
land

Review

Urban Heat Island and Its Regional Impacts Using Remotely
Sensed Thermal Data—A Review of Recent Developments
and Methodology

Hua Shi 1,* , George Xian 2, Roger Auch 2, Kevin Gallo 3 and Qiang Zhou 1

����������
�������

Citation: Shi, H.; Xian, G.; Auch, R.;

Gallo, K.; Zhou, Q. Urban Heat Island

and Its Regional Impacts Using

Remotely Sensed Thermal Data—A

Review of Recent Developments

and Methodology. Land 2021, 10, 867.

https://doi.org/10.3390/land10080867

Academic Editors: Sara Venafra,

Carmine Serio and Guido Masiello

Received: 17 July 2021

Accepted: 11 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ASRC Federal Data Solutions (AFDS), Contractor to the U.S. Geological Survey (USGS) Earth Resources
Observation and Science (EROS) Center, Sioux Falls, SD 57198, USA; qzhou@contractor.usgs.gov

2 U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center,
Sioux Falls, SD 57198, USA; xian@usgs.gov (G.X.); auch@usgs.gov (R.A.)

3 Center for Satellite Applications and Research, National Oceanic and Atmospheric
Administration (NOAA)/NESDIS, College Park, MD 20740, USA; kevin.p.gallo@noaa.gov

* Correspondence: hshi@contractor.usgs.gov; Tel.: +1-605-594-6050

Abstract: Many novel research algorithms have been developed to analyze urban heat island (UHI)
and UHI regional impacts (UHIRIP) with remotely sensed thermal data tables. We present a com-
prehensive review of some important aspects of UHI and UHIRIP studies that use remotely sensed
thermal data, including concepts, datasets, methodologies, and applications. We focus on reviewing
progress on multi-sensor image selection, preprocessing, computing, gap filling, image fusion, deep
learning, and developing new metrics. This literature review shows that new satellite sensors and
valuable methods have been developed for calculating land surface temperature (LST) and UHI
intensity, and for assessing UHIRIP. Additionally, some of the limitations of using remotely sensed
data to analyze the LST, UHI, and UHI intensity are discussed. Finally, we review a variety of
applications in UHI and UHIRIP analyses. The assimilation of time-series remotely sensed data
with the application of data fusion, gap filling models, and deep learning using the Google Cloud
platform and Google Earth Engine platform also has the potential to improve the estimation accuracy
of change patterns of UHI and UHIRIP over long time periods.

Keywords: urban heat island; UHI regional impacts; non-urban areas; remote sensing; thermal band;
UHI intensity

1. Introduction

Urbanization is known to have substantial impacts on landscapes and ecosystems [1–4],
and urban inhabitants are expected to reach 70% of the world population by 2050 [5]. More-
over, the nature of urban development has been changing from a single city model to a
group of cities (urban agglomeration) worldwide. Urban heat island (UHI), urbanization,
and climate change are increasingly interconnected, resulting in several environmental
consequences (such as heat stress, biodiversity loss, fire risk, warming water due to run
off, and diminished air quality) at both local and regional levels [2,6–9]. Such UHI related
impacts are also called UHI regional impacts (UHIRIP). Generally, UHI research includes
data from two major sources: air temperature data that are observed by weather or climate
stations and remotely sensed data to observe UHI through land surface temperature. Be-
fore the availability of remotely sensed data, UHI was widely observed in the field, with
the first scientific observation of UHI in 1833 [10]. Field observations of UHI continue
to be a critical source of training and validation data [11,12]. These observations, along
with modeling studies, continue to help unravel the factors that are responsible for UHI
development, and are providing a basis for the development and application of sustainable
adaptation strategies. Communicating scientific knowledge quickly and effectively of UHI
and UHIRIP to architects, engineers, scientists, and planners could help inform urban
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design and decision making. Remotely sensed data have been used to observe UHI and
UHIRIP on environments, ecosystems, human health, and economics in urban and non-
urban areas for decades. Remote sensing offers the benefits of long data archives, repeated
observations, efficiency, and multiple temporal and spatial resolutions. UHI studies using
remotely sensed data have been published for hundreds of cities worldwide [6,7,13–19].
Remotely sensed data provide highly efficient, long-term, and broad-scale information
for assessing UHIRIP. However, studies integrating high spatial resolution imagery (e.g.,
Landsat at 30 × 30 m and ECOSTRESS at 70 × 70 m) from multiple sensors to evaluate UHI
and UHIRIP across a time series have been uncommon. Challenges to such studies include
image frequency and calibration, cloud contamination, and the need for large storage
and high-performance computing capabilities [20,21]. Early generations of broad-scale
UHI assessment using remote sensing often poorly represented the spatial and tempo-
ral variance in UHI, especially at the urban and non-urban interface. As the resolution
of algorithms and satellite imagery improved and interest in UHIRIP grew, researchers
sought better representations of UHI. Initially, this took the form of modifications based
on surface physical characteristics such as roughness length, albedo, thermal conductivity,
and thermal diffusivity [22,23]. Many studies have been conducted to understand the
urban thermal climate or the potential for heat island mitigation using this framework of
simplified algorithms [24–26]. In more recent efforts, researchers have incorporated more
sophisticated parameterization schemes that have included distributions of demography,
policies, and behavior of government; ecological variables and ecosystem services; land
use and land cover change (LULCC) patterns; and social and economic factors to represent
the complicated impacts of UHI [27–36].

Historically, the study of UHI using remote sensing data, often Landsat data, was
mainly based on comparing images at two different times using the bitemporal ap-
proach [37–39]. Although the bitemporal approach is mathematically simple and does
not need large amounts of data, it is less useful than a time series approach that is able
to provide a more comprehensive understanding of the complexity of UHI. Most early
research [17,40–42] in UHI focused on cities or urban areas, and often ignored the urban
and non-urban interface at regional scales. In recent decades, the cost of data storage has
dramatically decreased, and we have witnessed an overwhelming increase in computing
power and open source software that provide the foundations for time series analysis using
higher resolution thermal data from satellite archives. Some studies used Landsat time
series to detect historical changes [20,43–46], but few have focused on UHI and its interac-
tion with land use and land cover (LULC) dynamics. A research team at the USGS Earth
Resources Observation and Science (EROS) Center recently developed the Land Change
Monitoring, Assessment, and Projection (LCMAP) project [47], which is produced with
Landsat Analysis Ready Data (ARD) [48] and land surface temperature (LST) data. LCMAP
data provide the potential to use Landsat LST data to analyze UHI in urban agglomerations,
as well as the urban and non-urban interface at local, regional, and global scales.

This paper reviews remote sensing thermal data sources and the most up-to-date
methods used for UHI and UHIRIP investigations. We start by defining UHI, UHII (UHI
intensity), regional impacts, urban and non-urban interface, and remotely sensed data
sources for LST. We then describe the major distinct approaches that have been used to
estimate the magnitude, spatial distribution, intensity, and change pattern of UHIRIP in
urban agglomerations and at different urban and non-urban interfaces. Our primary goals
in this review are to describe (1) a brief historical summary in the research of UHI and
UHIRIP, (2) major thermal data sources and methods used in UHI and UHIRIP research,
(3) algorithms used in UHI and UHIRIP analysis, and (4) future research perspective and
potential direction. Following the introduction, we discuss the development of UHI and
UHIRIP in Section 2; in Section 3, we focus on the application of the remotely sensed
thermal datasets in UHI and UHIRIP; we review the algorithms for UHI and UHIRIP
in urban and non-urban interface studies based on remotely sensed data in Section 4; in
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Section 5, we summarize UHI and UHIRIP based on remotely sensed data; and in Section 6,
future research directions are discussed.

2. Development of UHI and UHIRIP Analysis

Most satellite-based investigations of UHIs can be summarized into five main objec-
tives: (1) to examine the spatial features of urban thermal patterns and change dynamics
and their relations to urban surface characteristics; (2) to study urban surface energy bal-
ances through coupling with urban climate models, including simulation and projection;
(3) to study the relations between atmospheric heat islands and surface UHIs through
combining coincident remote and ground-based observations; (4) to develop approaches
to reduce the magnitude of the UHI and its regional impacts; and (5) to study the UHI
effects on ecosystem security at a regional level. Several important reviews, bibliographies,
and summaries on UHIRIP using remotely sensed data have been published (see list and
descriptions in Table 1). These reviews have concentrated mostly on the various world-
wide perspectives of UHI, including the definition of fundamental concepts, summary
of methods, applications, exploration of output characteristics, outlines of key research
findings, and potential future directions (Tables 2 and 3). The focus of this paper is on
the algorithms and methods used in studies employing remote sensing thermal data for
UHI and UHIRIP investigation, and future directions in this realm. We summarize (1) the
disadvantages of using limited time remotely sensed data for UHI and UHIRIP analysis;
(2) the limitations of data shortages due to cloud cover and satellite revisit intervals; (3) the
applications of gap filling, data fusion, and deep learning; and (4) the trade-offs between
high temporal frequency data (MODIS) and high spatial resolution (Landsat) time series.

Table 1. Example of main reviews, bibliographies, and summaries on UHI and UHIRIP using remotely sensed data.

Reference Topics Sensors Measurements

Hall et al. [11]
Satellite remote sensing of surface energy
balance success, failures, and unresolved

issues in field experiment (FIFE)
Landsat, SPOT Thermal

Gallo et al. [13] Assessment of urban heat islands: A
satellite perspective

AVHRR,
Landsat MSS Thermal

Voogt and Oke [6] Thermal remote sensing of urban climates Multiple, review Thermal

Weng and Larson [49] Satellite remote sensing of urban heat islands:
current practice and prospects Multiple, review Thermal

Jiang et al. [50]
Land surface emissivity retrieval from

combined mid-infrared and thermal infrared
data of MSG-SEVIRI

Meteosat Second
Generation (MSG)

Spinning Enhanced Visible
and Infrared

Imager (SEVIRI)

Kalma et al. [51]
Estimating land surface evaporation: A

review of methods using remotely sensed
surface temperature data

Multiple, review Thermal

Racoviteanu et al. [52]
Optical remote sensing of glacier

characteristics: a review focusing on
the Himalaya

ASTER Indices

Rizwan et al. [53] A review on the generation, determination,
and mitigation of urban heat island Review Determination of UHI

Weng [7]
Thermal infrared remote sensing for urban

climate and environmental studies: Methods,
applications, and trends

Multiple, review Thermal

Bowler et al. [31] Urban greening to cool towns and cities: A
systematic review of the empirical evidence Review Synthesis analysis

Sailor [54]
A review of methods for estimating

anthropogenic heat and moisture emissions
in the urban environment

Review Bibliometric profile

Li et al. [55] Satellite-derived land surface temperature:
current status and perspectives Multiple, review Thermal
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Table 1. Cont.

Reference Topics Sensors Measurements

Ngie et al. [56] Assessment of urban heat island using
satellite remotely sensed imagery: A review Multiple, review Thermal

Rasul et al. [16] A review of remote sensing of urban heat
and cool islands Multiple, review Thermal

Huang and Lu [57] Urban heat island research from 1991 to 2015:
A bibliometric analysis Review Bibliometric profile

Zhang et al. [58]
A bibliometric profile of the remote sensing

open access journal published by MDPI
between 2009 and 2018

Multiple, review Bibliometric profile

Deilami et al. [59]
Urban heat island effect: A systematic review

of spatio-temporal factors, data, methods,
and mitigation measures

Multiple, review Thermal

Zhou et al. [60]
Satellite remote sensing of surface urban heat

islands: Progress, challenges,
and perspectives

Multiple, review Thermal

Becker and Zhao-Liang [61]
Surface temperature and emissivity at

various scales: definition, measurement, and
related problems

Multiple, review
Thermal (surface

temperature
and emissivity)

Dash et al. [62]
Land surface temperature and emissivity

estimation from passive sensor data: theory
and practice current trends

Multiple, review
Thermal (surface

temperature
and emissivity)

Table 2. Examples of research publications investigating UHI and UHIRIP using remotely sensed data.

UHI Applications Example of Research

Classification with LST,
index, albedo

Miles and Esau [63], Trlica et al. [64], Bonafoni [65], Wong and Nichol [66], Jin [67], Wu et al. [68],
and Hu and Brunsell [69]

Regression models,
geostatistical analysis

Zhang and Du [70], Wicki and Parlow [71], Dai et al. [72], Song et al. [73], Sellers et al. [74],
Du et al. [75], Shahraiyni et al. [76], Chun and Guldmann [77], Ho et al. [78], and Lai et al. [79]

Multiple sensors,
data fusion

Huang and Wang [80], Li et al. [81], Berger et al. [82], Liu et al. [83], Fu and Weng [84], Liang and
Weng [85], and Dousset and Gourmelon [86]

Machine learning,
decision support

information system

Chakraborty and Lee [87], Mpakairia and Muvengwi [88], Zhang et al. [89], Tran et al. [90],
Shahraiyni et al. [76], Weng and Fu [91], Mallick et al. [92], Connors et al. [93], Wentz et al. [94],

Xian and Crane [95], Wilson et al. [96], and Xian et al. [97]

Table 3. The temporal frequency and spatial resolution of the main remotely sensed thermal data.

