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Abstract: Urban fringe is an active expanding belt, indicating urban-rural interaction processes.
Previous studies have attempted to define urban fringe as the transitional area between urban and
rural areas, but there is a lack of quantitative analysis of the periphery boundaries. We developed
a novel, the Spatial Segmentation Model (SSM), to detect the extent of urban fringe via calculating
the share of the built-up land. Within the urban fringe, we statistically compared the number of
built-up patches in each direction and described four urban expanding patterns (stable, sprawling,
leaping, and mixing patterns) indicated by the empirical analysis. The results show that this model
can reliably detect the urban fringe and could reveal urban growth characteristics. We find the spatial
territory changes are highly relative with transport infrastructures in Harbin. Meanwhile, the roads
density in the urban core are higher than in the urban fringe. Especially for city roads, roads density
in the urban core is more than 4 times higher than in the urban fringe. The growth of the urban
fringe is closely related to the development of social economies as well as the space policies and
development plans designed by governments. Similar to the post-industry cities worldwide, Harbin
should take action to address population decline. Effective land-use and suitable urban growth
strategies play an important role in alleviating urban shrinkage. Thus, understanding the dynamics,
urban expanding patterns, and driving factors in the urban fringe can help us form a basis for future
urban development.

Keywords: urban fringe; landscape fragmentation; urban expansion; Harbin City

1. Introduction

Urban fringe is an active expanding belt, lying between urban landscapes and agri-
cultural hinterlands [1–3]. In most cities and regions, urban expansion has resulted in the
loss, displacement, and fragmentation of agricultural land and natural habitats [4–6]. If
this trend continues, urban expansion will lead to irreversible and unsustainable land-use
transitions [7,8]. The impacts of urban expansion first appeared in urban fringe [9]. Urban
expansion may result to landscape fragmentation in the urban peripheral areas [1,10],
presenting as increasing the number of built-up land patches and/or dividing agricultural
land or natural habitats into smaller independent patches [11–13]. This process results in
spatially heterogeneous and complex land-use configurations [14–17]. Thus, the urban
fringe is characterized by highly dynamic and spatially heterogeneous areas [18–20]. This
process takes place in fringe areas, because it’s relatively low land prices with limited

Land 2021, 10, 876. https://doi.org/10.3390/land10080876 https://www.mdpi.com/journal/land

https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-0540-3461
https://orcid.org/0000-0003-4085-6279
https://orcid.org/0000-0002-5283-8900
https://doi.org/10.3390/land10080876
https://doi.org/10.3390/land10080876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land10080876
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land10080876?type=check_update&version=3


Land 2021, 10, 876 2 of 17

transport, shopping, and entertainment infrastructure [21,22] compared to that in central
urban areas [20].

The identification of the urban fringe mainly involves two perspectives, of which
location is considered in absolute spatial positions based on land-use characteristics in the
grid, and/or in relative spatial positions. Although the definition of urban fringe mainly
describes its relative location in the urban-rural spatial territory, rather than its absolute
location [3]. Most studies have adopted landscape classification methods, combined land-
use, land use intensity, as well as other natural and human factors, from an absolute spatial
perspective. For example, Wang et al. [23] think urban fringe is a part of the urban system,
which can be distinguished as peri-urban areas and suburban areas based on the share of
built-up land and population density in each grid. Most similar studies mainly consider
urban fringe as an interface area with specific characteristics, i.e., built-up land sprawling
and subsequent agricultural land conversions [24–26]. Different from urban landscape
classifications, detecting urban fringe (regarded as a gradient zone from urban landscapes
to agricultural hinterlands) aims to explore special urban zones and then carry out special
urban management and planning strategies. Yet, few quantitative studies have focused on
detecting special urban zones, even in urban fringe, on urban-rural spatial territories.

