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Abstract: Population data are key indicators of policymaking, public health, and land use in urban
and ecological systems; however, traditional censuses are time-consuming, expensive, and laborious.
This study proposes a method of modelling population density estimations based on remote sensing
data in Hefei. Four models with impervious surface (IS), night light (NTL), and point of interest
(POI) data as independent variables are constructed at the township scale, and the optimal model
was applied to pixels to obtain a finer population density distribution. The results show that:
(1) impervious surface (IS) data can be effectively extracted by the linear spectral mixture analysis
(LSMA) method; (2) there is a high potential of the multi-variable model to estimate the population
density, with an adjusted R2 of 0.832, and mean absolute error (MAE) of 0.420 from 10-fold cross
validation recorded; (3) downscaling the predicted population density from the township scale to
pixels using the multi-variable stepwise regression model achieves a more refined population density
distribution. This study provides a promising method for the rapid and effective prediction of
population data in interval years, and data support for urban planning and population management.

Keywords: population estimation; impervious surface; stepwise regression; remote sensing; Hefei

1. Introduction

Population data are considered important indices for the development of a country
or region. Urban or land planning, policymaking, public emergencies, and other public
aspects require detailed population data [1,2]. Currently, most countries obtain population
data through the census. However, accessing the population data is difficult because of the
dispersion and dynamics of the population distribution [3,4]. In China, the census is the
most common method for collecting population data. Although the census is relatively
credible, it is time-consuming, costly, and obstructed by difficulties in reality [5]. Nowadays,
population mobility makes it difficult to obtain actual residence figures. People are more
protective of their privacy. It is very common to refuse to fill in personal information.
The situations above increase the difficulty of the census. Moreover, the national census
is conducted once every ten years, which may lead to the absence of population data in
interval years. Consequently, scientific decision making lacks support.

Unlike the national census, remote sensing data are not subject to time restrictions [6–9].
Owing to the rapid development of remote sensing and computer technologies, some
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scholars have applied these to estimate the population [10–12], enabling the possibility of
mapping populations at the pixel scale. The commonly used remote sensing images are
as follows: high-resolution images, such as IKONOS, QuickBird, and Worldview images,
and moderate-resolution images, such as the Landsat series, hyperspectral, and radar
images [2,13,14]. Moreover, land-use types and building areas can be extracted from
remote sensing images for population estimation [15–17]. Among the abovementioned
remote sensing images, Landsat satellites are the most widely used because of their free
access and relatively high spatial and temporal resolutions [2,16].

Impervious surfaces (ISs), as information related to the population, can be extracted
from remote sensing images. ISs comprise the surface of artificial buildings, which are
closely related to human activities [4]. This concept was introduced in 1996, defining an
IS as any material that prevents the flow of water into the soil, including both artificial
structures and natural substances (such as hard bare rocks) [18]. Currently, construction
areas are continuously expanding because of human activities. Thus, ISs were redefined as
artificial surfaces, such as roofs, asphalt or cement roads, parking lots, and other waterproof
surfaces [19–21]. Existing studies have used IS data to estimate populations with old census
data, such as in 2000 and 2010, most of which are at the county scale [3–5,22–25].

There are several methods for extracting IS data from Landsat satellites, including
the manual interpretation, classification, and spectral analysis methods [26–29]. The first
method requires prior knowledge, and manual interpretation has a low efficiency [3]. The
second method aims to extract the IS data at the pixel level to obtain the IS area. Among
the spectral analysis methods, linear spectral mixture analysis (LSMA) can extract IS data
at the sub-pixel scale, obtaining the proportion of an IS in a pixel [4]. The method has a
high efficiency and accuracy. It has been applied in population estimation [3–5].

In addition to ISs, remote sensing technology increasingly contributes to the study of
factors affecting population distribution. Recently, night light (NTL) data have been incor-
porated with other data sources to improve population estimation [9,30,31]. The existing
NTL data include the DMSP/OLS NTL, NPP/VIIRS NTL, and Luojia-1 NTL [32–34]. The
first two types of NTL data have a low resolution and sensitivity, particularly for low radia-
tion brightness areas [34,35]. Luojia-1 NTL has the highest resolution (130 m) worldwide
and can delineate the scope of human activities more accurately; thus, it has been applied
for population estimation with good results. Luojia-1 NTL was provided by the Luojia-1
satellite which was developed by Wuhan University and related institutions [31,35,36].