Sensor Temporal Frequency (day) Spatial Resolution (m)

Landsat 5 TM 16 120 (resampled to 30)
Landsat 7 ETM+ 16 60 (resampled to 30)
Landsat 8 TIRS 16 100 (resampled to 30)
Terra ASTER 15 90
Terra MODIS 1 1000
Aqua MODIS 1 1000

NOAA-AVHRR 1 1000
VIIRS 1 750

ECOSTRESS Various (randomly, 0.5) 70

2.1. Urban Heat Island

UHI studies have been conducted for over 200 years, since the first conceptualization
by Luke Howard in 1818 [98]. Generally, an urban heat island (UHI) is an urban area or
metropolitan area that is significantly warmer than its surrounding rural areas because of
human activities. The temperature difference is usually greater at night than during the day
and is most apparent when winds are weak. Some research [99,100] shows that the annual
mean air temperature of a city with 1 million people or more can be 1–3 ◦C warmer than its
surroundings. In the evening, the difference can be as high as 12 ◦C. Heat islands can affect
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communities by increasing the summertime peak energy demand (such as air conditioning
costs), air pollution and greenhouse gas emissions, heat-related illness, and mortality, and
decreasing water quality and ecosystem security. Higher temperature “domes” are created
over an urban or industrial areas by hot air layers forming at building-top or chimney-top
level. This dome is about 5 ◦C to 7 ◦C warmer than the air above it and the ground level
temperature, and can trap all polluting emissions within its confines (see also temperature
inversion [53,57]).

The large amount of heat generated from urban structures and pavements, as they
absorb and re-radiate solar radiation, as well as the heat from other anthropogenic sources,
are the main causes of UHI. These heat sources increase the temperatures of an urban area
compared with its surroundings, which is known as UHI intensity (UHII). Traditionally,
regardless of the methodology employed, whether it refers to (1) differences between
two fixed observatories, one urban and another peripheral or non-urban; (2) mobile urban
transects; or (3) remote sensing analysis, UHII provides a value of thermal differences
between contrasted points, sectors, or areas, one urban and another that could be termed
non-urban. Thus, the intensity of the UHI is seen in the temperature difference expressed
at a given time between the hottest sector (areas) of the city and the surrounding non-urban
space. The intensity of the heat island is the simplest and most quantitative indicator of the
thermal modification imposed by the city upon the territory in which it is situated and of
its relative warming in relation to the surrounding rural environment. The intensity could
be defined for various time scales and geographical locations [101,102].

2.2. The Study of the Spatial Structure of Urban Thermal Patterns, Change Dynamics, and Their
Relation to Urban Surface Characteristics

Based on the fractional theory of ecology [103,104], the spatial structure of urban
thermal patterns and temporal change dynamics can be studied in two and three dimen-
sions. Figure 1 shows an example of the UHI and UHIRIP profile in Sioux Falls, South
Dakota, USA, and the surrounding area, derived from Landsat ARD LST over different
land cover classes [97]. The study of temporal change in UHI can include multiple scales
of change, including daily, day and night, monthly, seasonal, yearly, and long-term time
series. The physical mechanisms driving UHI are well documented [28]. UHIRIP may
be described in multiple ways with various methodological approaches to investigate
each type; specifically, it can impact the ground, the surface, and various heights in the
air [105,106] at a regional scale. Different pictures arise for each type of UHI when mea-
sured by different methods. Tam et al. [107] suggested that the magnitude of total change
in day to day temperature variability can be used to decide a suitable urban/rural pair
for any urbanization impact study. Generally, the UHI at a regional scale is best measured
using remotely sensed data with one or multiple thermal bands. When explaining the
character of remotely sensed UHI, Roth et al. [108] assert, “satellite-derived surface heat
islands are in a separate class and it is not clear that they will match others measured by
more conventional means in the urban canopy layer or the urban boundary layer”. Their
precautionary statement relates in part to the surface “seen” by remote sensing platforms
that depend on altitude and the camera or sensor angle. Imagery collected at nadir and/or
high altitude primarily consists of rooftops, streets, crop fields, and vegetation canopies.
Observations from lower heights at oblique angles consist of items seen from a bird’s-eye
perspective plus varying degrees of vertical features in the landscape, such as the walls of
buildings. As a result, angle can have a large influence on the urban surface temperatures
recorded by airborne and spaceborne thermal infrared sensors [109]. Another concern
regards mixed pixels (i.e., individual pixels containing surfaces having different physical
properties, depending on the spatial resolution of the data), which can complicate im-
age analysis. This is especially true for thermal sensors aboard satellites, because most
have a spatial resolution that is coarser than the other spectral bands on the satellite. The
typical variation of urban surface properties also complicates thermal sensors. A final
consideration when using remotely sensed imagery involves correcting for atmospheric
attenuation. For many applications, these issues are far outweighed by remote sensing’s
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benefits. With high spatial resolution thermal data, these issues can typically be resolved.
Additionally, from a macro research perspective, remotely sensed thermal data have the
major advantage of investigating UHI and UHIRIP at a broad scale, permitting focus on
environmental issues in urban agglomerations and surrounding areas, and at urban and
non-urban interfaces.
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2.3. Simulation and Projection of UHI and UHIRIP

Applying theories of landscape ecology [104], UHI studies focus on moving from
static spatial structures of urban thermal patterns to the change dynamic of spatial patterns
and processes of urban thermal characteristics. The spatial structure of UHI patterns
determines the processes of UHI impacts. Li et al. [110] simulated the urban climate of
various generated cities under the same weather conditions. By studying various city
shapes, they generalized and proposed a reduced form to estimate UHI intensities based
only on the structure of urban sites, as well as their relative distances. They concluded that
in addition to the size, the UHI intensity of a city is directly related to the density and the
amplifying effect that urban sites have on each other. Their approach can serve as a UHI
rule of thumb for the comparison of urban development scenarios. Ramírez-Aguilar and
Lucas Souza [111] present a study based on the relationship between UHI and population
size (p) by considering the population density (PD) and the urban form parameters of
different neighborhoods in the city of Bogotá, Colombia. They concluded that urban form,
expressed by land cover and urban morphology changes caused by population density, has
a great effect on temperature differences within a city. Advances in computing technology
have fostered the development of new and powerful deep learning techniques that have
demonstrated promising results in a wide range of applications. In particular, deep learning
methods have been successfully used to classify remotely sensed data collected by Earth
observation instruments [112]. Deep learning algorithms, which learn the representative
and discriminative features in a hierarchical manner from the data, have recently become
a hotspot in the machine-learning area, and have been introduced into the geoscience
and remote sensing community for remotely sensed big data analysis [113]. With climate
change, the simulation and projection of UHI and its regional impact by using computer
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technology (deep learning) and remotely sensed data are becoming more important for
urban planning and policy makers.

2.4. Challenges for Land Surface Temperature and Emissivity Retrieval (Separation)

Land surface temperature and emissivity are two important surface parameters that
can be derived from remotely sensed data after atmospheric correction [114–116]. Besides
radiometric calibration and cloud detection, two main problems need to be resolved in
order to obtain land surface temperature and emissivity values from various satellite
sensors. These problems are often referred to as land surface temperature and emissivity
separation (TES) from radiance at ground level, and as atmospheric corrections in the
literature [117,118]. Reliable retrieval of urban and intra-urban thermal characteristics
using satellite thermal data depends on accurate removal of the effects of atmospheric
attenuations, as well as angular and land surface emissivity. In the thermal infrared
of remotely sensed data, the emission of the targets is dominant when compared with
the reflection, and this radiation is a function of two unknowns—the emissivity and the
temperature of the target [119]. The temperature and emissivity separation is complex
because of the existing non-linear relationship between temperature and radiance. The
complex dynamics of these relationships within the target (atomic level) propagates in
a cascade effect, reflecting variations in determining emissivity. Mohamed et al. [117]
reviewed details of LST and land surface emissivity (LSE) retrieval methods and their
potential for adoption in medium spatial resolution, including ASTER and Landsat. The
review further comments on spatial and temporal prospects of effective intra-urban surface
thermal mapping. They also suggested future development of land surface temperature
and emissivity estimation for UHI assessment. Li et al. [120] described the theoretical basis
of LSE measurements and reviewed the published methods. They also categorized these
methods into (1) (semi-) empirical or theoretical methods, (2) multi-channel temperature
emissivity separation (TES) methods, and (3) physically based methods (PBMs). Then,
they discussed the validation methods that are important for verifying the uncertainty
and accuracy of retrieved emissivity. Finally, the prospects for further developments are
given. These studies provided a forum for assessing what had been achieved by the UHI
community over four decades, and what needs to be done in the near future. It is clear that
the observation, experiments, and algorithm development efforts, although completely
worthwhile for scientists, need to deliver various datasets, especially from remotely sensed
data to modelers working in the areas of UHI and UHIRIP at local, regional, and global
levels. A lot of basic theoretical research and scientific verification work has been done on
scale issues, as well as scaling issues including emissivity and temperature measurements
related to remote sensing standards [121]. All of the methods described in Rolim et al. [119]
represent the largest and main part of the existing methods of temperature and emissivity
separation developed in the last four decades, but further research is necessary for more
precise methods that are less susceptible to errors during the separation of these variables.

2.5. The Relationship between Atmospheric Heat Islands and Surface UHI through Combining
Coincident Remote Sensing and Ground-Based Observations

Generally, UHI data are obtained from one of two sources—weather stations and
remote sensing. Remotely sensed data have been used to observe how UHI impacts climate
change in urban and non-urban areas for decades because of the multiple temporal and
spatial resolutions of remotely sensed datasets. Hundreds of published studies explore
UHI and its impacts by using these two data sources, but the relationship between air tem-
perature obtained from field stations and surface temperature derived from remote sensing
remains unclear. Wang et al. [122] investigated the relationship of canopy UHI (CUHI)
and surface UHI (SUHI) using four observations per day, without temporal averaging, in
four different cities in two different global regions, with 201 of 2232 CUHI–SUHI pairs
exhibiting significant UHI differences in their spatial distributions and intensities. The
results indicate that 81.09% of the UHI differences occurred during the daytime and were
caused by local air advection related to wind speed ≥2 m/s and land surface conditions
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in the study areas. They concluded that a joint analysis of CUHIs and SUHIs should be
conducted to characterize urban thermal environments, and that current urban planning
procedures should integrate these UHI differences to develop effective mitigation strategies
and adaptation measures. The combination of both types of UHI sub-components provides
added value for quantifying urban thermal environments, which can assist in developing
effective mitigation strategies and adaptation measures. A growing trend is to combine the
two methods, both with their own advantages [59].

2.6. Develop Controlling Approaches for UHI and UHIRIP

UHIs occur when cities replace other land covers with dense concentrations of pave-
ment, buildings, and other surfaces that absorb and retain heat. This effect increases energy
costs (e.g., for air conditioning), air pollution levels, and heat-related illness and mortality.
UHI results from increases in built-up surfaces in urban areas, whereas increasing vege-
tation cover and water surfaces within cities or urban agglomerations could improve the
urban ecological function and thereby improve urban environments for humans [123]. The
importance of optimizing urban LULC planning and the development of UHI mitigation
methods is increasing. Progress has been made to this end [67,124,125], with the devel-
opment of UHI mitigating technologies [126]. Ulpiani et al. [127] reviewed an infrared
emissivity dynamic switch against overcooling, which is aimed at collecting state-of-the-
art technologies and techniques to dynamically control the heat transfer to and from the
radiative emitter and to ultimately modulate its cooling capacity using spacecraft thermal
control, thermal camouflage, and electronics. This work discussed prominent pathways
toward technically and economically effective integration in the built environment for UHI
and UHIRIP.

2.7. UHI and UHIRIP on Socioeconomics and the Urban Ecosystem
2.7.1. Impacts on Human Health

Climate change, increasing urbanization, and an aging population in much of the
world are likely to increase the risks to health from UHI, particularly from heat expo-
sure. Additionally, increased urbanization has resulted in a more extensive UHI effects,
causing more frequent and intense heat waves in urban regions compared with rural
locales [67,128,129]. In urban and surrounding areas, heat waves will be exacerbated by
the UHI effect and will have the potential to negatively influence the health and wel-
fare of residents. Heaviside et al. [130] suggest that UHI contributed around 50% of the
total heat-related mortality during the 2003 heat wave in the West Midlands of the UK.
Moon [131] concluded that the mortality and morbidity risks of diabetic patients under the
heat wave were mildly increased by about 18% for mortality and 10% for overall morbidity.
Li et al. [132] found that high temperature significantly increases the risk of mortality
in the population of Jinan, China. Most research in this topic uses both weather station
and in situ measurements in order to investigate the health effects of UHI [129]. Some
results [133] show that different sites (city center or surroundings) have experienced dif-
ferent degrees of warming as a result of increasing urbanization [131]. Johnson et al. [134]
suggest that thermal remote sensing data can be utilized to improve the understanding
of intra-urban variations of risk from extreme heat. The refinement of the current risk
assessment systems could increase the likelihood of survival during extreme heat events
and assist emergency personnel in the delivery of vital resources during such disasters.
The conclusion is that UHI is directly linked to adverse health effects from exposure to
extreme thermal conditions.