Fortunately, the use of an urban-to-rural gradient view beyond the urban-rural di-
chotomy is a positive development in detecting urban fringes [15,27–29]. The continuous
spatial arrangement of land-use gradients can be utilized to understand landscape struc-
tures and potential land-use variations between urban and rural areas [20]. The application
has some advantages, such as minimizing subjectivity in variability measurements con-
cerning the spatial attributes of land-use patches and improving our ability to describe
landscapes characteristics [30–32]. Thus, a number of quantitative models have been
developed to detect urban fringes based on gradient variations of spatial attributes be-
tween urban and rural areas in terms of socio-economic, land-use, population density, and
natural-terrain factors [33–37]. Among these models, mutation detection of the gradient
variations in built-up land patches for housing populations and their activities are most
commonly used to characterize the divide between urban and rural areas [1,4]. Among
them, Peng et al. [38] proposed a new model, combining wavelet transform and kernel
density estimation, to delineate the boundary of the urban fringe based on land use data.
An improved model of message entropy for land-use, and/or the degree of landscape disor-
der extracted from remote-sensing imagery, have also consistently been attempted [39,40].
However, it is difficult to overcome the subjectivity inherent in defining and determining
cut-off points in regions with scattered land-use composition [1,38].

In the urban fringe, we can explore urban expanding patterns based on its internal
changes to manage them with different strategies. There are numerous empirical studies on
urban expanding patterns in the peripheral areas of big cities [36,41,42]. Feng et al. [43] has
measured the urban expanding process using integrated indicators in the urban fringe of
Jiangning (a district in Nanjing, China), which is sprawling rapidly. More comprehensively,
Sui and Lu [44] indicates the characteristics of the urban fringe in China, which varies
due to the suburbanization of foreign cities. To further explore urban expanding patterns,
studies commonly analyze the characteristics of urban expansion through calculation of
geometric parameters pertaining to built-up land; these geometric parameters include
fractal dimensions of the urban contour, compactness, shape indexes, gravity center coordi-
nates, extended intensity, extended gradient, and the extended elasticity coefficient, among
other factors [45–47]. In addition, some use the convex hull method to determine urban
expanding patterns quantitatively [48,49]. Unfortunately, the convex hull method only
considers contiguously developed urban areas and adjacent regions, thereby disregarding
the impacts of urban expansion in the gradually-transforming regions between urban and
rural areas.

This study constructs a novel approach to detect the urban fringe in Harbin City. The
main aims of this paper are: (1) to quantitatively delineate the boundary of the urban fringe
via parameterized built-up vector data, (2) to quantitatively determine urban expanding



Land 2021, 10, 876 3 of 17

patterns in the urban fringe zone according to the boundary of the urban fringe and the
number of built-up patches, and (3) to analyze the possible driving forces behind changes
in urban expanding patterns. The rest of this paper is organized as follows: in the Materials
and Methods section, we introduce the study area, data sources, and study methods
including the Spatial Segmentation Model (SSM), the maximum fragmentation boundary
(MFB), and urban expanding pattern deduction; in the Results section, we parameterize
the SSM to obtain the urban fringe boundary and identify the MFB to determine urban
expanding patterns in the urban fringe. Then we analyze the changes in urban fringe
and explore the changes and forces driving urban expansion. In the discussion section,
we discuss this new method and its potential for application. Finally, we examine the
interaction between urban fringe development, socio-economic growth, and other factors
that affect urban fringe development in Harbin.

2. Materials and Methods
2.1. Study Area

Harbin City is an important hub within the Eurasian Land Bridge and the capital of
Heilongjiang Province, lying in the eastern region of the Songnen Plain (see Figure 1). Nev-
ertheless, its economy is underdeveloped when compared with other Chinese cities, with
a built-up land growth rate of less than half the national average between 1984 and 2019
(China City Statistical Yearbook, https://navi.cnki.net/knavi/yearbooks/YZGCA/detail?
uniplatform=NZKPT/, accessed date 19 August 2021). The non-agricultural population
of municipal districts in Harbin reached 5.51 million in 2019; thus, it is classified as a big
city in China, but research focusing on its urban growth is scarce. Our study area includes
six districts comprising the urban area of Harbin City: Nangang District, Daoli District,
Daowai District, Xiangfang District, Songbei District, and Pingfang District, for which
the coordinates are 126◦8′36′′–126◦59′38′′ E, 45◦31′35′′–46◦5′38′′ N and the total area is
2451.73 km2. This work therefore provides an empirical case study on the spatial structure
of an underdeveloped northern metropolis.
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Figure 1. Study area. Harbin lies in the southern region of Heilongjiang province, which is located in
Northeastern China.