Data with spatial-temporal information for scientific research are emerging in this
era of big data, among which the point-of-interest (POI) is a series of points with location
and time information [37]. POI data represent a practical space object crawled from
map websites, such as the Baidu Map, and map service providers like OSM (See in
https://en.m.wikipedia.org/wiki/Baidu_Maps, accessed on 26 July 2021). POI data have
been shown to be closely related to the population’s distribution [38,39]. Furthermore, the
accessibility of fine-grained geographic factor data has been applied by many scholars in
the process of population spatialization [7,38,40].

With the wide application of remote sensing and geographic information in popu-
lation estimation, the population estimation model was established on the relationship
between population and dwelling units [17]; (b) land use [2]; (c) built-up areas [4,5,22–25];
(d) spectral features of the image pixel [16]. The current research mainly focuses on built-
up areas, in which ISs are typical representatives of urban areas. Since the methods for
extracting ISs may lead to the confusion of ground objects [29], it is easy to lead to the esti-
mation error of delineating population distributions with IS data as the sole independent
variable [4].

The census is inefficient and time-consuming. Most regions all over the world lack
population data in the interval years. The population estimation model established with
ISs as a single variable has the problem of inaccurate delineation of population distribution
areas. As mentioned above, a new method is needed to not only estimate populations
accurately but also help to delineate population distributions. The main goal of the
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presented study is to improve the population density estimation based on impervious
surfaces. To better delineate the population distribution area, our study integrates POI data
and NTL data with IS data to improve the model.

Therefore, in this study, the geo-spatiotemporal big data POI and the latest high-
resolution NTL data from Luojia-1 were fused with the IS information extracted from
remote sensing images to try to establish the population estimation model. With IS data as
the main independent variable, the population distribution of Hefei was explored using the
stepwise regression method. The optimal population estimation model was then applied
to the pixel scale. Finally, a finer population distribution map was obtained.

2. Study Area

Hefei (30◦57′–32◦32′ N, 116◦41′–117◦58′ E; Figure 1) is situated in the middle of Anhui
Province in China, covering a total area of 11,408.48 km2 with an average altitude of 30 m.
The terrain comprises plains and low hills. It is characterised by a subtropical monsoon
climate with an annual mean daily temperature of 16 ◦C and a total annual precipitation of
995.2 mm. As the capital, Hefei is the cultural, commercial, financial, and political centre
of Anhui Province. Located in the radiation belt of the Yangtze River Delta, it acts as a
gateway for the development of the central and western regions. Meanwhile, as a node
city of the ‘One Belt, One Road’ strategy, Hefei has great economic potential [41].
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Figure 1. Location of study area; (a) Location of Anhui Province in China; (b) Location of the study
area in Anhui Province; (c) The administrative division map of study area, and the minimum level
are townships.

The administrative units of the study area are divided into eight county-scale units
(covering all counties and districts) and 141 township scale units. Moreover, the population
of Hefei increased rapidly from 4.382 million in 2000 to 8.087 million in 2018 (Bulletin of
the Hefei sample survey on population changes, http://tjj.hefei.gov.cn/tjyw/tjgb/115465
61.html, accessed on 19 January 2021). Owing to the rapid population change in Hefei and
the difficulty in obtaining township population data for the intervals of census years, the
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stepwise regression model for population estimation was applied to provide a reference
for mapping the population density distribution.

3. Data and Methods
3.1. Data Collection

The main data used in this study include the satellite data, POI data, NTL data,
township vector boundary data in Hefei, and census data, for 2018 (Table 1). Landsat
8 OLS multi-temporal images were selected to extract IS data on April 10, 2018 because
of the sparse vegetation in spring but lush plants in summer and a large area of bare soil
in winter affecting the experiment. The cloudiness of this image was 0.03, which had
negligible impacts on data processing. Radiometric calibration, atmospheric correction,
and geo-referencing were conducted from the remote sensing image downloaded for
free from the United States Geological Survey (USGS, http://earthexplorer.usgs.gov/,
accessed on 15 April 2020). Subsequently, the study area was masked from the image using
administrative data from the Hefei administrative boundary.

Table 1. Data sets used in this study.