2.7.2. UHI and UHIRIP on LULC Differences and Change

UHI is a result of continued urbanization, urban agglomeration, and associated
increases in paved areas and buildings. Mitigation strategies have been developed to
increase vegetation and water surface areas within urban areas to reduce the magnitude of
the temperature. One measure of UHI’s ecological footprint is estimated by calculating the
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increase of the cooling demand caused by the heat island over the urban area, and then
translating the increased energy use to environmental cost [123,125,135]. Some research
shows that the UHI effect has become more prominent in areas of rapid urbanization and in
urban agglomerations [136,137]. The spatial distribution of UHI has changed from a mixed
pattern, where bare land, semi-bare land, and land under development were warmer than
other LULC types, to extensive UHI, as contiguous urbanized blocks grew larger [38,138].
Some analyses showed that the higher temperature in the UHI had a scattered pattern
and was related to certain LULC types [97]. In order to analyze the relationship between
UHI and LULC changes, some studies attempted to employ a quantitative approach for
exploring the relationship between surface temperature and several indices, including
the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index
(NDWI), Normalized Difference Bareness Index (NDBaI), and Normalized Difference
Build-up Index (NDBI). It was found that correlations between NDVI, NDWI, NDBI, and
temperature are negative when NDVI and NDWI are limited in range, but there is a positive
correlation between NDBI and temperature [139–142].

2.7.3. Impacts on Regional Economics

Because UHI is related to a significant increase in surface temperature and changes in
precipitation patterns, it can potentially affect local economies and the social systems of
cities [143]. Some studies [144,145] show that the critical sectors of services, agriculture, and
tourism may be strongly affected by future UHIs. To counterbalance the consequences of
the increased urban surface temperatures, important research has been carried out resulting
in the development of efficient mitigation technologies. In particular, some studies [102,146]
have documented the development of highly reflective materials, cool and green roofs,
cool pavements, urban greens, water surface, and other mitigation technologies. UHIRIP
includes economic impacts, such as increases of energy consumption for cooling purposes,
as well as an increase in the peak electricity load, which is a factor for planning maximum
power source capacities [147]. Scientists from Australia reported that the total economic
cost to the community due to hot weather is estimated to be approximately $1.8 billion
in present value terms. Approximately one-third of these impacts are due to heat waves.
Of the total heat impact, the UHI effect contributes approximately $300 million (AUD) in
present value terms for the city of Melbourne, Australia [9]. Estrada, Botzen and Tol [144]
provided a quantitative assessment of the economic costs of the joint impacts of local and
global climate change for all main cities around the world. They estimated the UHI effect
for the 1692 largest cities in the world for the period 1950–2015, and predicted that the
percentage of city gross domestic product (GDP) that would be lost for the median city in
2050 due to global climate change alone would be relatively small: 0.9% and 0.7% for the
RCP8.5 and RCP4.5 emission scenarios, respectively [144]. At the end of the century, these
impacts will increase to 3.9% and 1.2%, respectively. Cost–benefit analyses are presented of
urban heat island mitigation options, including green and cool roofs and cool pavements. It
has been shown that local actions can be climate risk-reduction instruments. Furthermore,
limiting the urban heat island through city adaptation plans can substantially amplify the
benefits of international mitigation efforts.

2.7.4. Impact on Biodiversity

Besides UHI, urban development causes wildlife habitat loss and fragmentation,
threatens wildlife populations, increases fire risk, and reduces biodiversity [2,148]. These
problems are of particular concern in the wildland urban interface (WUI), where homes and
associated structures are built among forests, shrublands, or grasslands [1,148,149]. The
WUI has received considerable attention because of recent increases in both the number of
structures destroyed and the area burned annually by wildland fire. Čeplová et al. [150]
studied three habitats with different disturbance regimes in 45 central European settlements
of three different sizes. Their results highlight the importance of urban size as a factor
shaping the biodiversity of native and alien plant communities in individual urban habitats,
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and the important role of habitat mosaic for maintaining high species richness in city floras.
The study of Coluzzi et al. [151] represented a first step to improve the description of
relevant processes to protect natural habitats and quality agriculture, therefore combating
land degradation and detrimental climate change effects. Kaiser et al. [152] monitored
temperature and relative air humidity in wooded sites characterized by different levels of
urbanization in the surroundings, and investigated the effect of urbanization at the local
and landscape scale on two key traits of biological fitness in two closely related butterfly
species that differ in thermal sensitivity.

3. Remotely Sensed Thermal Datasets

Remote sensing derived LST is effective for UHI and UHIRIP studies. Satellites can
quickly obtain continuous information over a large geographic area that can be maintained
in long-term archives. LST for large geographic areas can be derived from surface radiation
of heat measured by satellite sensors. This is particularly attractive when investigating
the surface UHI in multiple cities or urban agglomerations at various spatial extents.
Along with the extensive spatial coverage, many satellites record multiple wavelengths of
electromagnetic energy that can be used to decipher a wealth of information, in addition
to thermal information (Figure 2). Consequently, multispectral imagery allows for a
comparative analysis between LST and other variables, such as land cover and vegetation
indexes [50,153], specifically the interaction between UHI and LULCC [154]. Remote
sensing can also be used to track the patterns of change in UHI over time through various
time periods from a day, to years, and even a time series of decades [38,155–158]. Because
information is desired at a high spatial resolution and dense temporal frequency, data from
multiple sensors can make more accurate and reliable quantitative assessments of UHIRIP
studies [60]. Table 3 includes a list of the main remotely sensed datasets that have been
recently used to derive LST and analyze UHI and UHIRIP.
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The rapid development of remote sensing technology offers more potential for accurate
and reliable quantitative assessments of UHI (Table 3 and Figure 3). Many researchers
(Table 2) have used remotely sensed LST to assess UHI over various geographic areas.
However, for all of these studies, the 1 × 1 km spatial resolution of coarse datasets was
found to be suitable only for broad-scale urban temperature mapping (Table 4). The higher
resolution of Landsat time series is suitable for UHIRIP at various scales (Table 4).
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Table 4. Proportion of reviewed UHI, UHII, and UHIE studies using various remotely sensed data.

Sensor % Examples

Airborne <1% Liu et al. [159], and Ben-Dor and Saaroni [160]
AVHRR 4% Stathopoulou and Cartalis [161], and Gallo and Owen [162]

MODIS 24% French and Inamdar [115], Zhi Qiao et al. [163], and
Keramitsoglou et al. [164]

ASTER 6% Gillespie et al. [118], Ye et al. [165], Kato and Yamaguchi [166], and Lu
and Weng [167]

VIIRS <1% Sun et al. [168], Quan et al. [169], and Gawuc and Struzewska [170]

Landsat Series 52% Aniello et al. [171], Weng [172], Stathopoulou and Cartalis [173], and
Sagris and Sepp [174]

ECOSTRESS <1% Hulley et al. [175] and Schultz et al. [176]
Multiple sensors 8% Dousset and Gourmelon [86], and Elmes et al. [177]

Others <1% Huang and Wang [80]

Voogt and Oke [6], and others [156,178] pointed out that improved spatial and spec-
tral resolution of sensors and advances in digital image processing techniques increase
the usefulness of remote sensing for UHI and UHIRIP studies. Forster [179] also stated
that satellite, radar, and airborne sensors can provide spatially continuous information
pertaining to numerous variables in urban environments that complement field observa-
tions. An increasing number of studies directly relate remotely sensed data to in situ field
data [180,181], and applications of remote sensing technology will expand UHI studies to
various geographic extents. An exciting recent trend in UHI and UHIRIP research involves
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coupling remotely sensed data with ancillary and social economic datasets from multiple
sources (Table 2). The typical examples include (1) fractional vegetation cover derived from
satellite data to improve model simulations of UHI [182], (2) incorporation of remotely
sensed data into a model that partitioned various fluxes in the surface energy balance [183],
(3) integrating high-resolution multispectral data with property tax records to investigate
the contribution of residential land use to UHI formation [184], (4) studying the potential
application of change in urban green space as an indicator of urban environmental quality
change [185], (5) using parameters from thermal satellite data and three-dimensional virtual
reality models to better understand the factors controlling urban environmental quality
(UEQ) [186], (6) further advancing the use of remotely sensed imagery to evaluate UEQ
by estimating ground-level particulate matter (PM) concentrations using satellite-based
data [187], and (7) estimating the value of U.S. urban tree cover for reducing heat-related
health impacts and electricity consumption [188]. In addition, NASA’s Ecosystem Space-
borne Thermal Radiometer Experiment on the International Space Station (ECOSTRESS)
was launched in June 2018, and is able to image fine-scale temperatures in cities at a
70 × 70 m resolution throughout different times of the day, every 3–5 days on average, over
most of the globe [146]. With new algorithm development, ECOSTRESS can accurately
monitor UHI trends over time in vulnerable areas such as the urban and non-urban inter-
face. With more available remotely sensed data (Figure 3), innovative studies like these
hint at the potential for remote sensing to play an even more prominent role in research
of urban climate, urban environment, urban ecological service, and urban planning in
the future.

4. Algorithms for UHI and UHIRIP in Urban and Non-Urban Interface Studies Based
on Remotely Sensed Data

Generally, the methods for evaluating UHI and UHIRIP can be summarized into four
basic types: (1) historical weather station data, (2) field observation, (3) computer simula-
tion, and (4) remote sensing technology. The limitations of the first three methods have
been well documented [53,57,105,180]. In this paper, we only focus on the methods that use
remote sensing technology. A number of algorithms (or methods) have been developed to
estimate UHI and UHIRIP from remotely sensed data (Table 5), including simple empirical
approaches to complex methods based on remotely sensed data assimilation using various
models. The structure of the UHIRIP pattern centroid in three dimensions indicates the
overall variation of the intensity and distribution of the UHI in space and time. The sim-
plified relationship of thermal data and UHI has been applied from a local spatial scale
using airborne very high-resolution images to a broad scale with AVHRR, MODIS, ASTER,
and Landsat data at regional and continental levels. Assimilation procedures of UHI often
require remotely sensed data over different spectral domains to retrieve input parameters
that characterize surface properties such as thermal properties, albedo, NDVI, and other
indices. A brief review of these approaches is presented in Table 5, with a discussion about
the main physical bases and assumptions of various models.

Detailed knowledge of UHI and UHIRIP, especially latent and sensible heat flux com-
ponents, is important for monitoring the climate change of the land surface. The main
methods classically used to measure UHI are appropriate to field observations [24–26,189],
but do not allow for an estimation of UHI at large spatial scales. For operational applica-
tions to ecological conservation and city planning, managers and engineers need accurate
estimates of land surface temperature and UHI at broad spatial scales. New algorithms
based on remotely sensed data have been developed to use the imagery of various spatial
resolutions and temporal frequency to evaluate UHI [190–192]. It is often difficult to classify
these methods because their complexity depends on the balance between the empirical-
and physical-based modules used. Nevertheless, we summarize some algorithm (model)
categories in the following subsection.
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Table 5. Methods used to measure UHI and UHIRIP using remotely sensed data.

Method Sensor Period Example

Calculate LST All thermal bands 1970s–current Avdan and Jovanovska [193],
and Peng et al. [194]

Determine the UHIE Landsat 2009 Tang et al. [195]
Determine the UHII MODIS 2001, 2003 Tran et. al. [156]

Compare multi-temporal
LST images

The normalization of the temperature based
on the mean and standard deviation in high

and low temperature areas.
Streutker [39]

Common normalization of temperture based
on min and max LST of the same image in
the same way as for NDVI. A normalized

ratio scale technique.

Chen et al. [38]

Statistical analyses of UHI

The relationship between LST, NDVI, ground
vegetation (GV), and impervious surface area

(ISA). Multiple linear regression.
Geographically weighted regression.

Weng et al. [153], Tran et al.
[156], Schwarz et al. [196],
Szymanowski and Kryza
[197], and Firozjaei et al. [198]

A support vector machine regression (SVR)
mode. LST 2012 (daily) Lai et al. [79]

Data fusion Landsat, MODIS 1988–2013,
Shen et al. [192], Wengand Fu
[17], and
Schmitt and Zhu [199]

Gap filling Landsat 2020
Yan and Roy [178], Zhou et al.
[60], Fu et al. [190], and
Zhou et al. [200]

Time-series analysis Landsat 1984–2015
Huang et al. [201],
Peres et al. [202], Fu and Weng
[203], and Xian et al. [97]

Uncertainty and
accuracy assessment MODIS, Landsat

Shen et al. [192], Lee et al.
[204], Yuan and Bauer [205],
and Chen et al. [206]

4.1. LST and UHI Intensity Calculation

LST calculation, including empirical direct methods where remotely sensed data are
introduced directly in semi-empirical models to estimate LST, is the simplified relationship
between thermal infrared remotely sensed and meteorological data [14]. This method
allows for the characterization of UHI intensity both at the local scale, using ground
measurements, and over large areas, using satellite data, by calculating a cumulative
temperature difference [55,92]. Most current operational models [60] use remote sensing
directly to estimate the input parameters and LST.