The end of a nine-year period of continuous net loss of industrial production in 2000
was an important turning point for this rust belt city [50]. Its economic upswing was driven

https://navi.cnki.net/knavi/yearbooks/YZGCA/detail?uniplatform=NZKPT/
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by a number of factors: First, the 10th, 11th, and 12th Five-Year Plans for Harbin better ar-
ranged the layout of its urban resources, including land use, industrial space, and transport
infrastructure construction [51,52]. Then, the 2002 Harbin Development Strategy Plan put
forward a five-part development strategy that included a focus on science and education,
industrial restructuring, urban functions reengineering, urban spatial structure, and flow
space upgrading. Furthermore, China’s national government proposed a transformation
and revitalization strategy for older industrial regions, including the Northeast Revital-
ization Plan, which is not only actively promoted investment in infrastructure, but also
attracted a large amount of foreign investment [53]. However, the Northeast Revitalization
Plan heavily relies on investment-driven programs [54]. Meanwhile, a large amount of
capital was invested in heavy industries and resources-oriented industries, rather than
services sectors and the information and technology industry [54]. These experiences show
major challenges in Harbin for its revitalization and urbanization process.

2.2. Data Source

We obtained remote sensing images from the Landsat 4-5 TM and Landsat 8 OLI/TIRS
sensors for the years 1991, 2000, 2010, and 2015 from the United States Geological Survey
(https://earthexplorer.usgs.gov/, accessed date 1 September 2018). To distinguish built-
up land with the aid of spectrum characteristics, we selected images with vegetation, and
without snow and clouds between June and September. Detail image information can be
found in Table 1, including the entity ID, acquisition date, data set, and spatial resolution.

Table 1. Image data information.

Year Entity ID Acquisition Date Data Set Spatial Resolution

1991 LT51180281991165HAJ00 1991-06-14 Landsat 4-5 TM 30 m
2000 LT51180282000158HAJ03 2000-06-06 Landsat 4-5 TM 30 m
2010 LT51180282010265MGR01 2010-09-22 Landsat 4-5 TM 30 m
2015 LC81180282015167LGN00 2015-06-16 Landsat 8 OLI/TIRS 15 m

We used ENVI 5.3 (http://www.esrichina.com.cn/, accessed date 1 September 2018)
to preprocess each image, which involved geometric correction, layer stacking, image color
enhancement processing, and clipping. We synthesized simulated true color (band 7, 4, 3)
and standard false color (band 4, 3, 2) images for Landsat 4-5 TM. For Landsat 8 OLI/TIRS,
we used the band 8 (full color channel) to sharpen images with the Gram-Schmidt Pan
Sharpening tool, thereby forming a standard false color (band 5, 4, 3) image with a 15 m
resolution. After these procedures, the built-up vector data was obtained by supervised
classification and visual interpretation. We compared images in different seasons and/or
years to reduce the impact of similar materials with different spectrums, or similar spec-
trums corresponding to different materials, on image interpretation. In this study, we
assumed that built-up land expansion was irreversible during urban development [55].
Parks and green spaces were classified as built-up land because they contribute to ecologi-
cal and entertainment functions within a city; this classification is also consistent with the
definition of built-up land in the “Code for classification of urban land use and planning
standards of land development” established by the Ministry of Housing and Urban-Rural
Development of the People’s Republic of China. We randomly selected 150 sampling points
of the built-up land in Google Earth that changed from non-built-up to built-up in 2015.
Comparing these sampling points with the interpreted data, we found that the accuracy of
the built-up vector data was 96% (Figure 2).