Data Sources Description

Landsat imagery Path 121 and row 38 on 10 April 2018, cloudiness of 0.03
POI data 123,348 points related to population from Baidu Map of Hefei in 2018
NTL data Night light data from Luojia-1 satellite of Hefei in 2018

Population data at township scale 141 townships of Hefei based on the census in 2018
Administrative data Boundary vector at township scale

Census data were obtained from the China County Statistical Yearbook published
in 2019, and the Hefei Municipal Bureau Statistics. The 141 townships were used for
modelling to explore the population density estimation model at a small scale. Moreover,
the POI data, including 123,348 POIs in 2018, were crawled from the Baidu Map Services
(http://map.baidu.com, accessed on 3 January 2021), which is the most widely used and
largest web map service provider in China [7].

The NTL data of Luojia-1 were downloaded from the High-Resolution Earth Ob-
servation System of Hubei Data and Applications Network (http://www.hbeos.org.cn/,
accessed on 27 January 2021). Finally, all spatial data were georeferenced in the same
projection owing to the different source data. The flowchart of modelling the population
density estimation is shown in Figure 2.
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3.2. Mapping is Distribution and Validating the Results

LSMA can effectively discriminate different objects, such as soil, water, vegetation,
and ISs. Therefore, LSMA was utilised in the mapping process to obtain the proportion of
an IS within a pixel.

After pre-processing, the image was separated from other land covers using the
modified normalised difference water index (MNDWI) [42], aiming to remove the non-IS
fractions first. Subsequently, the minimum noise fraction (MNF) was adopted to reduce
the redundancy within the image and improve the quality of the endmember selection [29].
Generally, three or four endmembers are selected [43]. As a consequence of confusing
pixels in ISs, we selected four endmembers through repeated trials, including high- and
low-albedo objects, vegetation, and bare soil, based on the vegetation-impervious surface-
soil (V-I-S) model [44]. Finally, the fully constrained LSMA method was used to develop the
fractional IS map, during which the high-and low-albedo objects were added together [45].
Thus, a map of the IS distribution in 2018 was obtained.

When measuring the V-I-S model fitness, the average root mean square (RMS) of
overall bands was used to evaluate the accuracy of the LSMA (Equation (1)) [44]:

RMS =

√
1
m

m

∑
i=1

ε(λi)
2 (1)

where RMS is the root mean square, m is the number of pixels in this image and ε(λi) is
the residual error of the pixels after unmixing.

To further assess the unmixing accuracy, detailed ground reference data (the actual
IS data) are required for comparison with the experimental data [46]. In this study, a
total of 120 validated samples were randomly selected from satellite images in Hefei,
each containing 3 × 3 pixels (90 × 90 m). Subsequently, all the validation samples were
overlapped on the high-resolution image in 2018 from Google Earth Pro, which has been
proven suitable for obtaining ground reference data [46]. Finally, the linear fit between the
true and experimental data was evaluated using the coefficient of determination (R2) and
the root mean square error (RMSE). As the study is intended to estimate the population
density using the IS data as a variable, the proportion of an IS in a pixel was calculated,
and the mean data were used as a proxy for each township.

3.3. Modelling Population Density Estimation Using Stepwise Linear Regression
3.3.1. Data Preparation for Modelling

At present, the commonly used scales are 250, 500, and 1000 m in the study of
population spatialisation. The selection of scale is mainly based on the area of the target
and model stability. The 250 m scale and below is suitable for research in villages and
communities, 500 m for that in counties and cities, and 1000 m for that in large-scale
regional studies involving cities and provinces. According to existing research, the number
of samples exceeding 50,000 affects the stability of the regression model and the accuracy
of the model [13,40]. Therefore, the 500m scale was selected for modelling.

In this study, each 500 m grid was defined as a pixel. The pixel was built using ArcGIS
10.3 software. Using the ‘Create Fishnet’ function, the grid files of 500 m pixels were
generated within the Hefei administrative boundary. The following experiments were
conducted using ArcGIS 10.3 software.

The IS data were resampled to a resolution of 500 m. We obtained population-related
POI data from Baidu Map in 2018 using Python to crawl the eight categories, including
restaurants, shopping, hospitals and clinic facilities, education facilities, entertainment
and retail, public service facilities, companies, and residential areas [7]. To avoid multi-
collinearity caused by multiple variables, the POI data of eight categories were merged
into an image.