Seasonal information captures the annual profile of LST and its trend over long
time periods, and is essential to the study of UHI [207]. Therefore, remote sensing has
been used to accurately monitor and compare the LST difference in the same season
in different years and trends over long time periods. In the last 10–15 years, thermal
sensor technology has been rapidly developing (Figure 3). Three types of methods have
been developed to estimate LST with remotely sensed data: the single infrared channel
method; the split window method; and a new day–night MODIS LST method, which
is designed to take advantage of the unique capability of the MODIS instrument [55].
Recently, Peng et al. [194] proposed a wavelet coherence approach to exploring spatial
heterogeneity and the scale-dependence of the relationship between LST and multiple
influencing factors. The advantages, disadvantages, and applicability of these three types
of algorithms are summarized in Table 6.
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Table 6. Advantages, disadvantages, and applicability of commonly used algorithms for calculating LST.

Type Algorithm Advantages Disadvantages Example

Single
window

Atmosphere correction LST for oasis in arid lands Complicated, errors, only use
for one band thermal

Landsat TM/ETM+,
CBERS/IRMSS

Qin Sing window Accurate and applicable
Need three atmosphere

parameters, only use for one
band thermal

Universal single channel
Do not need atmosphere

parameters, applicable for
multiple sensors

The result impacted by
standard atmosphere

Split
window

NOAA-AVHRR

Most used, accurate,
applicable for most sensors,

less requirement of
parameters, simple models

Not accurate LST in
mixed pixels

NOAA/AVHRR3
TERRA/MODIS
Landsat 8/TIRS

TERRA-MODIS

Landsat-TIRS
Results not stable, lower
accuracy, TIRS band 11

not stable

Other Day and night Accurate in MODIS Limitations,
low applicability TERRA/MODIS

TERRA/ASTER
VIIRS

Separate temperature Accurate in ASTER Not stable, limitations,
low applicability

Gray matters Good for grey matters Sensitive in noise

4.2. Comparing the Difference between Core Urban and Non-Urban Area

Many studies have documented the use of LST data to observe meso-scale temperature
differences between urban and rural areas in cities worldwide [156,208,209]. The land
surface temperature (LST) of core urban areas is generally higher than the surrounding
rural areas, and has a strong correlation with land cover [153]. UHII analysis is the most
common method to compute the magnitude and extent of UHI by evaluating the LST
difference between urban and surrounding non-urban areas [162]. These analyses are often
supported with auxiliary land surface information, such as land cover and impervious
surface area (ISA). Deterministic models generally are generally based on more complex
models that compute the intensity of UHIRIP in space and time. Remotely sensed data
are used at different modeling levels, either as the input parameters to characterize the
different surface covers, or in assimilation procedures, which aim to retrieve adequate
parameters for the LST computation. Some examples of these studies are shown in Table 5.
UHI intensity was typically quantified in two steps in these studies [60]. First, urban and
non-urban areas were defined and delineated from land cover or ISA maps. Urban areas
are usually defined as land with a relatively higher proportion of ISA [38,95], whereas non-
urban areas have various definitions in different studies, but generally include non-urban
land cover classes. Different sized rural and suburban zones have been used as reference
areas. Other land covers, such as water bodies, cropland, forest, and low-intensity ISA,
have also been used as references in the studies [101]. Second, the area-weighted mean
urban-reference LST differences were calculated to reflect the UHI intensity [69,210] or
magnitude. Some studies identified “hotspots” based on positive UHI intensity in certain
time periods [211,212]. A positive value of UHI intensity indicated an urban heating effect,
while a negative value represented a cooling effect. A few studies also quantified the UHI
intensity using small numbers of representative pixels in urban and reference areas instead
of the area-weighted mean value for the purpose of surface-air UHI comparison [122–124]
or UHI attribution analysis [125,126]. The urban-reference difference method facilitates a
comparative analysis of UHIs among cities and urban agglomerations, regions, and across
the globe, but the validity of such comparisons can be limited by the large uncertainties
associated with urban and reference definitions [68]. Recent research [97] performed a
comprehensive and consistent analysis of surface UHI and UHIRIP using Landsat LST
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ARD time series and dynamic land cover datasets in the Sioux Falls, SD, area. It shows
that the use of time series of LST and land change dynamic data provided a consistent
and quantitative analysis for the distribution and change of UHI intensity and UHIRIP
(Figure 4). We further discuss limitations in Section 5.

Land 2021, 10, x FOR PEER REVIEW  15 of 31 
 

used at different modeling levels, either as the input parameters to characterize the differ‐

ent surface covers, or in assimilation procedures, which aim to retrieve adequate param‐

eters for the LST computation. Some examples of these studies are shown in Table 5. UHI 

intensity was typically quantified in two steps in these studies [60]. First, urban and non‐

urban areas were defined and delineated from land cover or ISA maps. Urban areas are 

usually defined as land with a relatively higher proportion of ISA [38,95], whereas non‐

urban areas have various definitions in different studies, but generally include non‐urban 

land cover classes. Different sized rural and suburban zones have been used as reference 

areas. Other land covers, such as water bodies, cropland, forest, and low‐intensity ISA, 

have also been used as references in the studies [101]. Second, the area‐weighted mean 

urban‐reference LST differences were calculated to reflect the UHI  intensity [69,210] or 

magnitude. Some studies identified “hotspots” based on positive UHI intensity in certain 

time periods [211,212]. A positive value of UHI intensity indicated an urban heating effect, 

while a negative value represented a cooling effect. A few studies also quantified the UHI 

intensity using small numbers of representative pixels in urban and reference areas in‐

stead of  the area‐weighted mean value  for  the purpose of surface‐air UHI comparison 

[122–124] or UHI attribution analysis  [125,126]. The urban‐reference difference method 

facilitates a  comparative analysis of UHIs among  cities and urban agglomerations,  re‐

gions, and across the globe, but the validity of such comparisons can be limited by the 

large uncertainties associated with urban and reference definitions [68]. Recent research 

[97] performed a comprehensive and consistent analysis of surface UHI and UHIRIP us‐

ing Landsat LST ARD time series and dynamic land cover datasets in the Sioux Falls, SD, 

area. It shows that the use of time series of LST and land change dynamic data provided 

a consistent and quantitative analysis for the distribution and change of UHI intensity and 

UHIRIP (Figure 4). We further discuss limitations in Section 5. 

 

Figure 4. A general workflow chart of the use of time series of LST and land change dynamic data
that provides a consistent and quantitative analysis for the distribution and change of UHI intensity
and UHIRIP in Sioux Falls, SD.

4.3. UHI and UHIRIP Analysis by Using Urban Ecological Indices

Many studies have compared UHIRIP to ecological indices [103,149,213–215], vegeta-
tion fraction, and percent ISA, finding strong correlations with mean LST. Landscape met-
rics indicate that urban landscape configuration also influences the surface UHIRIP [216].
The latest vegetation index methods and inference methods use remote sensing to compute
a reduction factor (such as Kc or Priestley Taylor-alpha parameters) for the estimation of
the actual UHI [203]. Different papers deal with these approaches in the various journals,
and these approaches use land cover [217,218], LST pattern [219,220], and a combination
of land cover and LST pattern [221–223] as monitoring indicators of UHI.

Urban ecological status is closely related to the quality of human life and the devel-
opment of urban economies. A timely and objective understanding of urban ecological
status, particularly in urban and non-urban interface areas [224], has become an increasing
important. Scientists have been developing a remote sensing-based ecological index for
the measure of urban ecological status under UHI [213,225]. This urban ecological status
index (UESI) aims to integrate four important ecological indicators that are frequently
used in evaluating urban ecology. The four indicators include greenness, wetness, dryness,
and heat, and can be represented by four remote sensing indices or components: NDVI,
normalized difference built-up and soil index (NDBSI), wetness component of the tasseled
cap transformation (Wet), and LST, respectively. Instead of a simple or weighted addition
of the four indicators, a principal component analysis (PCA) can be utilized to compress
the four indicators into one index in order to assess the overall urban ecological status
under UHI. The calculation of the UESI can be fully automated, avoiding the need to assign
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threshold values or weights during the computing procedure. Therefore, the UESI can
be used to easily and objectively assess urban ecological status. Combined with change
detection, UESI can also be used to monitor the change of the ecological status of the core
urban and surrounding non-urban areas between different years. In practice, the index
was successfully applied in a multitemporal ecological status assessment [34]. Pan [221]
used the G index spatial aggregation analysis to calculate the urban heat island ratio index,
and the landscape metrics to quantify the changes of the spatial pattern of the UHI from
the aspects of quantity, shape, and structure. Pan found that the heat island strength had
a negative linear correlation with urban vegetation coverage, and a positive logarithmic
correlation with urban impervious surface coverage. Bala et al. [226] developed the Urban
Heat Intensity Ratio Index (UHIRI) to quantify urban heat intensity. This work analyzed
the variation in LST with land cover changes in Varanasi, India, from 1989 to 2018, using
Landsat images, and concluded that the replacement of vegetation with urban land cover
has a severe impact on increasing UHI intensity.

4.4. Various Statistical Models

Statistical models and machine learning have also been proposed to measure UHI [227].
Among these studies, a Gaussian surface model has been utilized the most because it can
provide not only the intensity, but also the spatial extent and the central location of the
UHI. The kernel convolution method has also been proposed to study UHI effects because
of its high efficiency in characterizing the temperature values over space in a continuous
surface [227]. Chun and Guldmann [77] explored the urban determinants of UHI using
two-dimensional (2D) and three-dimensional (3D) urban information as the input for
spatial statistical models. The results show that solar radiations, open spaces, vegetation,
building roof-top areas, and water strongly impact surface temperatures, and that spatial
regressions are necessary in order to capture the neighboring effects. Recently, Li et al. [81]
estimated UHI intensity by linear regression functions between LST and regionalized ISA.
These statistical models could avoid the bias caused by the definitions of urban−rural
areas or the choice of the representative pixels, and thus facilitate the comparison of
UHI among cities. Szymanowski and Kryza [228] addressed the issue of the potential
usefulness of remotely sensed data and their derivatives for UHI modeling. Statistically
significant models explained 71% to 85% of the air temperature variance. It has been
stressed that remotely sensed data are important sources to model urban air temperature
heat islands. However, in all of these studies, such models worked less effectively in cities
frequently covered by clouds, in arid landscapes, and in urban agglomerations, so they
have only been applied in a few UHI studies to date. Recently, Lai et al. [79] published
the statistical estimation of next-day nighttime surface urban heat islands of selected
cities. Most previous studies modelled the SUHI variations for the past period, but rarely
investigated the estimation for future UHIs, especially at the daily (i.e., day-to-day) scale.
To address this issue, this study incorporated both meteorological and surface controls
to estimate next-day nighttime UHIs using a support vector machine regression (SVR)
model. Some uncertainties exist in terms of the Gaussian modelling and UHI estimators,
which may limit estimation accuracy. Nevertheless, by providing a feasible yet simple
approach for estimating next-day nighttime UHIs, this study fills a knowledge gap in
the UHI estimation and is helpful for supporting adaptation to and mitigation of UHI
and UHIRIP.

4.5. Spatial−Temporal Time-Series Algorithm

Advances in computing technology have fostered the development of new and pow-
erful data fusion, gap filling, machine learning, and deep learning techniques that have
demonstrated promising results in a wide range of applications [229]. Models to fuse data
from multiple sensors and fill gaps can improve UHI monitoring using an ensemble of
dense time series of thermal data with a high spatial resolution [199,230]. Zhou et al. [200]
presented a new algorithm that focuses on data gap filling using clear observations from
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orbit overlap regions to obtain Landsat LST data. Multiple linear regression models were
established for each pixel time series to estimate the stable predictions and uncertainties.
Liu et al. [83] comprehensively quantified the spatial–temporal patterns of surface urban
heat island by investigating the relationship between LST and the land cover types, and the
associated landscape components. Such approaches have been used to generate temporally
dense and high-resolution LST over long time periods by integrating the observations
of Landsat, MODIS, AVHRR, VIIRS, and ECOSTRESS [191,231]. These datasets facilitate
subtle analyses of monthly, seasonal, and yearly trends in UHI intensity at regional levels.
Machine learning (ML) has become popular in UHI and UHIRIP, but its use has remained
restricted to predicting, rather than understanding, the natural world. ML techniques
may not be the solution to all the problems remotely sensed data might have. However,
these techniques provide a powerful set of tools that deserve serious attention to deal with
some relevant UHI and UHIRIP remotely sensed data problems [232]. Lucas [233] points
out that ML differs from the broader field of statistics in two respects: (1) the estimation
of parameters that relate to the real world is less emphasized, and (2) the driver of the
predictions is expected to be the data rather than expert opinion and careful selection of
plausible mechanistic models. The Google Earth engine (GEE) is a cloud-based platform for
planetary-scale geospatial analysis that brings Google’s massive computational capabilities
to bear on a variety of high-impact societal and environmental issues [234]. GEE has many
functions that could be used to analyze UHI and UHIRIP at local, regional, and global
levels (Figure 5). Some research has generated consistent large-scale UHI and UHIRIP
analysis based on optimal data and ML algorithm selection using GEE [235,236]. The
advanced GEE cloud-based platform and the large number of geosciences and remote
sensing datasets archived in GEE were used to analyze land the cover dynamics (236), and
the results showed the advantages of using GEE to analyze the spatiotemporal dynamics
of the LULCC, vegetation cover, LST, and climate for a long time series, and highlighted
the importance of environmental protection. The power here lies in the way a scientist
defines their questions and uses machine learning alongside other methods. Techniques
for data analysis and interpretation that fully incorporate the temporal dimension remain
an area of intense research and represent an important challenge for operational UHI and
UHIRIP monitoring.