2.3. Methods

Data analysis involved three main steps (see Figure 3): (a) the Spatial Segmentation
Model (SSM) was generated to convert the built-up land data into comparably discrete
values, then we obtained the inner and outer boundaries of the urban fringe according
to the chosen threshold values; (b) the maximum fragmentation boundary (MFB) was

https://earthexplorer.usgs.gov/
http://www.esrichina.com.cn/
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calculated using buffer analysis and regression analysis; and (c) urban expanding patterns
were used to analyze urban growth evolution processes using the calculated the numbers
of built-up patches in each 10-degree section within the urban fringe, the MFB, and the
outer boundary of the urban fringe. These steps are detailed below.
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2.3.1. The SSM Development Process

The SSM was built via the procedures detailed below using Python 2.7 (https://www.
python.org/, accessed date 1 September 2018) in ArcGIS 10.3 (http://www.esrichina.com.
cn/, accessed date 1 September 2018). First, we divided the study area into 360 regular
sections around the center point of the largest built-up area. Second, using the “from-short-
to-length” concept, we drew a series of stitching line segments of length L in each direction.
Longer line segments resulted in shorter computational times and poorer accuracy, while
shorter line segments obviously led to greater computational demands but greater accuracy
and precision; we eventually selected an optimal line segment length of 50 m. Third, we
established a comparable standard, assigning a value to each line segment. The i-th value in
each direction is the intersection length (xi) between the corresponding line segment and the
built-up land vector data and is computed via Ri = xi/L× 100% (where 0 ≤ Ri ≤ 100%).
The i-th mean value was used to represent the share of built-up area in the corresponding
direction and is computed via Mi = ∑ Ri/i.

Evaluating points in each direction from the urban center, the inner boundary of the
urban fringe was defined where Mi was no less than 99.9%, while the outer boundary
was defined where Mi was no less than 50%. We obtained the outer boundary thresh-
old by comparing model results using different thresholds to actual traffic facilities and
distributions of built-up land.

However, these boundaries could not be used directly for delimiting the urban fringe
because of their irregular radial shape. Thus, we corrected the mean value in each direction
using a moving average with the formula as follows:

Pj =
(

Mj−3 + Mj−2 + Mj−1 + Mj + Mj+1 + Mj+2 + Mj+3
)
/7 (1)

where Pj is the post-corrected value in the j direction and Mj is the pre-corrected value in
the j direction.

2.3.2. Maximum Fragmentation Boundary (MFB) Identification

The MFB is defined as the boundary of the area of maximum built-up land fragmenta-
tion and represents the outer boundary of the urban fringe in the ideal state. It is based on
assumptions that the plain is homogeneous, without the influence of physical elements, and
that the built-up land fragmentation is closely related to the distance from the urban core.
Based on these three assumptions, we divided the peripheries of the urban core into three
ring bands corresponding to distance from the center point as follows: (i) built-up land
fragmentation is sensitive to and increases with distance from the urban core, consistent
with Weber’s and Christaller’s location theories [56,57]; (ii) with further distance from the
urban core, the effects on built-up land fragmentation decrease as described by “distance
attenuation theory” [58,59]; and (iii) the effects of a given urban center decrease as distance
increases until the effects from neighboring cities begin to increase.

We calculated the distance from the center point, given by the radius equivalent, using
the multiple ring buffer tool in ArcGIS 10.3 (ESRI, http://www.esrichina.com.cn/, accessed
date 1 September 2018). Then, the number of built-up patches in each buffer ring was
analyzed with a trinomial regression function to yield the MFB. The number of built-up
patches is widely used as a simple but effective method to characterize the fragment of the
spatial territory [23]. The regression analysis included two steps: (1) counting the number
of built-up patches between each buffer ring, and (2) finding the MFB based on statistical
data, which involved plotting a scatter diagram and applying a trinomial fit to the data,
where the trinomial maximum gives the MFB. We varied the buffer interval as 0.5 km, 1 km,
1.5 km, and 2 km in different years, comparing the goodness of fit (R2) for each trinomial,
then chose a trinomial fit for which the goodness of fit was closest to 1; the calculated
maximum for this best-fit trinomial represents the MFB.

https://www.python.org/
https://www.python.org/
http://www.esrichina.com.cn/
http://www.esrichina.com.cn/
http://www.esrichina.com.cn/
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2.3.3. Detecting Urban Expanding Patterns