The commonly used point-based methods include the analysis based on Euclidean
distance and point density. The Euclidean distance considers that the plane space is
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homogeneous, ignoring the relationship of facilities and service functions between cities,
which is suitable for studying scattered points. Point density analysis is based on the
aggregation of point distribution, and these points often interact with each other in space.
We tried to aggregate the POIs into the grids to obtain the POI density. However, there
was no distribution of POIs in the grids of sparse population areas, leading to the null data
in samples.

The kernel density analysis is a point density method based on the first law of ge-
ography [7] and is suitable for the estimation of continuous geographic phenomena.
POIs are distributed in the range of human activities and interact with urban facili-
ties and transportation, and are consistent with aggregation distribution and continuous
geographic phenomena.

Kernel density analysis was then conducted to analyse the point density spatially
and discern the hotspots [47–49]. The crucial step was selecting the appropriate band-
widths [48]. We tested bandwidths varying from 1000 to 6000 m at an interval of 100 m,
during which the correlation between the POI density generated by different bandwidths
and the actual population density was analysed. Finally, it was found that when the
bandwidth was 3500 m, the correlation between POI data and population density was the
strongest. Therefore, the bandwidth of 3500 m performed well in identifying the hotspots,
and we obtained the raster map of POI data at a 500 m pixel scale. The NTL image was
clipped and pre-processed after downloading and subsequently resampled to pixels.

The vector file of the township boundary was superimposed with the raster image to
obtain the township information on each pixel. To achieve consistency in the dimensions
of different variables, the maximum and minimum standardisation methods were adopted
to standardise the values of the three independent variables from 0 to 1 [21]. Logarithmic
transformation was used to recalculate the population density data to eliminate the negative
effects of the excessive population density [7]. Considering each township as a sample, the
average value of each variable in each township was obtained as the independent variable
value of a sample.

3.3.2. Model Concept and Validation

ISs are known to be closely related to population data [4]. However, the result of
using IS data as the sole independent variable for population density estimations always
leads to a coarse prediction, as a single variable cannot satisfactorily describe a populated
zone [22,23]. Therefore, POI and NTL data were then added to the model. Assuming
that the IS data has no significant multicollinearity with the other two data sources, the
population density estimation model can be constructed (Equation (2)) [45]:

Y = β0 +
n

∑
i=1

βiXi + ε (2)

where Y is the dependent variable (population density), Xi is the independent variable (IS,
POI, and NTL data), β0 is the intercept, βi is the regression coefficient of the ith independent
variable, ε is the error of the models, and n represents the number of independent variables.

To explore the relationship between IS data, NTL data, and POI data, Pearson cor-
relation and partial correlation analyses were conducted. The former aims to measure
the intensity of the monotonic relationship between variables [50], and the latter can anal-
yse the correlation between two variables by keeping the other variables constant and
eliminating their effects [51]. The correlation analysis provided the basis for modelling.
Furthermore, to quantitatively characterise the multicollinearity, it was checked according
to a rule of thumb stating that a variance inflation factor (VIF) value above 10 rules out the
variable because of the high multicollinearity [52].

The models were constructed by randomly selecting samples from the townships.
Hence, a stratified sampling procedure was conducted. To better assess the accuracy
of the model, the 10-fold cross validation was applied to evaluate the performance of all
models [7]. Approximately 90% of the townships (divided into nine groups) were randomly
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selected from all 141 samples, and the rest (one group) were used to repeat 5 trials for the
10-fold cross validation. The census data of nine groups were used for training samples
and one group for accessing the accuracy of the results. As the validated model can be
applied for the population estimation, it is vital to test the model fit. In this study, the
model fit between the predicted and true population density at the township scale was
examined using the residual-based adjusted R2, relative mean square error (RMSE), and
the mean average error (MAE) [52].

As the independent variable data used in the modelling at the township scale were
the average independent variable values of all pixels in the township, the optimal model
can directly be applied to the pixel [4]. The IS data of each pixel were extracted by LSMA
and then resampled, NTL data were obtained by directly processing the Luojia-1 NTL data
image, and the POI data were obtained by calculating the kernel density. The population
density data and independent variables of each township were obtained by connecting the
township name with the ‘Identity’ function of ArcGIS 10.3 software.

