
cumulative rainfall duration ranges from 6 to 9 days with local differences due to the prevailing
geological conditions and landscape characteristics. The proposed methodology can be used as a
basis for landslide forecasting in wildfire-affected areas, especially when triggered by rainfall, and
can be further developed as a tool for preliminary landslide hazard assessment.

Keywords: rainfall threshold; shallow landslides; wildfires; landslide forecasting; landslide hazard

1. Introduction

Landslides are one of the most frequent and widespread natural disasters around
the world, causing a considerable loss in properties and infrastructures. Among all the
recognized landslide causal factors, rainfall is widely recognized as the main landslide
triggering factor, with mass movement phenomena, such as shallow rotational failures and
debris flows. There is an obvious tendency for landslide frequency to increase as rainfall
volume or intensity increases. The critical rainfall conditions that may trigger a slope failure
at a specific site are dependent on local climate, geological conditions, landslide history, the
process of pore water pressure built-up, local morphology, and land-use patterns, as well as
the extent of human intervention. The role of each one of the aforementioned causal factors
and, most importantly, their combined effect in slope instability is not always pre-defined
at the desired scale before a slope failure has occurred. Since landslide prediction is a
multidisciplinary task, the examination and analysis of every causal factor at the required
scale and detail can aid in a better understanding of the mechanics of landslide initiation,
also leading to landslide temporal prediction and forecasting.

Among all approaches of correlating landslide occurrence with rainfall, the concept of
“rainfall threshold”, as presented by Caine [1], consists of a commonly used methodology
to define the rainfall conditions that, when reached or exceeded, are likely to trigger
landslides [2]. Every threshold is based on different climate and geological settings and
can be defined under many physical or empirical bases, according to either historical data,
statistical or process-based methodologies [3–29].

Most published rainfall thresholds are based on the investigation of rainfall-induced
shallow landslides in natural or excavated slopes without the effect of a fire. However, in the
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case of recently burned slopes, the processes that facilitate instability are being modified due
to the loss of vegetation and the consecutive effects on the upper soil layers, enhancing thus
the erosive power of overland flow and resulting in subsequent soil movements [30–36].
Landslides have been documented as occurring either in the first rainy season immediately
after the wildfire, from one to two years after the wildfire, or after longer periods [33,37–43].

Recent research on the influence of pine forests root reinforcement decay after fires [44,45]
and the consecutive loss of soil strength results show that the reinforcement presented
by the roots can be significantly reduced, even four years after the forest fire, due to the
degradation of the root’s mechanical properties. This means that during the post-fire
period, the natural regeneration may not be able to counterbalance the loss of the root
reinforcement.

Several studies on the temporal forecasting of landslides [46–48] often aim to create
landslide warning systems, usually through real-time monitoring of rainfall data [49–54].
Rainfall thresholds can be fundamental elements for the implementation of landslide
forecasting and monitoring. The selection of representative threshold values and the
statistical analysis of rainfall events that have resulted in landslides under certain condi-
tions [24,55] can conclude to quantify the likelihood of landslide occurrence as a probability
of landsliding within a specific period.

This study uses a proposed empirical rainfall threshold for the possible shallow
landslide occurrence in burned areas [56,57] of Western Greece in order to estimate annual
probabilities for landslide activation and contribute to shallow landslide forecasting and
monitoring in areas of similar conditions. The proposed methodology aims to be developed
as a basis for landslide forecasting, especially when triggered by rainfall, also through its
application in an area that was affected by a significant natural disaster, and taking into
consideration the geological and local conditions of the affected areas.

Given also the unequivocal warming of the climate system, the shifting climate drivers
will act on landscapes and slopes that were long modified by human actions and change
the current stability status and, in this way, expose more people and areas at higher
landslide or flood risk [58,59]. It should be considered that in many areas, e.g., Southern
Europe, the mean annual precipitation is projected to remain constant but concentrated
in a fewer number of rainy days, resulting in more intense rainfall events, anticipating
more frequent shallow landslides [60,61]. A variation in the number of rainy days may
result in a variation in the temporal distribution of rainfall-induced landslides and debris
flows. In the same areas, the climate models predict a higher air temperature, which will
favor evapotranspiration, reducing the amount of water in the sub-surface and increasing
the risk of forest fires. To compensate for these challenges, every attempt towards the
quantification of the probability of rainfall-induced landslides can be in the near future an
important aspect in landslide hazard monitoring and forecasting.