Urban expanding patterns were used to explore forms and the extent of urban spatial
growth in each direction, and were calculated using the outer boundary of the urban fringe,
the MFB, and numbers of built-up patches. The calculations proceeded as follows. First,
the outer boundary of the urban fringe and the MFB were distributed in 360 degrees. The
difference between the outer boundary of the urban fringe and the MFB indicates the
dynamism of the urban expansion. Positive values indicate urban active expansion, while
negative values indicate relatively slower urban expansion. Then, the number of built-up
patches was calculated in each 10-degree section in the urban fringe. These values were
greater than or equal to zero, where larger numbers indicated greater degrees of built-up
land fragmentation [60–62].

According to the results, urban expanding patterns fell into four types: stable, leaping,
sprawling, and mixed. These four patterns are defined below (see Figure 4). The stable
pattern refers to relatively slow urban expansion in which the degree of built-up land
fragmentation is smaller, the difference of the boundary distance is negative, and the
number of built-up patches is lower. The leaping pattern involves active urban expansion
in which the degree of built-up land fragmentation is higher, the difference of the boundary
distance is positive, and the built-up land proportion is larger. The sprawling pattern refers
to active urban expansion with a degree of built-up fragmentation less than that of the
leaping pattern, with positive boundary differences, and a number of built-up patches that
is less than or equal to that of the leaping pattern. Lastly, the mixed pattern refers to the
coexistence of leaping and sprawling patterns in areas where it is difficult to distinguish
between the two.
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Figure 4. The framework of urban expanding patterns. The horizontal axis shows the number of
patches and the vertical axis shows the distance difference between the outer boundary of the urban
fringe and the MFB. In the horizontal axis, n is the maximal number of patches in each direction and
m is the mean number of the built-up patches in the 36 directions. The scale of the horizontal axis
is arbitrary.
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3. Results
3.1. Changes of the Urban Fringe in Harbin

The urban spatial territory has changed significantly in Harbin, which was highly
relative to transport infrastructures. Figure 5 shows the urban core and the urban fringe
in 1991, 2000, 2010, and 2015. The urban core was relatively stable during this period.
In 1991, the urban core was largely within the second ring road, which was somewhat
delineated by the road and had a “heart” shape. The urban core expanded to the second
ring road in 2000, which is roughly bordered by Qianjin Road, Hegu Street, Youyi Road,
Daxin Street, Northeast Street, South Road, Gongbin Road, Three Power Road, and Hexing
Road. From 2000 to 2015, the urban core expanded irregularly and anastomosed with
the third ring road, which was driven by traffic hubs such as the Harbin West Railway
Station, Long-Distance Bus Terminal, and Harbin East Railway Station. The changes of the
urban fringe were more significant in different directions. The urban fringe was stable and
distributed on both sides of the Harbin Ring Expressway (the fourth ring road) in both
1991 and 2000. Between 2010 and 2015, the outer boundary expanded out to the Harbin
Ring Expressway and sections surpassed the administrative boundary and spread over the
northern border of Songbei District, constituting a significant change in the outer boundary.
These changes reflected the growing effects of the Harbin urban core.

The road density’s significant variations, due to the differences in population density,
developing positioning, and spatial functions in different zones, are shown in Table 2. Due
to its intensive building footprint, the roads density in the urban core are higher than in the
urban fringe. The expressway distributes outside the urban core and 0.0 km/km2 in the
urban core, which mainly provides transportation services between urban and rural areas
as well as between different cities. For both the urban core and urban fringe, the roads
density slightly decreased during 1991–2015. Comparing values in the city roads showed
that the road density of the first-class city road in the urban core was 4.2 to 7.7 times greater
than in the urban fringe. The ratio for the second-class city road was between 4.1 and 5.5.
Due to increased transportation investment, roads in the urban core were more dense than
in the urban fringe, covering almost a third of the total area of the urban core [19,63]. The
road density of the second-class city road was twice that of the first-class city road, which
suggests that people need more short-distance roads.

Table 2. Roads density in different zones in 1991, 2000, 2010, and 2015.