The estimation models are based on stepwise linear regression. Despite its limitations,
stepwise regression is still very popular in recent studies [53–55], because it can effectively
identify the best variables in many related or unrelated variables to build a good prediction
model [56,57]. Finally, the IS, NTL, and POI data were merged into the pixels using their
IDs for predicting the population density in a pixel with the coefficients of the optimal
model. To validate the population density estimation model at the 500 m pixel scale,
three administrative units were selected as proxies for high-, medium-, and low-density
areas, respectively.

4. Results
4.1. Analysis of is Distribution and Assessment

As the main independent variable of the model, the accuracy of the ISs directly affects
the initial regression result. After calculating the MNDWI index, the water was masked.
Four endmember types were distinguished based on the terrain properties, and finally, the
high- and low-albedo endmembers were superimposed to obtain the distribution map of
the IS proportion (Figure 3). The central part of Figure 3 shows the four main districts of
Hefei, wherein the deeper colour indicates a higher IS value. Almost every township has
a deep-coloured area, representing a population gathering and large IS distribution. The
RMS was tested at 0.094 within a reasonable scope [58].

The distribution of the validation points is shown in Figure 4. After calculating the
proportion of each endmember type in the external square of each point, the proportion
of the IS in the square was compared with the IS abundance value extracted by LSMA.
Subsequently, the experimental and true data were compared by calculating the linear
fitting between them. The linear regression was up to the standard, with R2 = 0.788 and the
RMSE = 0.129 (Figure 5). Notably, a strong correlation was observed between experimental
and true data.

4.2. Stepwise Regression Models for Population Density Estimation
4.2.1. Correlation Analysis between Variables

Pearson correlation analysis was conducted between independent variables, and
the corresponding coefficients were calculated (Table 2). The IS data were positively
correlated with the NTL data and POI data, with correlation coefficients of 0.729 and 0.689,
respectively, and with all being less than 0.9, which is the threshold for correlation analysis
in population estimation [59]. The partial correlation coefficient of each variable (Table 3) is
smaller than the correlation coefficient.
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Table 2. Pearson correlation coefficients between all variables in the township scale (***—at the 1%
level, **—at the 5% level).

IS Data POI Data NTL Data

IS data 1 0.729 *** 0.689 ***
POI data 1 0.673 **
NTL data 1

Table 3. Partial correlation coefficients between all variables in the township scale (***—at the
1% level).

IS Data POI Data NTL Data

IS data 0.495 *** 0.391 ***
POI data 0.495 *** 0.345 ***
NTL data 0.391 *** 0.345 ***

To further explore the correlation between the three independent variables, the vari-
ance inflation factor (VIF) values were calculated when the population density was the
dependent variable [57] (Equation (3)):

VIF =
1

1− Ri
2 (3)

where Ri is the correlation coefficient of the ith independent variables.
The VIF values were all below 3 (Table 4). Based on the above analysis, the correla-

tion between independent variables was weak and the multicollinearity was low, which
provided a basis for constructing the multi-variable regression model [57]. Note that the
bivariate model (a) included IS data and NTL data, and the bivariate model (b) included IS
data and POI data.

Table 4. The coefficients (on a log scale) of different types of models of variables and VIF (***—at the 1% level).

Single Variable Model Bivariate Model (a) Bivariate Model (b) Multi-Variable Model

IS data 7.922 *** 6.700 *** 5.582 *** 4.567 ***
POI data 2.515 *** 1.497 ***
NTL data 2.317 *** 2.932 ***
Constant 4.983 *** 5.125 *** 5.325 *** 5.402 ***
Max VIF 1.000 2.438 2.916 2.989
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4.2.2. Comparison and Validation of Models

In this study, the error between the predicted and actual population densities was
calculated by mean absolute error (MAE) (Equation (4)):

MAE =
∑n

a=1,b=1|Popa − Popb|
n

(4)

where MAE is the relative error of the population density estimation, Popa is the actual
data of population density on a log scale, Popb is the prediction data of the population
density on a log scale, and n is the number of townships.

The 10-fold cross validation results show that the single variable regression model for
population density estimation was built with IS data as a single independent variable to
test its prominence, which performs well, with R2 = 0.689 and the RMSE = 0.922 (Table 5).
Alternatively, the addition of POI data changed the model fit from 0.689 to 0.834 and the
RMSE from 0.922 to 0.686, indicating the influence of POI data on the population density.
The model fit performed best after adding all three independent variables in the regression,
and the RMSE continued to decrease slightly.

Table 5. The validation result (on a log scale) for models.

