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Abstract: Mining areas are currently a typical ecosystem that is severely destroyed within the world.
Over the years, mining activities have caused serious soil damage. Therefore, the soil restoration of
abandoned mines has become a vital sustainable development strategy. The ecological environment
within the hilly area of the Loess Plateau is extremely fragile, with serious soil erosion; Robinia
pseudoacacia is the most popular tree species for land reclamation in mining areas within the Loess
Plateau. To review the different various effects of Robinia pseudoacacia on soil quality below different
configuration modes, this paper has chosen two sample plots within the southern dump of the
Pingshuo mining area for comparison. The first plot is a Robinia pseudoacacia-Ulmus pumila-Ailanthus
altissima broadleaf mixed forest, and the second plot is a locust tree broadleaf pure forest. The
vegetation indicators and soil physical and chemical properties of the four stages in 1993, 2010, 2015,
and 2020 were investigated. Principal component analysis is employed to develop the Soil Quality
Index to perceive the changes within the Soil Quality Index over time. It is calculated that the Soil
Quality Index of Plot I rose from 0.501 in 1993 to 0.538 in 2020, and Plot II rose from 0.501 to 0.529.
The higher the SQI, the higher the reclamation of the mining area. It is found that Robinia pseudoacacia
within the Robinia pseudoacacia-Ulmus pumila-Ailanthus altissima broadleaf mixed forest has higher
soil quality improvement than the pure genus Robinia pseudoacacia broadleaf forest. This article can
demonstrate the changes in the quality of reclaimed soil in the mining area, and can also provide a
reference for the selection of reclaimed vegetation in other mining areas.

Keywords: land reclamation; mining area soil; Robinia pseudoacacia; principal component analysis;
Soil Quality Index; chemical property

1. Introduction

To satisfy the growing desires of many sectors such as trade, mining activities world-
wide have increased and become additionally intense. Up to now, mining areas in China,
and therefore the world, have become severe and typical harmful areas [1,2]. The ecological
and environmental issues caused by coal mining in mining areas and later ecological
restoration have become a hot analysis object, and have attracted widespread attention
from researchers, both in China and abroad [3,4]. Mining activities have caused damage
to the ecology, inflicting abundant environmental issues such as pollution, vegetation
degradation, and land destruction [5–9]. Mining activities additionally scale back the
organic matter content and nutrient utilization within the soil [10,11]. From an environ-
mental viewpoint, open-pit mining activities have degraded the land and destroyed the
layering and structure of the soil. Its microorganism flora and nutrient cycle are essential
for maintaining a healthy and productive scheme [12]. Soil is a crucial part of the terrestrial
system, and it is one of the foremost necessary factors for maintaining plant and animal
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productivity, supporting human health, and promoting biosphere development world-
wide [13]. Soil scientists have repeatedly mentioned that soil and its services should be
fully considered in the decision-making process [14,15]. Some scholars have also studied
ecosystem services and soil properties [16]. The ecosystem service framework has become
very important recently, mainly in terms of conservation and sustainable use, including
soil [17], forest [18], landscape [19], watershed [20], and farmland [21]. It has been used to
study the productivity of soil and compare it under different management systems [22]
and agricultural systems [23]. Additionally, soil is a major environmental issue that affects
vegetation restoration. Mining in mining areas can lead to an absence of nutrients within
the soil within the mining area and can additionally cause excessive pollutants within the
soil and frequently accelerate or inhibit the growth of vegetation [24,25].

To use land sustainably, soil quality is a crucial indicator [26]. It can be used to
measure and quantify the sustainability of soil use [27]. Previous studies have shown that
underground soil plays an important role in soil quality [28]; soil quality is completely
different in different regions because its performance and its reasons for formation are
different, or attributable to different types of land or land use [29], therefore soil quality
varies between regions [30]. Previous studies have additionally shown [31,32] that some
physical or chemical parameters such as wet soil, soil bulk density, and soil organic carbon
will mirror changes in artificial soil quality.