Urban Core Urban Fringe

1991 2000 2010 2015 1991 2000 2010 2015

Railway 0.18 0.17 0.16 0.15 0.09 0.08 0.07 0.06
Expressway 0.00 0.00 0.00 0.00 0.71 0.77 0.64 0.66
State Road 0.59 0.44 0.39 0.46 0.49 0.52 0.42 0.39
City Roads 32.26 30.66 29.09 28.12 7.79 6.11 4.99 4.55

First-class 11.28 10.83 10.62 10.54 2.71 2.07 1.62 1.38
Second-class 20.98 19.83 18.46 17.58 5.08 4.03 3.37 3.17

Note: Roads density is the ratio of the total area of roads in a certain area (km/km2). Roads data for Harbin, expressed as a vector line,
includes railways, expressways, state roads, and city roads (https://www.amap.com, accessed date 30 March 2021). City roads were
merged into two classes in our study. Except for the first-class roads, other classes in the original dataset were merged into the second-class
category. The width of railways, expressways, state roads, first-class city roads, and second-class city roads was calculated to be 5 m, 22.5 m,
24.5 m, 30 m, and 16 m, respectively.

https://www.amap.com
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Figure 5. Changes to the Harbin urban fringe in 1991, 2000, 2010, and 2015. The tags in the sub-figures, i.e., (a–d), are the
urban fringe in 1991, 2000, 2010, and 2015, respectively.

3.2. Changes of Urban Expanding Patterns

The ideal outer boundary of the urban fringe, referred to as MFB, expanded during
1991–2015. The supported materials can be found in Supplementary Materials, Figures S1–S4,
and Table S1. In 1991 and 2000, the radius between the MFB and the center point were
16.5 km, with a buffer interval of 1.5 km (R2 values are 0.837 and 0.835, respectively. See
Table S1). Meanwhile in 2010 and 2015, the radius between the MFB and the center point
were 18 km, with buffer intervals of 1.5 km and 2 km, respectively (R2 values are 0.783 and
0.797, respectively. See Table S1). These radii were close to the planned inner circle (with
radii of 20 km) of the urban system in the Harbin 12th Five-Year Plan. In other words, the
Harbin 12th Five-Year Plan had a major influence on Harbin’s urban development.
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The urban expanding pattern indicates the built-up land pattern in different directions.
Figure 6 shows Harbin’s expanding patterns varying from 0 degrees to 360 degrees, by
overlaying the outer boundary of the urban fringe, the MFB, the difference of distance,
and the number of built-up patches. To capture these pattern conversions, we divided
the map into different sections based on the dimension degrees. The 0–140 degree points
cover Daowai and Songbei Districts, which showed various expanding patterns. The
south part of Songbei District distributed between 140 degrees and 190 degrees showed a
stable pattern. The areas from 200 degrees to 360 degrees cover Daoli, Nangang, Pingfang,
and Xiangfang Districts, which mainly showed a mixed pattern. That is because Harbin
West Railway Station, Harbin South Railway Station, Gongbin road, and Hacheng Road
contributed to the conversion of surrounding lands into built-up land. Moreover, Harbin
development strategies are defined according to urban expanding patterns, which implies
these changes.