Land 2021, 10, x FOR PEER REVIEW  18 of 31 
 

way a scientist defines their questions and uses machine learning alongside other meth‐

ods. Techniques for data analysis and interpretation that fully incorporate the temporal 

dimension remain an area of intense research and represent an important challenge for 

operational UHI and UHIRIP monitoring. 

 

Figure 5. Simplified system diagram using the Google Cloud platform and Google Earth engine for monitoring UHI and 

UHIRIP. 

5. Summary of UHI and UHIRIP Based on Remotely Sensed Data 

This review provides an overview of research on UHI and UHIRIP based on remote 

sensing techniques, sensors, and algorithms, as listed in Tables 3–6, respectively. Much 

work has been completed on UHIRIP in the last four decades, and we have endeavored 

to keep updated with new methods and results. A significant research limitation still ex‐

ists: the quantification of UHI and its regional impacts using high‐resolution time‐series 

remotely sensed  thermal data  in  the urban and non‐urban  interface. Some of  the algo‐

rithms listed in Table 5 may be the most practical approaches to assess UHI in core urban 

areas of cities and surrounding areas, but characterization of UHI across broad areas is 

necessary in order to inform monitoring, reporting, science, and policy. Being able to re‐

late LST to UHI is especially important when such datasets are being used to inform policy 

decisions or to communicate outside of the scientific community. The increasing availa‐

bility of remotely sensed data across a range of spatial resolutions and temporal frequen‐

cies, and technological improvements in image processing capacity and storage, have led 

to advances in the methods used to monitor UHI more frequently and accurately. 

Assessing the uncertainty and accuracy of UHI data is important. A sensitivity anal‐

ysis not only provides a framework for assessing the potential for bias and the extent of 

uncertainty in UHI estimates, but also reveals significant factors that determine the extent 

of UHIRIP  in  the urban and non‐urban  interface. Oleson et al.  [237] developed an ap‐

proach to evaluate the robustness of models used to simulate urban heat islands in differ‐

ent environments. The findings indicated that heat storage and sensible heat flux are most 

sensitive to uncertainties in the input parameters within the atmospheric and surface con‐

ditions considered. Sensitivity studies indicate that it is important to not only to accurately 

Figure 5. Simplified system diagram using the Google Cloud platform and Google Earth engine for monitoring UHI
and UHIRIP.



Land 2021, 10, 867 18 of 30

5. Summary of UHI and UHIRIP Based on Remotely Sensed Data

This review provides an overview of research on UHI and UHIRIP based on remote
sensing techniques, sensors, and algorithms, as listed in Tables 3–6, respectively. Much
work has been completed on UHIRIP in the last four decades, and we have endeavored
to keep updated with new methods and results. A significant research limitation still
exists: the quantification of UHI and its regional impacts using high-resolution time-
series remotely sensed thermal data in the urban and non-urban interface. Some of the
algorithms listed in Table 5 may be the most practical approaches to assess UHI in core
urban areas of cities and surrounding areas, but characterization of UHI across broad areas
is necessary in order to inform monitoring, reporting, science, and policy. Being able to
relate LST to UHI is especially important when such datasets are being used to inform
policy decisions or to communicate outside of the scientific community. The increasing
availability of remotely sensed data across a range of spatial resolutions and temporal
frequencies, and technological improvements in image processing capacity and storage,
have led to advances in the methods used to monitor UHI more frequently and accurately.

Assessing the uncertainty and accuracy of UHI data is important. A sensitivity
analysis not only provides a framework for assessing the potential for bias and the extent
of uncertainty in UHI estimates, but also reveals significant factors that determine the
extent of UHIRIP in the urban and non-urban interface. Oleson et al. [237] developed
an approach to evaluate the robustness of models used to simulate urban heat islands in
different environments. The findings indicated that heat storage and sensible heat flux
are most sensitive to uncertainties in the input parameters within the atmospheric and
surface conditions considered. Sensitivity studies indicate that it is important to not only
to accurately characterizing the structure of the urban area, but also to ensuring that the
input data reflect the thermal admittance properties of each of the city surfaces.

Currently, a wide variety of methods are employed to characterize UHI for major cities
worldwide (Table 5), although most of the applications cited were limited to small areas
because of data availability and constraints of storage and computing resources. With the
development of gap filling and data fusion models [238], advances in high-performance
computing (HPC), and cheaper storage, applications based on high-resolution time series
at larger or even regional scales will become the mainstream in the near future [199,231].
While much of the methodological variation described here will persist, future methods
will evolve and adapt to greater data volumes and processing capabilities [239]. Legacy
change mapping methods that rely on analyst interactions with individual scenes should
decline over time given the improved ability to process and characterize time series of rich
high-resolution thermal data. However, such spatial−temporal methods that are based
on gap filling and data fusion should match the institutional requirements for accuracy.
Near-term research objectives will require robust validation datasets in establishing which
data-intensive methods are the most appropriate for quantifying UHI over large areas.
Techniques for LST data analysis and interpretation that fully incorporate the temporal di-
mension still require intense research and represent an important challenge for operational
UHI research in order to meet management needs.

Technological advances that include machining leaning and artificial intelligence in
UHI and UHIRIP using remotely sensed data have led to an explosion of UHI and UHIRIP
profiling data from large numbers of multiple data sources [233,240]. This rapid increase
in the remotely sensed data dimension and acquisition rate is challenging conventional
analysis strategies. Modern machine learning methods, such as deep learning, promise to
leverage very large datasets for finding a hidden structure within them, and for making
accurate predictions [232]. Deep learning methods are a powerful complement to classical
machine learning tools and other analysis strategies, and have been used in a number of
applications in UHII and remotely sensed image analyses [241]. The explainable artificial
intelligence in UHII and UHIRIP modeling has become more and more important [242].
Interpretable machine learning methods either target a direct understanding of the model
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architecture (i.e., model-based interpretability) or interpret the model by analyzing the
model behavior (post hoc interpretability) [242].

Currently, most of the time-series algorithms used to map UHIRIP include data from
the temporal domain of AVHRR and MODIS, and the spatial domain of the data is almost
entirely neglected. Although these datasets with a lower spatial resolution and higher
temporal frequency can detect a change of UHI in real time, they often lack pertinent spatial
detail. Even though many UHI analysis algorithms have been developed [60], most of
the UHI monitoring data derived from the Landsat archive are provided in a time frame
that is not near enough to real time to be relevant for specific management needs. With
the advances in HPC and cheaper storage, applications based on Landsat time series at
continental or even global scales will be the mainstream in the next few years.

To date, information from Landsat time-series thermal data has taken the form of
statistical metrics, change metrics, pattern distribution, or trend components used in UHI
impact applications [243]. Improvement of existing approaches, as well as the inclusion
of novel techniques, often imported and adapted from other disciplines, are important
to fully capitalize on the thermal data in order to produce monthly, seasonal, and annual
LST results that meet a wide range of UHI and UHIRIP research needs. Landsat-9, which
will be launched in September 2021, will continue collecting images of the Earth’s surface
in visible, near-infrared, and shortwave-infrared bands, as well as the thermal infrared
radiation, or heat, of the Earth’s surface from two thermal bands. The future European
Space Agency’s LSTM (Land Surface Temperature Monitoring) or Sentinel 8 mission will
carry a high spatial−temporal resolution thermal infrared sensor to provide records of
land-surface temperature. Land-surface temperature measurements are key variables to
understand and respond to climate variability and natural hazards, such as urban heat
island issues. The main objective of LSTM is to deliver global high spatial−temporal day-
and night-time land surface temperature measurements. LSTM will operate from a low-
Earth, polar orbit, to map both land-surface temperature and rates of evapotranspiration.
It will be able to identify the temperatures of individual fields and image the Earth every
three days at a 50 m resolution. Another future thermal sensor is Thermal infraRed Imaging
Satellite for High-resolution Natural resource Assessment (TRISHNA), which is a future
high-resolution space-time mission in the thermal infrared (TIR) led jointly by the French
(CNES) and Indian (ISRO) space agencies. One of scientific objectives guiding the definition
of the mission is the monitoring of the urban environment. TRISHNA will be positioned on
a polar orbit and provide a revisit of three passages over 8 days with global coverage. The
time of passage around 13:00 p.m. LST allows thermal data to be collected in the middle of
the day, but also in the middle of the night. The instrument will offer four thermal channels
(8.6 µm, 9.1 µm, 10.4 µm, and 11.6 µm) and six optical channels (485 nm, 555 nm, 650 nm,
860 nm, 1380 nm, and 1650 nm) with a spatial resolution between 50 m and 60 m for all
channels. All of these observations acquired from thermal remote sensing will provide
more valuable information for natural resource management, hazard monitoring, and
scientific research and applications.

6. Future Research Directions

Remote sensing technology has been widely applied in the research of UHI and
UHIRIP. The most important advantage of using remote sensing thermal data is the wall-
to-wall coverage of UHI patterns that can meet the needs of spatial and temporal analyses.
Remotely sensed data can be used to investigate the surface temperatures of cities and
urban agglomerations for various ecosystems with different climate conditions, for example
tropical and sub-tropical, temperate and cold temperate, coastal and inland, and arid and
semi-arid land at regional scales. These studies are needed to describe surface temperature
characteristics in these specific environments and how climate change may be modulating
UHI patterns. UHIRIP produces an aggregate impact on weather conditions, land use,
human health, biodiversity, ecosystem security, economics, and urban planning [16,244].
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Land surface temperature and emissivity retrieval (separation) has always been chal-
lenging. Generally, the LSE values needed to apply the method have been estimated from
a procedure that uses the visible and near-infrared bands. The algorithm was created
using the brightness temperature of the thermal and emissivity of different land cover
types, derived from visible and near-infrared bands of various sensors. Compared with
field-based observation, remote sensing offers the advantages of a harmonized, long-term,
and spatially extensive record to observe LST change. The retrieved LSTs are verified
using the near surface temperature of weather station datasets, which will help to improve
the accuracy of LST derived from thermal bands. The difference between retrieved LST
and Automatic Weather Station (AWS) data indicates that the technique works by giving
an error of ±3 ◦C [245]. These differences can be because of the difference between the
resolutions of thermal and visible bands, and a comparison was made between the point
measurement (AWS data) 2 m above the surface and surface temperature (retrieved LST).
Communicating the results of time-series LST studies that are based on both field weather
station observations and remote-sensing time-series data to urban planners, policymakers,
and the general public could help inform urban design and decision making.

Using temporally dense time series of remotely sensed data at a high spatial resolution
is a growing trend in UHI and UHIRIP research, facilitated by increasing computer capa-
bilities to handle big datasets, machine leaning, deep learning, and Google Earth Engine
applications. Landsat ARD, in particular, has great potential to derive LST. Models used to
fuse data from across multiple sensors will be developed to increase data temporal density
and spatial resolution. Moreover, future sensor improvement on Landsat and aircraft
thermal data are possible options. On the other hand, in order to determine the temporal
variation of LST using satellite data with restricted overpass times, it appears necessary to
use long-time weather station observations to investigate diurnal UHI in various ecosys-
tems, although some new sensors (e.g., ECOSTRESS) can provide this information. Future
research is anticipated to improve on methods to simultaneously derive LST and land sur-
face emission (LSE) from hyperspectral TIR, multi spectral-temporal, and TIR-microwave
data; additionally, future methods will consider aerosol and cirrus effects [18]. Another
viable angle of potential future studies is urban development strategies for mitigating UHI,
such as increasing vegetation and water surfaces in urban development.

Climate models are the only tools that account for the complex set of processes that
will determine future climate change at both a global and regional level, and assessing
regional impacts of climate change begins with the development of climate projections
at relevant temporal and spatial scales [246]. The most current existing climate change
modeling covers large geographic areas at regional and global levels with relatively low
spatial resolutions (>10 km). In the future, LST that is derived from remotely sensed data
will support climate change modeling (regional climate models and statistical downscaling
models) in UHI and UHIRIP analyses in urban and surrounding areas.