For the analysis of soil quality, the foremost vital issue is to see a group of sensitive
attributes that will mirror the operation of the soil. These attributes will be used as
quality indicators [33,34]. Research in recent years has shown that the Soil Quality Index
(SQI) has been utilized in several aspects of soil quality assessment, such as the impact
of land-use modification, forest management, and ecological restoration [35,36]. SQI is
outlined [37] because of the ability of the soil to supply the nutrients required to take care
of crop yields throughout the expansion stage of plants within the system. SQI calculation
methods [38] embrace professional opinions and Principal Component Analysis (PCA),
and PCA has been additionally widely employed in recent years [36]. Recently, Zhang et al.
studied [39,40] the influence of vegetation varieties on soil quality within the Loess Plateau
of China and introduced the Soil Quality Index technique into their analysis. The SQI has
currently been used in assessing the standard of soils of varied scales and locations [41–43].
The foremost effective use of the SQI at this time is in a variety of static and dynamic soil
properties [28,38,44]. Worldwide Soil Organic Matter (SOM), nitrogen (N), phosphorus (P),
potassium (K), and soil pH mostly mirror the static characteristics of the soil, and they are
often referred to as variables usually employed in the SQI [45,46].

Robinia pseudoacacia has been the most widely used plantation tree species since the
commencement of the People’s Republic of China, and it has been effective in widely used
in greening activity. Robinia pseudoacacia is expansive in its native area [47], but it is invasive
in other areas where it has been introduced [48,49]. Robinia pseudoacacia has been widely
employed in vegetation restoration in many degraded areas because of its rapid growth
and ability to fix nitrogen [50,51]. Due to its strong adaptability, strong stress resistance,
and strong drought resistance, its distribution area in China is getting larger and larger, and
it has now become a native tree species in China [52]. Nitrogen-fixing plants can affect the
dynamic characteristics of the community, particularly for those habitats with poor nutrient
surroundings [53]. In the 1950s, Robinia pseudoacacia was planted for the first time in the
Loess Plateau [54]. After many years of development, a large area of vegetation has been
restored in the hilly area of the Loess Plateau [55]. Robinia pseudoacacia, as a representative
style of forest vegetation within the loess hilly region, is of significance for the development
of a far better ecological surrounding within the region.

So far, a large number of scholars have studied the impact of various vegetation
restoration methods on soil quality. This has widely confirmed the response of soil to nu-
merous management strategies [42,56]. Understanding the impact of vegetation restoration
on soil quality can be used to form higher management strategies to revive soil function
in degraded ecosystems. However, most studies investigate the link between totally dif-
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ferent monoculture forests and their soils, and there are few studies on mixed forests
containing identical species. Therefore, this paper has developed a Soil Quality Index to
analyze the changes in soil quality over time in the Robinia pseudoacacia pure forest and the
Robinia pseudoacacia-Ulmus pumila-Ailanthus altissima mixed forest by determining the soil
indicators.

2. Materials and Methods
2.1. Study Sites

The Pingshuo mining area is the largest and most progressive coal mining enterprise
in China; it is located in the Pinglu District, Shuozhou town, Shanxi Province (Figure 1).
The geographic coordinates are 39◦23′–39◦37′ N, 112◦10′–113◦30′ E, and it has a typical
temperate continental monsoon climate. The altitude in the area is 1300–1400 m, the annual
average temperature is 5.4–13.8 °C, the average annual precipitation is 428.2–449 mm, 67%
of the annual precipitation is concentrated in the period of June–August, the zonal soil in
the study area is in the transition zone between chestnut soil and chestnut cinnamon soil,
and the main zonal soil is chestnut soil. The parent material of soil formation is usually
loess alluvium, proluvial, slope deposit, and a few aeolian sediments. The parent material
is typically the weathering product of granite and gneiss. The soil in this area is sandy, the
soil is dry, and the ventilation is good. Due to poor natural conditions, extensive farming
has been carried out, making the soil barren. The organic matter content of the cultivated
soil is generally 5.0–9.0 g/kg, and some is less than 5.0 g/kg. The total nitrogen content is
generally 0.3–0.6 g/kg and the available phosphorus content is generally 5.0–8.0 mg /kg; a
few are higher than 10 mg/kg, and the low is only 2.0–3.0 mg/kg. The content of available
potassium is generally 50–90 mg/kg, and a few exceed 100 mg/kg. Vegetation is mainly
dominated by herbs such as Stipa capillata. With a long history of development and a high
farming index, the natural vegetation in this area is severely destroyed, and large grassland
communities are rarely seen. Generally speaking, it is an agricultural farming landscape.