2. Methodology
2.1. Study Area

The studied area is found in the Ilia Regional Unit, in Western Greece. This area is one
of the most well-known and popular archaeological and touristic destinations of Greece
because of the archaeological site of Ancient Olympia, the birthplace of the Olympic Games.
During the last ten days of August 2007, extensive wildfires burned many regions in the
Greek mainland. The total financial loss from the wildfires was estimated to be about
5 billion Euros, classifying this disaster as the worst recorded wildfires in the past 50 years
at a national level, and Greece among the countries with the greatest financial damage
for 2007.

The Ilia Regional Unit was one of the most affected areas, with approximately 870 km2

covering approximately 33% of its overall extent. Burned areas included burned rural
land (80%), mainly composing of olive trees, pine-tree forests (20%), and villages. The
burned areas were extended in a SE-NW direction along with its central parts and were
divided into two discrete sections (zones), one at the North (a) and the other at the South
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(b) (Figure 1), separated by the valley of the Alfeios river. The Northern burned zone is
mainly characterized by agricultural, hilly areas of smooth relief and altitudes up to 800 m,
while the Southern has more mountainous and forest terrain, with altitudes up to 1335 m
and steeper slopes. The rate of increase in the soil erosion rate on the Northern part of
the study area immediately after the wildfire event was found to be equal to 36.2%, with
the percentage reducing to 31% after a decade [62]. This is an important circumstance for
the study area since soil erosion accelerates landslide occurrence, especially when rainfall
infiltrates eroded areas. The soil erosion rate was calculated using the RUSLE equation [63].
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Figure 1. Geographical location and post-wildfire landslide inventory of the study area. Hatched
areas show the outline of the wildfire-affected areas, divided in Section “a” (North) and Section “b”
(South).

2.2. Geological Setting

The burned areas consist of Quaternary deposits and post-Miocene (Neogene) sed-
iments overlying the Alpine bedrock. As shown in the simplified regional geological
map which has been compiled for the study area (Figure 2), typical geological formations
include thick sequences of lacustrine, marine, and fluvial sediments [64,65] such as marls,
sandy clays, sandstones, and mudstones, as well as a lower percentage of conglomerates
(Figure 3a). Quaternary loose deposits consist of 18.61% and 38.59% of the zones (a) and
(b), respectively, while bedrock outcrops range from 28.4% in the South section to only 1.1%
in the North zone. Bedrock consists of alpine rock formations belonging to the Olonos-
Pindos and Gabrovo Geotectonic units, part of the External Hellenides Orogenetic belt [66].
Main bedrock rock types include typical “flysch-type” sequences of shales, siltstones, and
sandstones (Figure 3b), as well as thinly-bedded to massive limestones (Figure 3c), schists,
and cherts (Figure 3d).
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sequence with shales and mudstones underlain sandstones, (c) highly jointed limestone bedrock rock
mass, (d) highly weathered schist/chert rocks.
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Regional active tectonics and high seismicity [67,68] also have a significant role in the
shaping of the area’s morphology by forming successive tectonic horsts and grabens and
influencing the surface drainage network.

The aforementioned rock types and mainly the “flysch” rocks and the post-Miocene
sediments are, due to differential response to weathering processes and intense fracturing,
the most susceptible to landslide phenomena geological formations, with heavy rainfall,
regional climate patterns, and tectonics to be considered as the main controlling factor for
landslide activation, not only in the wider area but also in overall Greece [69–74].

2.3. Climate Setting and Rainfall Patterns

Being affected by the Mediterranean Sea, the study area has a typical Mediterranean
climate. Average monthly temperatures range between 20 ◦C and 25 ◦C during the summer
months and between 4 ◦C to 10 ◦C during the winter months, with at least four months
above 10 ◦C. As it is also shown in Figures 4 and 5, annual rainfall in the affected areas
ranges approximately between 800 and 1400 mm with the lower values along the plain
areas at the west and the higher values at the easternmost mountainous areas.