Training Group Validation Group

Types of Models Adj.R2 RMSE Adj.R2 RMSE MAE

Single variable model 0.687 0.940 0.689 0.922 0.687
Bivariate model (a) 0.711 0.847 0.715 0.910 0.661
Bivariate model (b) 0.834 0.685 0.834 0.686 0.514

Multi-variable model 0.856 0.633 0.852 0.632 0.460

Table 5 shows the results of the mean value of the adjusted R2, RMSE, and MAE. It
indicates that the value of MAE decreased with the introduction of NTL data and POI
data, and decreased most obviously after the introduction of POI data. In the bivariate
models, model (b) with IS data and POI data as independent variables performed better.
The MAE of the multi-variable model after the introduction of NTL data and POI data was
the lowest, and the model fit was the best, which is regarded as the optimal model.

In the optimal model, the group of minimum MAE was selected to explore the re-
lationship between the predicted population density and the actual population density
(Figure 6). The model achieved a cross-validated MAE of 0.420 and an adjusted R2 of 0.832.
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Before population spatialization, it is necessary to modify the population density be-
tween the township scale and the pixel scale to reduce the error caused by downscaling [60]
(Equation (5)):

Pop′ i,j = Popb_i,j
· Popa_i

∑N
j=1 Popb_i,j·Areaj

(5)

where Pop′ i,j is the modified population density of jth pixel of the ith township after
exponential transformation, Popb_i,j , is the prediction data of population density of the
jth pixel of the ith township after exponential transformation, Popa_i is the actual data of
population density of ith township, N is the number of townships, Areaj is the area of the
jth pixel.

Figure 7a shows the population distribution maps based on census data, and Figure 8
shows those based on predicted data. It can be seen from Figure 7a that the population den-
sity within the administrative unit is homogeneous, and distinguishing between densely
populated and sparsely populated areas is not possible; however, the township scale is the
smallest in the census. Figure 7b shows the population distribution using a multi-variable
regression model at a 500 m pixel scale. In the main urban areas with large population den-
sity gaps, the population distribution is no longer divided by administrative boundaries,
and the value of each pixel represents the population density in the area. Therefore, this
map more precisely reflects the population distribution within the administrative unit.

The current study areas for population estimation are concentrated in countries at
the province or county scale [23,25], always leading to a coarse population distribution.
Our study explored the population density estimation model in Hefei (a developing city),
emphasising the importance of population data for some policies, such as the introduction
of talent and household registration for migrant workers, which is closely concerned
with the population. The model for population estimation can predict the population
in the interval years of census data and then be applied to the pixel scale to redistribute
the population. Owing to the lack of census data at the pixel scale, it was difficult to
assess the accuracy of the population spatialisation quantitatively. Therefore, we compared
the predicted data with high-resolution images and maps of administrative units at the
township scale with three representative areas: high-, medium-, and low-density areas
(Figures 8–10) [60].
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Figure 9. Comparison of (a) the high-resolution image, (b) the population density at the township
scale, and (c) that at the 500 m scale in Shangpai Township as the medium-density areas.

Figures 8–10 depict the comparison between Google Earth high-resolution images,
census data, and population density at a 500 m pixel scale. Notably, all population distri-
butions at the township scale were homogenous. From the finer-scale maps of the three
figures, the pixels at the administrative boundary of the townships are segmented. The
value of independent variables in the segmented pixel is determined by the township with
the pixels’ largest area. However, the two segmented parts are involved in the calculation,
resulting in the repeated calculation of the boundary part. This is one error source in the
pixel-scale population distribution map.
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Xiaoyaojin Township is located in the southeast of Luyang District, Hefei, covering
an area of 2.92 km2. The population density here is 23.3 × 104 people/km2. The north-
eastern part of Xiaoyaojin Township is dispersed with vegetation, and other parts are full
of buildings, as shown in Figure 8a. The north-eastern part is sparsely populated. The
building area has high IS and NTL data values, along with a high density of POI data
with a concentrated population distribution. Figure 9b cannot distinguish between the
north-eastern part and other parts of the country’s population distribution differences. The
pixels from the northeast of Figure 8c are dark in colour, indicating a sparse population.
The others are yellow and orange, indicating a high population density. Therefore, the pixel
map (Figure 8c) can effectively reflect the population distribution in a high-density area.