Changes of urban expanding patterns in different directions and the distribution
of built-up land indicate urbanization trajectories, which can be found in Figure 7. The
proportion of stable pattern was 5/12 in 1991, 4/12 in 2000, 3/12 in 2010, and 3/12 in
2015. Correspondingly, the proportion of leaping patterns was 17/36 in 1991, 14/36 in
2000, 11/36 in 2010, and 10/36 in 2015. Obviously, stable patterns and leaping patterns
decreased during this rapid urbanization period, indicating that built-up land sprawled
out. In the 60–180 degrees sections, the built-up land was stable during 1991–2000, and
obviously increased during 2000–2010, because the Songhua and Ashi Rivers run through
Songbei and Daowai Districts. In the 180–230 degrees section, sprawling and leaping
patterns coexisted. The leaping pattern decreased and those with sprawling patterns
increased; the main reason for these changes was the increase in built-up land along both
sides of the Airport Express to Harbin Taiping Airport. In the 230–330 degrees section,
four urban expanding patterns coexisted. The leaping pattern dominated in 1991, and
then was gradually replaced by the sprawling pattern. Traffic nodes and routes played
a leading role in these changes. Harbin West Railway Station and Harbin South Railway
Station both contributed to conversion of surrounding lands into built-up land. South
of Harbin, built-up land sprawled under the impact of Hashuang Road, Beijing-Harbin
Expressway, and Haping Road. In the 330–60 degrees section, the stable and sprawling
patterns converted to mixed patterns between 1991 and 2015. Gongbin Road and Hacheng
Road provided conditions well suited to the expansion of built-up land.
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Figure 6. The distribution of urban expanding patterns in the Harbin urban fringe. The tags in the sub-figures, i.e., (a–d),
are the distribution in 1991, 2000, 2010, and 2015, respectively. In each sub-figure, α indicates a stable pattern, β indicates a
sprawling pattern, χ indicates a leaping pattern, and βχ indicates a mixed pattern comprised of sprawling and leaping
patterns. m is the mean number of built-up patches in each direction. MFB is the maximum fragmentation boundary. In
each year, the upper sub-figure shows the difference of distance between the MFB and the boundary of the urban fringe in
each year. The lower sub-figure shows the distance from each urban zone to the city center point.
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Figure 7. Urban expanding pattern changes in different directions. The tags in the sub-figures, i.e., (a–d), are the distribution
in 1991, 2000, 2010, and 2015, respectively. In the sub-figures, α indicates a stable pattern, β indicates a sprawling pattern, χ
indicates a leaping pattern, and βχ indicates a mixed pattern comprised of sprawling and leaping patterns. M is the mean
number of built-up patches in each direction.

4. Discussion
4.1. The Model of Detecting Urban Fringe

The aim of detecting the Harbin urban fringe was to guide and regulate the density
and intensity of built-up land, which is guided by the Land Spatial Plan and Urban Plan.
Furtherly, detecting the urban expanding patterns in the urban fringe helps to protect
agricultural land and natural habitat from needing special manage strategies. Our results
demonstrate that the Harbin urban fringe can be characterized by ring-patterned expansion.
Considering different types of expanding patterns in different directions, governments
should adopt different management strategies accordingly.

Harbin, with its mono-centric characteristics, is similar to Shenyang and Changchun,
the other two capital cities in Northeastern China, although Shenyang and Changchun
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generally had higher urban growth rates and became compact earlier than Harbin [64].
Because our model is based on the urban spatial territory of a mono-centric city, it is of
great value to growing cities with mono-centric expansion patterns. In contrast to the cities
in the Yangtze River Delta [47,65,66], Shijiazhuang and other smaller mono-center capital
cities in Northern China are suitable for applying our model to analyze urban expanding
trajectories [67]. Although some geometric parameters of built-up land can also be used to
describe characteristics of urban expansion, they cannot explain the directionality of urban
growth [64,68]. Thus, this model is widely applicable and can reveal characteristics of urban
growth, including expanding patterns in different directions and spatial growth extents.

The approach developed in this study has some advantages and disadvantages. First,
the SSM uses the vector data of built-up land, which is more convenient for calculating
characteristics in different directions than raster data [69]. Thus, the results of the SSM can
clearly reflect the directionality of urban development. Second, despite some subjectivity in
determining boundary thresholds, boundary determination is very practical for cities with
a scattered distribution of built-up land. Meanwhile, we determined land fragmentation
based on the number of built-up patches in each buffer ring due to a technique limitation,
without considering the size of the built-up land. In further research, it would be beneficial
to construct a built-up land fragmentation index system based on the distribution, size,
and number of built-up patches. At same time, supervision classification and visual
interpretation are less convenient than the methods for impervious surface mapping to
obtain built-up land data [70]. Because the SSM is a static research model and the spatial
extent of the urban fringe varies with urban growth, research on changes in urban fringe
area requires analysis of multiple data periods. Lastly, the urban fringe is a transitional
region and thus should be delineated by characteristics of flow elements, such as traffic
flow, information flow, and population flow, which are also the spatial linkages between
urban and rural areas.