The rainfall patterns of the study area were examined by historical rainfall data col-
lected through a network of ten selected meteorological gauging stations with consistent
daily rainfall data, covering the period between 1977 and 2019, installed by the Ministry of
Environment and Climate Change and the National Observatory of Athens. Every mete-
orological station along the respective Thiessen polygons that influence the neighboring
landslides is also shown (Figure 4).
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Long-term variation of mean annual rainfall during the 1977–2019 period shows that
the study area is characterized by dry periods 2 to 5 years long, alternating with rainy
periods which last between 2 and 3 years. Mean Annual Precipitation (MAP) in the burned
areas is approximately 1070 mm. Even though the general annual rainfall trend looks
steady during the whole above time frame, it seems to be a change in the rainfall trend
before and after 2007. A general trend of decreasing annual rainfall up to 2007 is followed
by an increasing trend after 2007 (Figure 5a). Rainy days and maximum daily (24 h) rainfall
seem to have increased trends for the whole period (Figure 5b).

Closer observation of seasonal rainfall variation (Figure 6) between September 2007
and May 2011 allowed to distinguish specific time frames with notable differences in
regional rainfall pattern. A relatively dry period, which started before 2007 and lasted up
to the end of autumn of 2008, was followed by a significantly wet first quarter of 2009 and
then by a moderate to dry period until the end of 2009, with the exception of a notable
rainy October of 2009. During the next nine months and until the end of 2010, rainfall
values were close to corresponding averages, with the exception of an excessively rainy
October. Finally, up to May 2011, monthly rainfall values were close to averages, without
records of exceptional values.

The spatial and temporal variation of rainfall-induced landslides follows the afore-
mentioned seasonal rainfall patterns. The first landslides occurred in the immediate wet
season after the wildfires (Autumn 2007) and were spread throughout the affected areas
as an immediate response to the effect of fires (Figure 6). During this period, monthly
rainfall was close to historical averages. After this initial response and during the rest
3.5-year post-wildfire period, shallow rainfall-induced landslides were more frequent when
monthly rainfall exceeded the corresponding averages and, in most, had a smaller spatial
extent.
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2.4. Landslide Dataset

Landslides and soil erosion phenomena induced by rainfall affected the burned areas,
particularly road networks and inhabited areas. Local authorities focused their attention
on mitigating the problem by implementing small-scale remedial measures. To aid this
planning, a systematic, detailed engineering geological survey was carried out [41,42,56–58]
throughout the 4-year post-wildfire period (up to May 2011), including: (a) field surveys to
identify and map the occurred instability phenomena, (b) detailed engineering geological
and geotechnical investigations in selected landslide zones and (c) landslide recording by
applying an appropriately designed Landslide Inventory Form [57,71].

A total number of 122 well defined and documented rainfall-induced landslides were
recorded within the wildfire-affected areas, which were activated at least once during the
period from September 2007 up to May 2011. The spatial distribution of the recorded
landslide occurrences is expressed by the landslide inventory map in Figure 1. As shown
in Figure 7, most landslides (56%) were recorded within the Post-Miocene (Neogene)
sediments, with most of them (82%) occurring in fine-grained and mixed facies that
represent 46% of the total recorded cases. In the bedrock (44%), the majority was recorded
within the weathered flysch and cherts (83%), which represent 37% of the total recorded
cases (Figure 7a). As shown in Figure 7b, the main type of movement, according to the
classification given by Cruden and Varnes [75], is rotational sliding (81%), with a smaller
number occurring as translational and composite slides, earth flows, and falls. In respect
of landslide magnitude (Figure 7c), according to the classification given by Fell [76], most
recorded cases represent very small landslides (72%). Typical examples of rainfall-induced
landslide types in the burned areas are shown in Figure 8.