Located at the junction of the main city of Hefei and Feixi County, Shangpai covers an
area of 121 km2, with a population density of 2228.29 people/km2. From the high-resolution
image (Figure 9a), the central area of Shangpai Township is located in the northern part,
and several dwelling units are sprinkled in the south-eastern area. Other areas are mainly
forests or croplands. The population density of the Shangpai town, displayed in Figure 9b,
does not consider the internal population distribution differences. The yellow pixels shown
in Figure 9c correspond to the building area in Figure 9a, which represents the area where
the population is concentrated.

Xiage Township belongs to Chaohu City (a county-level city in Hefei), covering an
area of 184 km2, with a population density of 306.27 people/km2. It is located on the
northern bank of Chaohu Lake, with beautiful scenery. The township (Figure 10a) mainly
consists of mountainous terrain with vast tracts of forests, and the residential areas are
distributed in the southern part, as shown in Figure 10c.

5. Discussion

Testing on extracting the proportion of ISs by LSMA obtained a satisfying result,
corresponding with the previous findings [29,61]. The map of the ISs showed that their
distribution was related to the population (Figures 3 and 7). However, estimating the
population with a sole variable may led to a coarse result. Thus, POI and NTL data
were considered as added independent variables. Note that the number of independent
variables in the multi-variable model should be selected with caution to avoid being
affected by overfitting and model complexity. From the VIF value in Table 4, with the
increase of the number of variables, the collinearity between variables also gradually
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increased, which indicates that three is a stable number of variables. Low VIF values
and partial correlation coefficients implied low multicollinearity among the independent
variables for the population density estimation. In the stepwise process, the higher adjusted
R2, lower RMSE, and lower MAE (Table 5) were attributed to the addition of POI and NTL
data, corresponding to our assumption. Compared with the population density estimation
model based on IS data, the method obtains a smaller error [3].

The population density estimation model has a small number of samples: only
141 township samples were used for modelling. Therefore, the model applies to simi-
lar scales, such as municipal study areas or small regions. The accuracy of the model was
assessed by a 10-fold cross-validation method, indicating that the model was effective in
Hefei in 2018. The verification of the model can be further deepened, such as trying to
verify it in other urban areas, or applying the model in historical years, and then using
census data to verify it. This will be our future research direction.

Figure 11 depicts the residuals of the optimal model. We have tested the residuals of
these predictions of the multi-variable model. The Moran’ I was −0.016, and the p-value
was 0.466. Therefore, the spatial distribution of residuals does not conform to spatial
autocorrelation. The township with the largest residual is Yafu township, with a residual
error of 2602 people/km2. Yafu township is located in the southeast of Chaohu (Figure 1).
As can be seen in Figure 3, the ISs are distributed here. Therefore, in future research, we will
try to establish population estimation models by calculating the height of urban buildings,
which might be very useful to improve the estimation accuracy of the model.
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Figure 11. Residuals (on a log scale) between the estimated population density and the corresponding
actual population density at the township scale.

In our future research, we will try to combine all independent variables to estimate
the population. Additionally, data sources are also important. Geographical and economic
data are popular in population estimation studies [62,63], but are difficult to combine with
the population because of the spatial gap. Moreover, the lowest scale of economic data is
the county (or district) scale, obstructing a deep study on the township scale or smaller. In
contrast, the remote sensing data in our study can correspond with the township scale and
have obvious advantages over these data types, which are not only easy to access but are
updated periodically.

The optimal model developed in this study—incorporating IS data with POI and NTL
data in modelling population density and producing a high-resolution map of the popula-
tion distribution—can effectively and rapidly estimate populations, and has considerable
potential in the era of big data. Our future research will try to estimate populations from a
smaller scale, such as using sentinel satellites to extract impervious surfaces, in order to
obtain a higher resolution of population spatialization results.
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6. Conclusions

Based on IS data, this study gradually introduces NTL and POI data and establishes
an optimization model for population density estimation. Exploring the correlation and
multicollinearity between variables, the results meet the requirements of establishing a
population density estimation model. The 10-fold cross validation of the four models
shows that the multi-variable model achieves the best prediction effect. The parameters
of the optimal model are applied to 500 m pixels, and the population density distribution
map at the pixel scale is obtained after correction. Overall, the multi-variable (including IS,
NTL, and POI data) model can effectively predict the population density in interval years
and for areas lacking census data.
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