4.2. Expanding Trends and Driving Factors in Urban Fringe

Urban fringe changes in Harbin were closely related to socio-economic growth. During
1991–2000, the urban fringe was in a stable state, with an unchanging spatial range and
urban expanding patterns shifting from leaping to mixed patterns. During 2000–2015,
the spatial position of the urban fringe moved to the southwest and the spatial range
increased rapidly. Meanwhile, the built-up area sprawled gradually and took on a more
irregular shape.

Urban expanding patterns in Harbin were largely affected by the space policy and
development plan. The development plan aim to optimize urban resource allocation,
including land use, industrial space, and transportation and other infrastructure construc-
tion. Therefore, Harbin has formed a “two-axis, four-ring, and ten-radial” traffic network.
Such traffic facilities offer great convenience for constructing economic zones, especially
the Haxi New Zone, Qunli New Zone, Xuefu Young Town, Songbei New Town, Songpu
Industrial Zone, Hannan Industrial New Town, and Hadong Industrial Zone. Meanwhile,
functionality in each zone has been improved. Industry lies mainly in southern areas,
farming in northern areas, and business and administration in western and eastern areas.
These spatial patterns in Harbin will exist well into the future and continue to be optimized.

The characteristics of Harbin’s spatial territory vary from the urban core to the urban
fringe. The roads densities in the urban core are higher than in the urban fringe, which
appears in many cities worldwide [71,72]. Unlike the sub-urbanization trends in many
cities in developed countries, such as population density on built-up land in peri-urban
area only being half the density of urban areas in Europe [5], the Chinese government has
implemented several policies for urban development. For example, land acquisition in
urban fringe areas, the metropolitan development plan, and investment guidance provide
conditions for settling populations in each spatial zone [72,73]. Thus, the urban core has
gathered a large amount of real estate investment in China during 1991–2015 [72,74]. Due
to the real estate boom in China during this period [74], our results show that roads density
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and built-up land density in the urban core are far beyond the urban fringe. Similar to
Detroit, Leipzig, and other shrinking cities, as well as other cities in Northeastern China,
Harbin is facing a more and more serious population decline, which has a huge impact on
its urbanization process and patterns [23,75,76]. Therefore, promoting “inventory planning”
instead of “incremental planning which needs effective land-use and suitable urban growth
strategies in Harbin, as well as in other shrinking cities in China at present, plays an
important role in alleviating urban shrinkage for future development [77,78].

5. Conclusions

This study has developed a novel model, the Spatial Segmentation Model (SSM), to
detect the urban fringe that was applied in Harbin city. We found that spatial territory
changes were highly relative to transport infrastructures in Harbin. Meanwhile, the roads
density in the urban core was higher than in the urban fringe. Especially for city roads, the
roads density in the urban core was more than 4 times greater than in the urban fringe.
Furthermore, urban expanding patterns were calculated based on the outer boundary of
the urban fringe, the MFB, the difference of distance, and the number of built-up patches,
which indicates the built-up land pattern in different directions. We found that the growth
of the urban fringe is closely related to the development of social economies, as well as the
space policies and development plans designed by governments. Because the relationship
between the growth of the urban fringe and the development of social economies in Harbin
is mainly summarized from qualitative understandings, further research in any regions of
the world would be welcomed. Similar to post-industrial cities such as Detroit, Leipzig, and
other shrinking cities, Harbin should take action to reduce population declines. Effective
land-use and suitable urban growth strategies play an important role in alleviating urban
shrinkage. Thus, understanding the dynamics, urban expanding patterns, and driving
factors in the urban fringe can help us form a basis for future urban development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/land10080876/s1, Figure S1: The distribution of the number of patches in 1991 with different
buffer intervals, Figure S2: The distribution of the number of patches in 2000 with different buffer
intervals, Figure S3: The distribution of the number of patches in 2010 with different buffer intervals,
Figure S4: The distribution of the number of patches in 2015 with different buffer intervals, Table S1:
The fitting function and R2 summary.
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