In conclusion, a landslide analysis of the burned areas showed that most of the rainfall-
induced landslides were of extremely small (less than 500 m3) to small (500 < V < 1500 m3)
volume [76]. Most of the landslides were shallow rotational slides and earth flows located
mainly on the weathered mantle of the Neogene sediments or alpine bedrock. Phenomena
of a different type, such as rockfalls, were few and were recorded only on the steepest
slopes of limestones and well-cemented conglomerates.
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Figure 8. Landslide phenomena in the wildfire-affected areas. (a) rotational slide in post-Miocene
fine-grained sediments, (b) rotational slide in loose conglomerates and sandstones, (c) rotational
slide in weathered cherts, (d) rotational slide in weathered flysch, (e) rockfall in limestones, (f) falls
in cemented conglomerates, (g) earth flow in weathered flysch, (h) translational slide along normal
fault plane in sandstones, (i) composite slide in post-Miocene sediments.
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2.5. Rainfall Events and Threshold Value

For every landslide occurrence, daily rainfall data were obtained from the nearest
meteorological station. The selection of the most appropriate meteorological station for
each landslide was based on its proximity to the landslide location, its similarity in elevation
with the landslide, the local morphological setting, and the reliability of the station records.
Priority was given to meteorological stations that were located within the same watershed
and had elevations close to the elevation of the respective landslide.

Having as a reference the number of days that each landslide had been activated and
based on the preliminary assumption that a landslide is activated towards the last days of
a rainfall event, the detailed analysis of the daily rainfall data allowed the identification of
distinct rainfall events causing landslides with defined duration and a cumulative amount
of rainfall.

The recorded landslides were associated with the cumulative rainfall event (E) in
respect of a certain rainfall duration (D) that was responsible for landslide activation by
using the Cumulative Event-Duration (ED) empirical threshold equation proposed by
Lainas et al. [56].

E = 10.95× D0.423 (1)

when 48 < D < 312 h and where E is the cumulative (total) event rainfall (in mm), and D is
the duration of the rainfall event (in hours).

By using the threshold equation, the corresponding rainfall values have been calcu-
lated for every duration class. Each calculated rainfall value was then used to estimate the
annual landslide probability for every duration class when the corresponding threshold
was exceeded. In this way, and after statistical analysis of the rainfall data, the frequency
of these threshold values can be determined and used as a basis for estimating landslide
probability [22]. However, it is important to recognize that the occurrence of a rainfall
event that exceeds the assigned threshold value may not necessarily lead to slope failure.
Some events may be redundant or even ineffective, depending on the status of the slope
development and the local landslide history.

2.6. Exceedance Statistics and Probability

The probability of occurrence of a rainfall-induced landslide can be expressed as
the product of the annual probability of the trigger (i.e., the rainfall threshold) and the
conditional probability of the slope failure. The conditional probability is defined as the
probability of slope failure once the rainfall threshold has been exceeded. If P(A) is the
annual probability of the rainfall event exceedance and P(B) is the probability of landslide
activation, the landslide probability P[A ∩ B] is expressed as shown below [24]:

P[A ∩ B] = P(A)× P[BA] (2)

This equation states the probability of occurrence of both events A and B (intersection
probability) and is equal to the probability of occurrence of event A multiplied by the
probability of occurrence of event B in the condition that event A has already occurred
(conditional probability). P(A) is determined based on the assumption that

P(A) = P[E > Eth] (3)

where P[E > Eth] is the annual probability of the rainfall threshold (Eth) exceedance, with
Eth corresponding to the calculated threshold for each rainfall duration class, according to
Equation (1).

For the calculation of the threshold annual exceedance probability P(A) for each
duration class, all rainfall events for every duration class and every meteorological station
were first identified, covering all the 1977–2019 period. For example, in the case of a six-
days (6) cumulative rainfall event, all events with a duration of six days were distinguished
and selected through the complete series of daily rainfall. Each year’s maximum value was
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then selected to produce an annual exceedance series, allowing to distinguish the annual
values that are higher than the corresponding calculated threshold value (Eth) for each
duration.

Annual exceedance probabilities (P(A)) of each threshold value were estimated by
performing separate frequency analyses at the annual exceedance series to the data of each
duration class and in every meteorological station that was selected as the representative
for landslide triggers. Towards this result, each annual exceedance series has been analyzed
by applying the Generalized Extreme Value Distribution (EV1) function [77–79]. In order to
check the fit of the data in the above probability distribution function, the Frequency Factor
method was applied [79]. After plotting the annual exceedance series in a probability paper
(Gumbel Plot), the linearization between the variate and the selected reduced variate is
being checked. When the plot can fit with a straight line, this can be a confirmation that the
checked data can fit the selected probability distribution.