Our analysis indicated that determination is still a central topic of UHI research.
Modeling will continue to provide vital and useful results on the spatiotemporal assessment
of UHI, especially when models more effectively combine thermal data from multiple
sensors. ML (DL) and AI are continuing to grow in popularity in UHI and UHIRIP research.
For time series analyses with remote sensing data, a cloud computing platform such as
GEE could bring about a substantial change in UHI and UHIRIP analyses, as they have the
capability to process big remote sensing datasets and assess the spatiotemporal dynamics
of the area quickly. A better integration of remote sensing and station measurements into
models is expected. This study also suggests that direct and indirect UHIRIP, especially
human health issues, heat wave impacts, air pollution, and ecological security, will receive
increasing scientific attention in the future. Research on controlling and adapting to UHI
impacts may warrant special attention. The interaction of UHI and UHIRIP, and their
changes to LULC based on urban planning, are actively being studied.



Land 2021, 10, 867 21 of 30

Author Contributions: Original draft preparation, H.S.; review and editing with ideas and inputs,
G.X., R.A., K.G. and Q.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to the USGS National Land Imaging Program for supporting
this research. We would like to thank Carol Deering for assistance in collecting and preparing the
literary material. This manuscript was improved thanks to comments and suggestions from Norman
Bliss, Matthew Rigge, and Thomas Adamson. Hua Shi and Qiang Zhou’s work was performed
under USGS contracts G13PC00028 and 140G0119C0001. For Kevin Gallo, the scientific results and
conclusions, as well as any views or opinions expressed herein, are those of the author and do not
necessarily reflect those of NOAA or the Department of Commerce. Any use of trade, firm, or product
names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; and in the decision to publish the results.

References
1. Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The Wildland–Urban Interface in the United

States. Ecol. Appl. 2005, 15, 799–805. [CrossRef]
2. Shi, H.; Singh, A.; Kant, S.; Zhu, Z.; Waller, E. Integrating habitat status, human population pressure, and protection status into

biodiversity conservation priority setting. Conserv. Biol. 2005, 19, 1273–1285. [CrossRef]
3. Seto, K.C.; Shepherd, J.M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 2009, 1, 89–95.

[CrossRef]
4. Ager, A.A.; Vaillant, N.M.; Finney, M.A. A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the

urban interface and preserve old forest structure. For. Ecol. Manag. 2010, 259, 1556–1570. [CrossRef]
5. Chang, Q.; Liu, X.; Wu, J.; He, P. MSPA-based urban green infrastructure planning and management approach for urban

sustainability: Case study of longgang in China. J. Urban Plan. Dev. 2015, 141. [CrossRef]
6. Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [CrossRef]
7. Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends.

ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [CrossRef]
8. Massad, R.S.; Lathière, J.; Strada, S.; Perrin, M.; Personne, E.; Stéfanon, M.; Stella, P.; Szopa, S.; de Noblet-Ducoudré, N. Reviews

and syntheses: Influences of landscape structure and land uses on local to regional climate and air quality. Biogeosciences 2019, 16,
2369–2408. [CrossRef]

9. Raalte, L.V.; Nolan, M.; Thakur, P.; Xue, S.; Parker, N. Economic Assessment of the Urban Heat Island Effect; 60267369; AECOM
Australia Pty Ltd.: Melbourne, Australia, 2012. Available online: https://www.melbourne.vic.gov.au/SiteCollectionDocuments/
eco-assessment-of-urban-heat-island-effect.pdf (accessed on 20 May 2020).

10. Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [CrossRef]
11. Hall, F.G.; Huemmrich, K.F.; Goetz, S.J.; Sellers, P.J.; Nickeson, J.E. Satellite remote sensing of surface energy balance: Success,

failures, and unresolved issues in FIFE. J. Geophys. Res. 1992, 97, 19061–19089. [CrossRef]
12. Velasco, E. Go to field, look around, measure and then run models. Urban Clim. 2018, 24, 231–236. [CrossRef]
13. Gallo, K.P.; Tarpley, J.D.; McNab, A.L.; Karl, T.R. Assessment of urban heat islands: A satellite perspective. Atmos. Res. 1995,

37, 37–43. [CrossRef]
14. Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data: From empirical to

numerical modeling approaches. Irrig. Drain. Syst. 2005, 19, 223–249. [CrossRef]
15. Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and

data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [CrossRef]
16. Rasul, A.; Balzter, H.; Smith, C.; Remedios, J.; Adamu, B.; Sobrino, J.; Srivanit, M.; Weng, Q. A Review on Remote Sensing of

Urban Heat and Cool Islands. Land 2017, 6, 38. [CrossRef]
17. Weng, Q.; Fu, P. Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery. ISPRS J.

Photogramm. Remote Sens. 2014, 97, 78–88. [CrossRef]
18. Weng, Q.; Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Alavipanah, S.K. Statistical analysis of surface urban heat island intensity

variations: A case study of Babol city, Iran. GIScience Remote Sens. 2019, 56, 576–604. [CrossRef]
19. Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat waves and urban heat islands in Europe: A review of relevant drivers.

Sci. Total Environ. 2016, 569–570, 527–539. [CrossRef] [PubMed]

http://doi.org/10.1890/04-1413
http://doi.org/10.1111/j.1523-1739.2005.00225.x
http://doi.org/10.1016/j.cosust.2009.07.012
http://doi.org/10.1016/j.foreco.2010.01.032
http://doi.org/10.1061/(ASCE)UP.1943-5444.0000247
http://doi.org/10.1016/S0034-4257(03)00079-8
http://doi.org/10.1016/j.isprsjprs.2009.03.007
http://doi.org/10.5194/bg-16-2369-2019
https://www.melbourne.vic.gov.au/SiteCollectionDocuments/eco-assessment-of-urban-heat-island-effect.pdf
https://www.melbourne.vic.gov.au/SiteCollectionDocuments/eco-assessment-of-urban-heat-island-effect.pdf
http://doi.org/10.1002/qj.49710845502
http://doi.org/10.1029/92JD02189
http://doi.org/10.1016/j.uclim.2018.04.001
http://doi.org/10.1016/0169-8095(94)00066-M
http://doi.org/10.1007/s10795-005-5186-0
http://doi.org/10.1016/j.jag.2006.05.003
http://doi.org/10.3390/land6020038
http://doi.org/10.1016/j.isprsjprs.2014.08.009
http://doi.org/10.1080/15481603.2018.1548080
http://doi.org/10.1016/j.scitotenv.2016.06.119
http://www.ncbi.nlm.nih.gov/pubmed/27366983


Land 2021, 10, 867 22 of 30

20. Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS
J. Photogramm. Remote Sens. 2017, 130, 370–384. [CrossRef]

21. Du, W.; Qin, Z.; Fan, J.; Gao, M.; Wang, F.; Abbasi, B. An efficient approach to remove thick cloud in VNIR bands of multi-temporal
remote sensing images. Remote Sens. 2019, 11, 1284. [CrossRef]

22. Ling, F.; Zhang, T. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing
unfrozen water. Cold Reg. Sci. Technol. 2004, 38, 1–15. [CrossRef]

23. Atkinson, B.W. Numerical modelling of urban heat-island intensity. Bound.-Layer Meteorol. 2003, 109, 285–310. [CrossRef]
24. Oke, T.R. The distinction between canopy and boundary-layer urban heat Islands. Atmosphere 1976, 14, 268–277. [CrossRef]
25. Kim, H.H. Urban heat island. Int. J. Remote Sens. 1992, 13, 2319–2336. [CrossRef]
26. Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103.

[CrossRef]
27. Oke, T.R. The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects; Springer: Dordrecht, The Netherlands,

1995; Volume 277. [CrossRef]
28. Stone, B., Jr.; Rodgers, M.O. Urban form and thermal efficiency: How the design of cities influences the urban heat island effect.

J. Am. Plan. Assoc. 2001, 67, 186–198. [CrossRef]
29. Hansen, J.; Ruedy, R.; Sato, M.; Imhoff, M.; Lawrence, W.; Easterling, D.; Peterson, T.; Karl, T. A closer look at United States and

global surface temperature change. J. Geophys. Res. Atmos. 2001, 106, 23947–23963. [CrossRef]
30. Golden, J.S. The Built Environment Induced Urban Heat Island Effect in Rapidly Urbanizing Arid Regions—A Sustainable Urban

Engineering Complexity. Environ. Sci. 2004, 1, 321–349. [CrossRef]
31. Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the

empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [CrossRef]
32. Chow, W.T.L.; Brennan, D.; Brazel, A.J. Urban Heat Island Research in Phoenix, Arizona: Theoretical Contributions and Policy

Applications. Bull. Am. Meteorol. Soc. 2011, 93, 517–530. [CrossRef]
33. Qin, Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 2015, 52,

445–459. [CrossRef]
34. Xu, H.Q. A remote sensing urban ecological index and its application. Shengtai Xuebao Acta Ecol. Sin. 2013, 33, 7853–7862.

[CrossRef]
35. Memon, R.A.; Leung, D.Y.C.; Liu, C.-H. An investigation of urban heat island intensity (UHII) as an indicator of urban heating.

Atmos. Res. 2009, 94, 491–500. [CrossRef]
36. Sinha, P.; Coville, R.C.; Hirabayashi, S.; Lim, B.; Endreny, T.A.; Nowak, D.J. Modeling lives saved from extreme heat by urban tree

coverI. Ecol. Model. 2021, 449, 109553. [CrossRef]
37. Li, K.; Yu, Z. Comparative and combinative study of urban heat island in Wuhan City with remote sensing and CFD simulation.

Sensors 2008, 8, 6692–6703. [CrossRef]
38. Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and

land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [CrossRef]
39. Streutker, D.R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 2002, 23, 2595–2608.

[CrossRef]
40. Lee, H.Y. An application of NOAA AVHRR thermal data to the study of urban heat islands. Atmos. Environ. Part B Urban Atmos.

1993, 27, 1–13. [CrossRef]
41. Gallo, K.P.; McNab, A.L.; Karl, T.R.; Brown, J.F.; Hood, J.J.; Tarpley, J.D. The use of NOAA AVHRR data for assessment of the

urban heat island effect. J. Appl. Meteorol. 1993, 32, 899–908. [CrossRef]
42. Kotharkar, R.; Ramesh, A.; Bagade, A. Urban Heat Island studies in South Asia: A critical review. Urban Clim. 2018, 24, 1011–1026.

[CrossRef]
43. Bullock, E.L.; Woodcock, C.E.; Holden, C.E. Improved change monitoring using an ensemble of time series algorithms. Remote

Sens. Environ. 2019. [CrossRef]
44. Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance

detection. Remote Sens. Environ. 2018, 205, 131–140. [CrossRef]
45. Liu, C.; Zhang, Q.; Luo, H.; Qi, S.; Tao, S.; Xu, H.; Yao, Y. An efficient approach to capture continuous impervious surface

dynamics using spatial-temporal rules and dense Landsat time series stacks. Remote Sens. Environ. 2019, 229, 114–132. [CrossRef]
46. Shi, H.; Rigge, M.; Homer, C.G.; Xian, G.; Meyer, D.K.; Bunde, B. Historical Cover Trends in a Sagebrush Steppe Ecosystem from

1985 to 2013: Links with Climate, Disturbance, and Management. Ecosystems 2018, 21, 913–929. [CrossRef]
47. Zhu, Z.; Gallant, A.L.; Woodcock, C.E.; Pengra, B.; Olofsson, P.; Loveland, T.R.; Jin, S.; Dahal, D.; Yang, L.; Auch, R.F. Optimizing

selection of training and auxiliary data for operational land cover classification for the LCMAP initiative. ISPRS J. Photogramm.
Remote Sens. 2016, 122, 206–221. [CrossRef]

48. Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis ready data: Enabling analysis of the landsat
archive. Remote Sens. 2018, 10, 1363. [CrossRef]