In order to achieve this, the plotting positions of each annual exceedance series have
been found. After sorting the annual maximums in descending order, the empirical return
period was estimated, according to the Weibull formula:

T =
N + 1

m
(4)

where N equals the number of years and m the position of each year in descending order.
Once the data series is ranked and the plotting positions calculated, a graph between

the variate and the reduced variate is plotted to graphically fit the distribution. In the case
of the Frequency Factor method, the relationship that combined the variate (ET) with the
reduced variate (KT) is:

ET = µ + KT × σ (5)

where µ is the average, σ is the standard deviation of each data series. The reduced variate
(KT) of the EV1 probability distribution function is calculated for the relationship

KT = −[yn + ln{ln(T)− ln(T − 1)}]/σn (6)

where yn and σn represent the expected average and standard deviation parameters of the
reduced variate of the Gumbel distribution and are selected from tables according to the
size of the time series [77].

After calculating KT assuming a GEV probability distribution, the P(A) for each dura-
tion class was estimated. The determination of P[B|A] relied on landslide frequency after
rainfall exceeded the given threshold value for every duration class and the corresponding
landslide set.

3. Results

The definition of each rainfall event, as it was previously mentioned, and the con-
nection of landslides with specific rainfall events resulted in the identification of specific
time windows (in days) of rainfall in the calculation of the cumulative rainfall (E) for
each event and the identification of the recorded maximum daily (R24 h) rainfall during
each event. The classes of the rainfall duration (D), along with the corresponding range
of the cumulative rainfall (E in mm) and the corresponding maximum 24 h rainfall (R24
h) for each duration class were established and are shown in Table 1. It can be initially
observed that rainfall events that have triggered landslides in the affected areas had a
duration between 2 and 13 days, were characterized by cumulative rainfall between 56.5
and 251.5 mm, and maximum daily (24 h) rainfall within the range from 22.6 to 71.4 mm.
More specifically, it can be seen that most landslides were triggered after rainfall duration
in the range between 6 and 7 days and with cumulative rainfall between 95.6 to 214.4 mm.
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Table 1. Number and rainfall patterns (Duration, cumulative rainfall, and maximum 24 h rainfall) of the rainfall events that
triggered landslides in the wildfire-affected areas.

No of Rainfall
Events Causing

Landslides

No of Recorded
Landslides

Meteorological
Station (No)

Rainfall
Duration

(Days)

Cumulative
Rainfall (E)
(mm Range)

Max R24 h
(mm Range)

2 2 3,9 2 56.5 106.6 31.6 57.2
2 7 1,3,8,9 3 67.2 112.8 25.4 58.2
4 8 2,5,9 4 75.6 133.4 27.4 58.6
3 8 2,5,9 5 85.2 134.6 23.8 62.4
3 22 2 6 145.6 188.2 62.4 71.4
8 36 2,3,5,9 7 95.7 214.4 22.6 57.2
1 6 2 8 119 119 25.4 25.4
2 13 2,3,5,9 9 109 232.1 30 62.4
2 4 2,3 10 202.8 251.5 41.8 57.2
3 8 2,6,9 11 132.3 164.8 23.2 49.2
1 8 5 13 129.4 112.8 40.4 40.4

Figure 9a shows the spatial distribution of the 122 recorded landslides, which were
triggered during a total of 31 rainfall events. It can be seen that most landslides were
triggered after at least 6 days of cumulative rainfall, especially at the Southern zone of the
burned areas, which is mainly dominated by weathered bedrock, such as flysch and cherts.
Similarly, as shown in Figure 9b,c, landslides in the Southern zone are characterized by
higher cumulative rainfall and higher maximum daily rainfall (R24 h) values.
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Figure 9. Spatial distribution of (a) rainfall duration, (b) cumulative rainfall, and (c) maximum daily rainfall of the
landslide-trigger rainfall events during the post-wildfire period.

In more detail and as shown in Table 2, approximately 85% of the landslides of the
South zone of the burned areas required cumulative rainfall of at least 6 days for their
activation. On the contrary, in the North zone, this percentage was lower (about 67%). In
addition, landslide triggering in the North zone required less than 200 mm of cumulative
rainfall, whereas, in the South, 13.4% of the landslides required more than 200 mm of
cumulative rainfall to be activated. Similarly, the recorded maximum daily rainfall was for
all landslides of the North zone lower than 60 mm, whereas for the South, this value was
not adequate for the 29% of the recorded cases.
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Table 2. Lithology and rainfall parameters (Duration, Cumulative Rainfall, and Maximum Daily (24 h) Rainfall of the
recorded landslides at the North and South Zone of the burned areas.

Category
Landslides
North Zone

(No (%))

Landslides
South Zone

(No (%))

Lithology Neogene sediments 39 (100%) 29 (34.9%)
Weathered bedrock 0 (0%) 54 (65.1%)

Duration
(D, days)

<6 13 (33.3%) 26 (14.5%)
≥6 12 (66.7%) 71 (85.5%)

Cumulative Rainfall
(E, mm)

50–<100 13 (33.3%) 22 (26.5%)
100–<150 17 (43.6%) 28 (33.7%)
150–<200 9 (23.1%) 22 (26.5%)
≥200 0 (0%) 11 (13.3%)

Maximum Daily Rainfall
(R24 h, mm)

<30 6 (15.4%) 8 (9.6%)
30–<40 10 (25.6%) 7 (8.4%)
40–<50 14 (35.9%) 33 (39.8%)
50–<60 9 (23.1%) 11 (13.3%)
≥60 0 (0%) 24 (28.9%)

Plotting of the Cumulative rainfall (E) and rainfall Duration (D) of the recorded
landslide cases during the post-wildfire period in respect of the rainfall data (E-D diagram)
is shown in Figure 10, together with the corresponding rainfall threshold In Figure 10 it can
also be observed that the majority of rainfall-induced recorded landslides were triggered
after 144 h (6 days) of cumulative rainfall and, more precisely, between 6 and 7 days.
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Figure 10. Rainfall threshold for possible shallow landslide trigger in wildfire affected areas [56].
Post-fire landslides are shown in both Neogene and weathered bedrock, as well as the landslide
distribution in respect to duration.

The application of the threshold equation for each duration class, as it was previously
analysed, and the rainfall data frequency analysis resulted in the calculated probabilities of
Table 3. In the cases when data from more than one meteorological station was analyzed
for each rainfall duration class, average values of P(A) are shown in Table 3. As an example,
a rainfall event with a duration of 6 days corresponds to a rainfall threshold value of
95.66 mm. After statistical analysis of daily rainfall, such a rainfall event has an annual
exceedance probability P(A) equal to 0.964. The conditional probability (P[B|A]) can
be calculated for this case as 36/122 = 0.295 and the final probability P[A ∩ B] = 0.284
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(approximately 1 every 3). In terms of the return period, this annual probability can also be
expressed as T = 1/0.284 = 3.52 years.

Table 3. Annual probability calculations and classification of shallow rainfall-induced landslides related to the Rainfall
threshold (ED) and the rainfall duration class (D).

D
(Days)

ED
(mm)

No of
Landslides P(A) P(B|A) P(A∩B) Probability

Classification

2 56.31 2 0.763 0.016 0.012 Medium
3 66.84 7 0.705 0.057 0.040 Medium–High
4 75.49 8 0.864 0.067 0.058 High
5 82.97 8 0.709 0.067 0.048 High
6 89.62 22 0.999 0.180 0.180 High
7 95.66 36 0.964 0.295 0.284 High–Very High
8 101.22 6 0.990 0.049 0.049 High
9 106.39 13 0.776 0.107 0.083 High
10 111.24 4 0.973 0.033 0.032 Medium
11 115.81 8 0.719 0.066 0.047 Medium–High
13 124.29 8 0.552 0.066 0.036 Medium

Figure 11 shows the classification of annual probability according to Fell [76]. It
can be concluded that shallow landslide response in wildfire-affected areas has a higher
annual probability for rainfall events with a total duration between 6 and 9 days. In these
cases, both the return period of the corresponding rainfall event is low, and the landslide
frequency is high, resulting in high to very high annual probabilities. For a duration of less
than six (6) days, estimated annual probabilities were found to be lower. The return period
of rainfall events for this duration range is higher than longer durations, and, at the same
time, landslide frequency is lower. This means that intense rainfall events of small duration
did not have a primary impact in the affected areas, but between duration and cumulative
rainfall, the total rainfall volume was more important in the activation of landslides.
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Figure 11. Annual Probability calculations in every duration class for shallow landslide trigger in the
study area.