49. Weng, Q.; Larson, R.C. Satellite Remote Sensing of Urban Heat Islands: Current Practice and Prospects. In Geo-Spatial Technologies
in Urban Environments; 2005; pp. 91–111. Available online: https://link.springer.com/chapter/10.1007%2F3-540-26676-3_10
(accessed on 2 February 2020). [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2017.06.013
http://doi.org/10.3390/rs11111284
http://doi.org/10.1016/S0165-232X(03)00057-0
http://doi.org/10.1023/A:1025820326672
http://doi.org/10.1080/00046973.1976.9648422
http://doi.org/10.1080/01431169208904271
http://doi.org/10.1016/S0378-7788(96)00999-1
http://doi.org/10.1007/978-94-017-3686-2_5
http://doi.org/10.1080/01944360108976228
http://doi.org/10.1029/2001JD000354
http://doi.org/10.1080/15693430412331291698
http://doi.org/10.1016/j.landurbplan.2010.05.006
http://doi.org/10.1175/BAMS-D-11-00011.1
http://doi.org/10.1016/j.rser.2015.07.177
http://doi.org/10.5846/stxb201208301223
http://doi.org/10.1016/j.atmosres.2009.07.006
http://doi.org/10.1016/j.ecolmodel.2021.109553
http://doi.org/10.3390/s8106692
http://doi.org/10.1016/j.rse.2005.11.016
http://doi.org/10.1080/01431160110115023
http://doi.org/10.1016/0957-1272(93)90041-4
http://doi.org/10.1175/1520-0450(1993)032&lt;0899:TUONAD&gt;2.0.CO;2
http://doi.org/10.1016/j.uclim.2017.12.006
http://doi.org/10.1016/j.rse.2019.04.018
http://doi.org/10.1016/j.rse.2017.11.015
http://doi.org/10.1016/j.rse.2019.04.025
http://doi.org/10.1007/s10021-017-0191-3
http://doi.org/10.1016/j.isprsjprs.2016.11.004
http://doi.org/10.3390/rs10091363
https://link.springer.com/chapter/10.1007%2F3-540-26676-3_10
http://doi.org/10.1007/3-540-26676-3_10


Land 2021, 10, 867 23 of 30

50. Jiang, G.M.; Li, Z.L.; Nerry, F. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of
MSG-SEVIRI. Remote Sens. Environ. 2006, 105, 326–340. [CrossRef]

51. Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed
surface temperature data. Surv. Geophys. 2008, 29, 421–469. [CrossRef]

52. Racoviteanu, A.E.; Williams, M.W.; Barry, R.G. Optical remote sensing of glacier characteristics: A review with focus on the
Himalaya. Sensors 2008, 8, 3355–3383. [CrossRef]

53. Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Envi-
ron. Sci. 2008, 20, 120–128. [CrossRef]

54. Sailor, D.J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J.
Climatol. 2011, 31, 189–199. [CrossRef]

55. Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current
status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [CrossRef]

56. Ngie, A.; Abutaleb, K.; Ahmed, F.; Darwish, A.; Ahmed, M. Assessment of urban heat island using satellite remotely sensed
imagery: A review. S. Afr. Geogr. J. 2014, 96, 198–214. [CrossRef]

57. Huang, Q.; Lu, Y. Urban heat island research from 1991 to 2015: A bibliometric analysis. Theor. Appl. Climatol. 2018, 131,
1055–1067. [CrossRef]

58. Zhang, Y.; Thenkabail, P.S.; Wang, P. A bibliometric profile of the Remote Sensing Open Access Journal published by MDPI
between 2009 and 2018. Remote Sens. 2019, 11, 91. [CrossRef]

59. Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods,
and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [CrossRef]

60. Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote
sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [CrossRef]

61. Becker, F.; Li, Z.L. Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote
Sens. Rev. 1995, 12, 225–253. [CrossRef]

62. Dash, P.; Göttsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data:
Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [CrossRef]

63. Miles, V.; Esau, I. Seasonal and spatial characteristics of Urban Heat Islands (UHIs) in northern West Siberian cities. Remote Sens.
2017, 9, 989. [CrossRef]

64. Trlica, A.; Hutyra, L.R.; Schaaf, C.L.; Erb, A.; Wang, J.A. Albedo, Land Cover, and Daytime Surface Temperature Variation Across
an Urbanized Landscape. Earths Future 2017, 5, 1084–1101. [CrossRef]

65. Bonafoni, S. Spectral index utility for summer urban heating analysis. J. Appl. Remote Sens. 2015, 9. [CrossRef]
66. Wong, M.S.; Nichol, J.E. Spatial variability of frontal area index and its relationship with urban heat island intensity. Int. J. Remote

Sens. 2013, 34, 885–896. [CrossRef]
67. Jin, M.S. Developing an Index to Measure Urban Heat Island Effect Using Satellite Land Skin Temperature and Land Cover

Observations. J. Clim. 2012, 25, 6193–6201. [CrossRef]
68. Wu, C.D.; Lung, S.C.C.; Jan, J.F. Development of a 3-D urbanization index using digital terrain models for surface urban heat

island effects. Isprs J. Photogramm. Remote Sens. 2013, 81, 1–11. [CrossRef]
69. Hu, L.Q.; Brunsell, N.A. The impact of temporal aggregation of land surface temperature data for surface urban heat island

(SUHI) monitoring. Remote Sens. Environ. 2013, 134, 162–174. [CrossRef]
70. Zhang, Z.W.; Du, Q.Y. A Bayesian Kriging Regression Method to Estimate Air Temperature Using Remote Sensing Data. Remote

Sens. 2019, 11, 767. [CrossRef]
71. Wicki, A.; Parlow, E. Multiple Regression Analysis for Unmixing of Surface Temperature Data in an Urban Environment. Remote

Sens. 2017, 9, 684. [CrossRef]
72. Dai, Z.; Guldmann, J.M.; Hu, Y. Spatial regression models of park and land-use impacts on the urban heat island in central Beijing.

Sci. Total Environ. 2018, 626, 1136–1147. [CrossRef]
73. Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying

their resolution sensitivity with spatial regression models. Landsc. Urban Plan. 2014, 123, 145–157. [CrossRef]
74. Sellers, P.J.; Meeson, B.W.; Hall, F.G.; Asrar, G.; Murphy, R.E.; Schiffer, R.A.; Bretherton, F.P.; Dickinson, R.E.; Ellingson, R.G.;

Field, C.B.; et al. Remote sensing of the land surface for studies of global change: Models—Algorithms—Experiments. Remote
Sens. Environ. 1995, 51, 3–26. [CrossRef]

75. Du, S.H.; Xiong, Z.Q.; Wang, Y.C.; Guo, L. Quantifying the multilevel effects of landscape composition and configuration on land
surface temperature. Remote Sens. Environ. 2016, 178, 84–92. [CrossRef]

76. Shahraiyni, H.T.; Sodoudi, S.; El-Zafarany, A.; Abou El Seoud, T.; Ashraf, H.; Krone, K. A Comprehensive Statistical Study on
Daytime Surface Urban Heat Island during Summer in Urban Areas, Case Study: Cairo and Its New Towns. Remote Sens. 2016,
8, 643. [CrossRef]

77. Chun, B.; Guldmann, J.M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc.
Urban Plan. 2014, 125, 76–88. [CrossRef]

78. Ho, H.C.; Knudby, A.; Sirovyak, P.; Xu, Y.M.; Hodul, M.; Henderson, S.B. Mapping maximum urban air temperature on hot
summer days. Remote Sens. Environ. 2014, 154, 38–45. [CrossRef]

http://doi.org/10.1016/j.rse.2006.07.015
http://doi.org/10.1007/s10712-008-9037-z
http://doi.org/10.3390/s8053355
http://doi.org/10.1016/S1001-0742(08)60019-4
http://doi.org/10.1002/joc.2106
http://doi.org/10.1016/j.rse.2012.12.008
http://doi.org/10.1080/03736245.2014.924864
http://doi.org/10.1007/s00704-016-2025-1
http://doi.org/10.3390/rs11010091
http://doi.org/10.1016/j.jag.2017.12.009
http://doi.org/10.3390/rs11010048
http://doi.org/10.1080/02757259509532286
http://doi.org/10.1080/01431160110115041
http://doi.org/10.3390/rs9100989
http://doi.org/10.1002/2017EF000569
http://doi.org/10.1117/1.JRS.9.096030
http://doi.org/10.1080/01431161.2012.714509
http://doi.org/10.1175/JCLI-D-11-00509.1
http://doi.org/10.1016/j.isprsjprs.2013.03.009
http://doi.org/10.1016/j.rse.2013.02.022
http://doi.org/10.3390/rs11070767
http://doi.org/10.3390/rs9070684
http://doi.org/10.1016/j.scitotenv.2018.01.165
http://doi.org/10.1016/j.landurbplan.2013.11.014
http://doi.org/10.1016/0034-4257(94)00061-Q
http://doi.org/10.1016/j.rse.2016.02.063
http://doi.org/10.3390/rs8080643
http://doi.org/10.1016/j.landurbplan.2014.01.016
http://doi.org/10.1016/j.rse.2014.08.012


Land 2021, 10, 867 24 of 30

79. Lai, J.; Zhan, W.; Quan, J.; Bechtel, B.; Wang, K.; Zhou, J.; Huang, F.; Chakraborty, T.; Liu, Z.; Lee, X. Statistical estimation of
next-day nighttime surface urban heat islands. ISPRS J. Photogramm. Remote Sens. 2021, 176, 182–195. [CrossRef]

80. Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional
zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens.
2019, 152, 119–131. [CrossRef]

81. Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity.
Sci. Total Environ. 2018, 624, 262–272. [CrossRef] [PubMed]

82. Berger, C.; Rosentreter, J.; Voltersen, M.; Baumgart, C.; Schmullius, C.; Hese, S. Spatio-temporal analysis of the relationship
between 2D/3D urban site characteristics and land surface temperature. Remote Sens. Environ. 2017, 193, 225–243. [CrossRef]

83. Liu, K.; Su, H.B.; Li, X.K.; Wang, W.M.; Yang, L.J.; Liang, H. Quantifying Spatial-Temporal Pattern of Urban Heat Island in
Beijing: An Improved Assessment Using Land Surface Temperature (LST) Time Series Observations From LANDSAT, MODIS,
and Chinese New Satellite GaoFen-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2028–2042. [CrossRef]

84. Fu, P.; Weng, Q.H. Consistent land surface temperature data generation from irregularly spaced Landsat imagery. Remote Sens.
Environ. 2016, 184, 175–187. [CrossRef]

85. Liang, B.Q.; Weng, Q.H. Assessing Urban Environmental Quality Change of Indianapolis, United States, by the Remote Sensing
and GIS Integration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 43–55. [CrossRef]

86. Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J. Photogramm.
Remote Sens. 2003, 58, 43–54. [CrossRef]

87. Chakraborty, T.; Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and
examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 269–280. [CrossRef]

88. Mpakairia, K.S.; Muvengwi, J. Night-time lights and their influence on summer night land surface temperature in two urban
cities of Zimbabwe: A geospatial perspective. Urban Clim. 2019. [CrossRef]

89. Zhang, Y.; Jiang, P.; Zhang, H.; Cheng, P. Study on urban heat island intensity level identification based on an improved restricted
Boltzmann machine. Int. J. Environ. Res. Public Health 2018, 15, 186. [CrossRef]

90. Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Gaetano, M.; Kieu, H.V. Characterizing the relationship between land use
land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [CrossRef]

91. Weng, Q.H.; Fu, P. Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of
cloud cover using time series of Landsat TIR data. Remote Sens. Environ. 2014, 140, 267–278. [CrossRef]

92. Mallick, J.; Rahman, A.; Singh, C.K. Modeling urban heat islands in heterogeneous land surface and its correlation with
impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 2013, 52,
639–655. [CrossRef]

93. Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship
between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [CrossRef]

94. Wentz, E.A.; Quattrochi, D.A.; Netzband, M.; Myint, S.W. Synthesizing urban remote sensing through application, scale, data and
case studies. Geocarto Int. 2012, 27, 425–442. [CrossRef]

95. Xian, G.; Crane, M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using
Landsat satellite data. Remote Sens. Environ. 2006, 104, 147–156. [CrossRef]

96. Wilson, J.S.; Clay, M.; Martin, E.; Stuckey, D.; Vedder-Risch, K. Evaluating environmental influences of zoning in urban ecosystems
with remote sensing. Remote Sens. Environ. 2003, 86, 303–321. [CrossRef]

97. Xian, G.Z.; Shi, H.; Auch, R.; Gallo, K.P.; Zhou, Q.; Wu, Z.; Kolian, M. The effects of urban land cover dynamics on urban heat
island intensity and temporal trends. GIScience Remote Sens. 2021. [CrossRef]

98. Howard, L. The Climate of London, Deduced From Meteorological Observations, Made at Different Places in the Neighbourhood of the
Metropolis; Phillips, W., Ed.; George Yard: London, UK, 1818.

99. Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model
simulations. Int. J. Climatol. 2014, 34, 1062–1080. [CrossRef]

100. US EPA. Reducing Urban Heat Islands: Compendium of Strategies; US EPA: Washington, DC, USA, 2008.
101. Martin-Vide, J.; Sarricolea, P.; Moreno-García, M.C. On the definition of urban heat island intensity: The “rural” reference. Front.

Earth Sci. 2015, 3. [CrossRef]
102. Giridharan, R.; Emmanuel, R. The impact of urban compactness, comfort strategies and energy consumption on tropical urban

heat island intensity: A review. Sustain. Cities Soc. 2018, 40, 677–687. [CrossRef]
103. Zhang, F.S.; Liu, Z.X. Fractal theory and its application in the analysis of soil spatial variability: A review. J. Appl. Ecol. 2011, 22,

1351–1358.
104. Gustafson, E.J. How has the state-of-the-art for quantification of landscape pattern advanced in the twenty-first century? Landsc.