On the other hand, landslides, which were triggered after cumulative rainfall of a
duration of more than nine (9) days, also have medium to high annual probabilities. The
return period of rainfall events for this duration range is in most cases among the lower, but
at the same time, landslide records are also not so frequent. These cases usually represent
less frequent larger and deeper rotational landslides, the activation of which is associated
not only with a specific rainfall event but also with seasonal antecedent rainfall.

The spatial extent of annual landslide probability classes is also given in the landslide
hazard map of Figure 12. It can be observed that higher annual probabilities for landslide
triggers are observed in the central and easternmost parts of the affected areas. Both
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aforementioned areas have similarities and differences in respect to the conditions that may
favor landslide activation. The central part is mostly dominated by fine-grained Neogene
sediments, the easternmost regions mainly by weathered bedrock with both geological
formations to be recognized as the most susceptible to landsliding in the study area. On
the other hand, the central part is characterized by higher human impact in terms of urban
development and land use but lower rainfall, while the eastern is characterized by higher
altitudes, steep terrain, higher rainfall but less human impact.
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4. Discussion

This study presents a methodology for landslide forecasting by applying an empirical
rainfall threshold model. It aims to contribute to the clarification of the role of rainfall in
the activation of shallow landslides which have been triggered by heavy rainfall in either
natural or excavated slopes within areas that have been previously affected by wildfires.
The use of such a model is appropriate for shallow landslide monitoring in areas that pose
a high susceptibility to landslides, either due to predisposing causal factors or extreme
conditions of a triggering factor, such as rainfall, often combined with other environmental
factors, as for example vegetation loss by forest fires.

The landslide dataset included 122 well-defined and documented, rainfall-induced
landslide occurrences, which were recorded within the fire-affected areas and had been
activated at least once in a period 3.5 years after the wildfires. Most of the recorded
landslides were recorded within fine-grained and mixed Neogene sediments, as well as in
the upper highly weathered layers of flysch and cherts. The biggest percentage of these
landslides were classified as shallow and surficial rotational slides with lesser translational
slides, composite slides, earth flows, and rock falls. According to Fell’s classification [76],
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most of the recorded cases represent very small landslides with a total volume between
500 and 5000 m3.

The North zone of the burned studied area is mostly covered by Neogene sediments,
while the South is dominated by weathered bedrock with a smaller percentage of Neogene
sediments. Analysis of the rainfall triggering parameters in both zones showed that
landslides of the South zone required longer as well as heavier rainfall, both in terms of
cumulative and maximum daily rainfall to get triggered. Furthermore, apart from their
inherent lithological differences and the different rainfall patterns, which favored landslide
activation in the two burned zones, their differences in the land cover before the fires as
well as the different degree of human impact had also influenced landslide activity.

The estimation of the annual exceedance probability of the ED rainfall threshold for
each duration class showed that shallow landslide response in the study area has higher
annual probabilities for rainfall events with a total duration between six (6) and nine (9)
days. For the duration range shorter than six (6) days, estimated annual probabilities
were found to be lower. Individual and intense rainfall events of small duration were not
adequate to activate landslides but the required amount of rainfall for slope failures was
higher.

On the other hand, landslides that were triggered after cumulative rainfall of duration
more than nine (9) days also have medium to high annual probabilities. The return period
of rainfall events for this duration range is in most cases among the lower, but at the
same time, landslide records are not so frequent. In this case, as well as in longer rainfall
durations, the application of a simple threshold methodology can be questionable and
should be used with appropriate judgment. Besides, the nature of a recently burned area
in terms of short-term response in rainfall typically favors the manifestation of shallow or
even surficial landslide phenomena. Deeper landslides in a recently burned area can also
start with a small rate of movement and gradually develop in larger landslides, under the
influence of seasonal antecedent rainfall and taking into consideration the regeneration of
the burned vegetation. Modelling of these cases is preferably being done at a larger scale
by applying site-specific geotechnical models with local rainfall thresholds, including soil
parameters connected with the status and level of root reinforcement before and after the
fires [24,80].

The proposed methodology for shallow landslide forecasting in wildfire-affected areas
focus on the quantification of the main triggering factor, which in our case is heavy rainfall.
In detail, the result of the proposed methodology is to provide probability estimates for
landslide occurrence over burned areas after a severe rainfall event and before the con-
struction of remedial works. In the study area, several landslide remedial works were
implemented by the regional authorities during and after the post-wildfire period, focusing
on protecting infrastructures and settlements. Remedial measures mainly consisted of
traditional engineering techniques, including typical drainage control works, slope re-
shaping, road repairing, and typical stabilization structures, such as gabion structures or
concrete retaining walls. Most of them were considered as small-scale constructions works
of fast application, aiming to either repair the damages or to control water runoff. All
remedial works were constructed according to local knowledge, availability of resources,
and materials.

It is expected that in most cases, the applied remedial works reduced the probability
of landsliding. However, the effectiveness of remedial measures in stabilizing recently
burned slopes is under research by the authors in specific landslide cases by using 2D or
3D geotechnical models. In this context, it would be interesting to incorporate into the
geotechnical model the effect of vegetation regeneration in topsoil properties as well as
the reinforcement provided by root reinforcement under the influence of heavy rainfall.
The application of soil-bioengineering techniques [81–84] presents an innovative method
for slope stabilization, which is also more compatible with the natural environment and
usually with smaller implementation and maintenance costs. Comparative analyses of the
effectiveness between traditional engineering works and soil bioengineering techniques
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can reach useful conclusions and provide guidelines towards the most effective way for
the remediation of burned slopes; thus, minimizing the danger of shallow slope failures
during the post-fire period.

5. Conclusions

This study presents a proposed empirical rainfall threshold for the possible shallow
landslide occurrence in burned areas to estimate annual probabilities for shallow land-
slide activation. It aims to contribute to the development of a novel methodology for
shallow landslide forecasting and monitoring in areas that have suffered significant natural
disasters, such as forest fires. Furthermore, it presents the relationship existing between
landslide response and rainfall, and how this is affected by the land use patterns, geological
conditions, and degree of human impact. However, the proposed methodology, as a simple
predictive model, must consider some inherent drawbacks. Even though the exceedance of
a certain rainfall threshold is necessary to landslide activation, it is not the only sufficient
factor that contributes to trigger a mass movement. Studying an area that has suffered a
significant natural disaster and under specific geological and climatic conditions, which
are among the main factors that contribute to landslide movement, represents a useful
example in the context of rainfall-induced landslide research.

Another specific objective of this research is to present the role of rainfall in landslide
hazard, especially within the concept of Climate Change. According to the Climate projec-
tion scenarios for the 21st century, the mean annual precipitation in many areas, including
Southern Europe, is projected to remain constant, but concentrated in a fewer number of
rainy days, resulting in more intense rainfall events, anticipating more frequent shallow
landslides [60].

Another outcome of this research is to provide an estimation of the annual probability
occurrence of shallow rainfall-induced landslides in relation to the Rainfall threshold (ED),
which can be applied to landslide forecasting before any remedial works are carried out.
The proposed methodology for this type of estimation is sensitive to the details of the
landslide dataset and the nature of the study area and can be greatly affected by any
remedial works. The effect of the remedial works represents a task of further research,
which is in progress by the authors in specific landslide areas by applying local geotechnical
landslide activation models under the influence of heavy rainfall.

In conclusion this study provides preliminary results at a regional scale and is a first
step for the implementation of a landslide forecasting tool in an applied form. Towards this
goal, the quantification of the rainfall patterns that act as trigger mechanisms on landslides
in a specific area is of great importance when analysis of selected landslide cases is required.
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