Ecol. 2019, 34, 2065–2072. [CrossRef]
105. Hu, L.Q.; Brunsell, N.A. A new perspective to assess the urban heat island through remotely sensed atmospheric profiles. Remote

Sens. Environ. 2015, 158, 393–406. [CrossRef]
106. Hu, L.Q.; Monaghan, A.J.; Brunsell, N.A. Investigation of Urban Air Temperature and Humidity Patterns during Extreme Heat

Conditions Using Satellite-Derived Data. J. Appl. Meteorol. Climatol. 2015, 54, 2245–2259. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2021.04.009
http://doi.org/10.1016/j.isprsjprs.2019.04.010
http://doi.org/10.1016/j.scitotenv.2017.11.360
http://www.ncbi.nlm.nih.gov/pubmed/29253774
http://doi.org/10.1016/j.rse.2017.02.020
http://doi.org/10.1109/JSTARS.2015.2513598
http://doi.org/10.1016/j.rse.2016.06.019
http://doi.org/10.1109/JSTARS.2010.2060316
http://doi.org/10.1016/S0924-2716(03)00016-9
http://doi.org/10.1016/j.jag.2018.09.015
http://doi.org/10.1016/j.uclim.2019.100468
http://doi.org/10.3390/ijerph15020186
http://doi.org/10.1016/j.isprsjprs.2017.01.001
http://doi.org/10.1016/j.rse.2013.09.002
http://doi.org/10.1016/j.asr.2013.04.025
http://doi.org/10.1007/s10980-012-9833-1
http://doi.org/10.1080/10106049.2012.687400
http://doi.org/10.1016/j.rse.2005.09.023
http://doi.org/10.1016/S0034-4257(03)00084-1
http://doi.org/10.1080/15481603.2021.1903282
http://doi.org/10.1002/joc.3746
http://doi.org/10.3389/feart.2015.00024
http://doi.org/10.1016/j.scs.2018.01.024
http://doi.org/10.1007/s10980-018-0709-x
http://doi.org/10.1016/j.rse.2014.10.022
http://doi.org/10.1175/JAMC-D-15-0051.1


Land 2021, 10, 867 25 of 30

107. Tam, B.Y.; Gough, W.A.; Mohsin, T. The impact of urbanization and the urban heat island effect on day to day temperature
variation. Urban Clim. 2015, 12, 1–10. [CrossRef]

108. Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in
urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [CrossRef]

109. Lagouarde, J.P.; Moreau, P.; Irvine, M.; Bonnefond, J.M.; Voogt, J.A.; Solliec, F. Airborne experimental measurements of the
angular variations in surface temperature over urban areas: Case study of Marseille (France). Remote Sens. Environ. 2004, 93,
443–462. [CrossRef]

110. Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity.
Nat. Commun. 2020, 11, 2647. [CrossRef] [PubMed]

111. Ramírez-Aguilar, E.A.; Lucas Souza, L.C. Urban form and population density: Influences on Urban Heat Island intensities in
Bogotá, Colombia. Urban Clim. 2019, 29. [CrossRef]

112. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm.
Remote Sens. 2019, 158, 279–317. [CrossRef]

113. Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote
Sens. Mag. 2016, 4, 22–40. [CrossRef]

114. Chen, M.; Jiang, X.; Wu, H.; Wang, N.; Tang, R. An in-Scene Atmospheric Compensation Algorithm for Aster Thermal Band. In
Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019;
pp. 1876–1879. [CrossRef]

115. French, A.N.; Inamdar, A. Land cover characterization for hydrological modelling using thermal infrared emissivities. Int. J.
Remote Sens. 2010, 31, 3867–3883. [CrossRef]

116. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface
emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [CrossRef]

117. Mohamed, A.A.; Odindi, J.; Mutanga, O. Land surface temperature and emissivity estimation for Urban Heat Island assessment
using medium- and low-resolution space-borne sensors: A review. Geocarto Int. 2017, 32, 455–470. [CrossRef]

118. Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Steven Cothern, J.; Hook, S.; Kahle, A.B. A temperature and emissivity separation
algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens.
1998, 36, 1113–1126. [CrossRef]

119. Rolim, S.B.A.; Grondona, A.; Hackmann, C.L.; Rocha, C. A Review of Temperature and Emissivity Retrieval Methods: Applica-
tions and Restrictions. Am. J. Environ. Eng. 2016, 6, 119–128. [CrossRef]

120. Li, Z.L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.H.; Yan, G. Land surface emissivity retrieval from satellite data.
Int. J. Remote Sens. 2013, 34, 3084–3127. [CrossRef]

121. Ma, M.; Chen, S.B.; Lu, T.Q.; Lu, P.; Xiao, Y. Study on scale problems based on the diviner thermal infrared emissivity of LRO
satellite. Hongwai Yu Haomibo Xuebao J. Infrared Millim. Waves 2018, 37, 315–324. [CrossRef]

122. Wang, W.; Yao, X.; Shu, J. Air advection induced differences between canopy and surface heat islands. Sci. Total Environ. 2020, 725.
[CrossRef]

123. Oláh, A.B. The possibilities of decreasing the urban heat Island. Appl. Ecol. Environ. Res. 2012, 10, 173–183. [CrossRef]
124. Gaur, A.; Eichenbaum, M.K.; Simonovic, S.P. Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under

climate and land-cover change. J. Environ. Manag. 2018, 206, 145–157. [CrossRef]
125. Cai, Z.; Han, G.; Chen, M. Do water bodies play an important role in the relationship between urban form and land surface

temperature? Sustain. Cities Soc. 2018, 39, 487–498. [CrossRef]
126. Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi,

M. Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ. Eng. Manag. 2016, 22, 1–16.
[CrossRef]

127. Ulpiani, G.; Ranzi, G.; Shah, K.W.; Feng, J.; Santamouris, M. On the energy modulation of daytime radiative coolers: A review on
infrared emissivity dynamic switch against overcooling. Sol. Energy 2020, 209, 278–301. [CrossRef]

128. Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.;
Nilon, C.H.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 2011, 92, 331–362.
[CrossRef] [PubMed]

129. Smargiassi, A.; Goldberg, M.S.; Plante, C.; Fournier, M.; Baudouin, Y.; Kosatsky, T. Variation of daily warm season mortality as a
function of micro-urban heat islands. J. Epidemiol. Community Health 2009, 63, 659–664. [CrossRef] [PubMed]

130. Heaviside, C.; Vardoulakis, S.; Cai, X.M. Attribution of mortality to the urban heat island during heatwaves in the West Midlands,
UK. Environ. Health A Glob. Access Sci. Source 2016, 15. [CrossRef] [PubMed]

131. Moon, J. The effect of the heatwave on the morbidity and mortality of diabetes patients; a meta-analysis for the era of the climate
crisis. Environ. Res. 2021, 195. [CrossRef]

132. Li, J.; Xu, X.; Yang, J.; Liu, Z.; Xu, L.; Gao, J.; Liu, X.; Wu, H.; Wang, J.; Yu, J.; et al. Ambient high temperature and mortality in
Jinan, China: A study of heat thresholds and vulnerable populations. Environ. Res. 2017, 156, 657–664. [CrossRef]

133. Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its
impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [CrossRef]

http://doi.org/10.1016/j.uclim.2014.12.004
http://doi.org/10.1080/01431168908904002
http://doi.org/10.1016/j.rse.2003.12.011
http://doi.org/10.1038/s41467-020-16461-9
http://www.ncbi.nlm.nih.gov/pubmed/32461547
http://doi.org/10.1016/j.uclim.2019.100497
http://doi.org/10.1016/j.isprsjprs.2019.09.006
http://doi.org/10.1109/MGRS.2016.2540798
http://doi.org/10.1109/IGARSS.2019.8898686
http://doi.org/10.1080/01431161.2010.483491
http://doi.org/10.1109/TGRS.2007.904834
http://doi.org/10.1080/10106049.2016.1155657
http://doi.org/10.1109/36.700995
http://doi.org/10.5923/s.ajee.201601.18
http://doi.org/10.1080/01431161.2012.716540
http://doi.org/10.11972/j.issn.1001-9014.2018.03.011
http://doi.org/10.1016/j.scitotenv.2020.138120
http://doi.org/10.15666/aeer/1002_173183
http://doi.org/10.1016/j.jenvman.2017.10.002
http://doi.org/10.1016/j.scs.2018.02.033
http://doi.org/10.3846/13923730.2015.1111934
http://doi.org/10.1016/j.solener.2020.08.077
http://doi.org/10.1016/j.jenvman.2010.08.022
http://www.ncbi.nlm.nih.gov/pubmed/20965643
http://doi.org/10.1136/jech.2008.078147
http://www.ncbi.nlm.nih.gov/pubmed/19366997
http://doi.org/10.1186/s12940-016-0100-9
http://www.ncbi.nlm.nih.gov/pubmed/26961286
http://doi.org/10.1016/j.envres.2021.110762
http://doi.org/10.1016/j.envres.2017.04.020
http://doi.org/10.1007/s00484-009-0256-x


Land 2021, 10, 867 26 of 30

134. Johnson, D.P.; Wilson, J.S.; Luber, G.C. Socioeconomic indicators of heat-related health risk supplemented with remotely sensed
data. Int. J. Health Geogr. 2009, 8, 57. [CrossRef] [PubMed]

135. Chen, L.; Jiang, R.; Xiang, W.N. Surface Heat Island in Shanghai and Its Relationship with Urban Development from 1989 to 2013.
Adv. Meteorol. 2016. [CrossRef]

136. Zhou, D.; Bonafoni, S.; Zhang, L.; Wang, R. Remote sensing of the urban heat island effect in a highly populated urban
agglomeration area in East China. Sci. Total Environ. 2018, 628–629, 415–429. [CrossRef]

137. Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791.
[CrossRef]

138. Zhou, D.; Zhang, L.; Hao, L.; Sun, G.; Liu, Y.; Zhu, C. Spatiotemporal trends of urban heat island effect along the urban
development intensity gradient in China. Sci. Total Environ. 2016, 544, 617–626. [CrossRef] [PubMed]

139. Adeyeri, O.E.; Akinsanola, A.A.; Ishola, K.A. Investigating surface urban heat island characteristics over Abuja, Nigeria:
Relationship between land surface temperature and multiple vegetation indices. Remote Sens. Appl. Soc. Environ. 2017, 7, 57–68.
[CrossRef]

140. Wu, X.; Cheng, Q. Coupling Relationship of Land Surface Temperature, Impervious Surface Area and Normalized Dif-
ference Vegetation Index for Urban Heat Island Using Remote Sensing. In Proceedings of the SPIE—The International
Society for Optical Engineering 2007. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/
6749/1/Coupling-relationship-of-land-surface-temperature-impervious-surface-area-and/10.1117/12.737550.full?SSO=1
(accessed on 10 October 2020). [CrossRef]

141. Alexander, C. Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST). Int. J.
Appl. Earth Obs. Geoinf. 2020, 86, 102013. [CrossRef]

142. Diaz-Pacheco, J.; Gutiérrez, J. Exploring the limitations of CORINE Land Cover for monitoring urban land-use dynamics in
metropolitan areas. J. Land Use Sci. 2014, 9, 243–259. [CrossRef]

143. Giannakopoulos, C.; Kostopoulou, E.; Varotsos, K.V.; Tziotziou, K.; Plitharas, A. An integrated assessment of climate change
impacts for Greece in the near future. Reg. Environ. Chang. 2011, 11, 829–843. [CrossRef]

144. Estrada, F.; Botzen, W.J.W.; Tol, R.S.J. A global economic assessment of city policies to reduce climate change impacts. Nat. Clim.
Chang. 2017, 7, 403–406. [CrossRef]

145. Li, X.; Li, W.; Middel, A.; Harlan, S.L.; Brazel, A.J.; Turner, B.L. Remote sensing of the surface urban heat island and land
architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral-demographic-economic
factors. Remote Sens. Environ. 2016, 174, 233–243. [CrossRef]

146. Cai, G.Y.; Liu, Y.; Du, M.Y. Impact of the 2008 Olympic Games on urban thermal environment in Beijing, China from satellite
images. Sustain. Cities Soc. 2017, 32, 212–225. [CrossRef]

147. Bonafoni, S.; Baldinelli, G.; Verducci, P. Sustainable strategies for smart cities: Analysis of the town development effect on surface
urban heat island through remote sensing methodologies. Sustain. Cities Soc. 2017, 29, 211–218. [CrossRef]

148. Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban Ecological Systems:
Linking Terrestrial Ecological, Physical, and Socioeconomic Components of Metropolitan Areas. Annu. Rev. Ecol. Syst. 2001, 32,
127–157. [CrossRef]

149. Ciardini, V.; Caporaso, L.; Sozzi, R.; Petenko, I.; Bolignano, A.; Morelli, M.; Melas, D.; Argentini, S. Interconnections of the urban
heat island with the spatial and temporal micrometeorological variability in Rome. Urban Clim. 2019, 29. [CrossRef]
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