The Antaibao Open-pit Coal Mine is located in the northern part of the Pingshuo
mining area and is the oldest coal mine in the Pingshuo mining area. The mining area
is 36.24 km2, with 974 million tons of geological reserves. Preparations began in 1982,
construction started in July 1985, and the mine was completed and put into production in
September 1987. The area of the Antaibao South Dumping Site is 178.21 hm2. Vegetation
reconstruction started in 1993, and it is one of the earlier reclaimed areas of the Antaibao
Mine. The platform covers 1m of soil and the area of reclaimed woodland is 128.21 hm2.
The main types of vegetation are Robinia pseudoacacia, Pinus tabuliformis, Ulmus pumila,
Caragana microphylla, and Hippophae rhamnoides, etc. At present, the south dump has shaped
an arbor-shrub-grass multi-level and multi-type natural layout, which essentially covers
the bare surface of the dump, and its ecological atmosphere has been effectively remodeled.
Except for water in the first 3 years and pest control in the first 5 years, management
measures such as artificial watering and fertilization have not been adopted so far.

2.2. Vegetation Survey and Analysis

The selected area during this study comes from the permanently fastened observa-
tion sample plot of the south dump of Antaibao Open-pit mine in the Pingshuo mining
area. Four years, 1993, 2010, 2015, and 2020, were picked to investigate the dynamics of
vegetation. We picked areas that were higher than 1.3 m and had survived within the four
years of analysis, and picked two plots for comparison (see Figure 2). Both plot area units
are one square measure (100 × 100 m) of flat land. Plot I is a Robinia pseudoacacia-Ulmus
pumila-Ailanthus altissima broad-leafed mixed forest, and Plot II is a Robinia pseudoacacia
pure broad-leafed forest (Table 1). The planting density of the two plots is the same. In
every survey, all Robinia pseudoacacia in Plots I and II were monitored.
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We tended to divide the 1 hm2 plot into one hundred quadrats of 10 m × 10 m, and
every quadrat was divided into four small plots of 5 m × 5 m (Figure 3). Within the two
plots, we investigated diameter at breast height (DBH), height (TH), canopy length (CL),
and width (CW) of Robinia pseudoacacia.
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Table 1. Overview of permanently fixed monitoring plots.

Sample Area Configuration Mode Site Type Average
Altitude/m

Area
/hm2

Planting Pattern at the Initial
Stage of Reclamation

S I
Robinia pseudoacacia ×

Ulmus pumila ×
Ailanthus altissima

platform 1380 1
Three tree species are planted in
alternate rows, with a spacing

of 1 m × 1 m.

S II Robinia pseudoacacia platform 1420 1 Interlaced planting, spacing
between rows 1 m × 1 m.
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The area of the tree canopy was calculated by Formula (1) [57].

Tc =
π

4
× CL× CW (1)

where Tc is the tree canopy area (m2); CL is the canopy length (m), and CW is the canopy
width (m).

The area of the tree canopy was calculated by Formula (2) [58].

Tbio = 0.1654D2.3784 (2)

where Tbio is the tree biomass (kg) and D is the tree diameter at breast height (DBH, cm).

2.3. Soil Sampling and Analysis

After open-pit mining, most of the soil is artificially added to the dumpsite. The
paving soil is mainly loess, sometimes mixed with a small amount of coal gangue and
gravel. The texture is generally sandy loam to loam. The parent material of loess in the S I
and S II plots directly paves the ground surface with a thickness of about 1 m.

Similarly, we decide to select four-year sampling information in 1993, 2010, 2015, and
2020, and each time the soil was collected at a depth of 0–10 cm and the physical and
chemical properties of the soil were confirmed. With relevance the Center for Tropical
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Forest Science (CTFS) soil sampling set up, and combined with the particular state of
affairs of the study area, the particular sampling methodology is: divide the 1 hm2 sample
plot into nine grids (the grid size is 30 m × 30 m); take the node of every grid to be
the point of reference for sampling, then randomly choose one from the eight directions
(north, northeast, east, southeast, south, southwest, west, and northwest) of every point
of reference within the chosen directions, 2 m, 5 m, and 15 m from the point of reference
within the chosen direction; randomly choose 2 locations for extended sampling. Therefore,
a total of 96 sampling points were set up in Plots I and II (Figure 4).
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Figure 4. The spacial distribution of soil sample in the plots.

Before sampling, the litter on the surface of the sampling site was first removed, so
that, at 20 cm apart, three soil samples with a depth of 0–10 cm could be collected with a
soil auger (the diameter of the soil auger is 5 cm). The three soil samples were mixed and
placed into a ziplock bag; the weight of the soil sample in each ziplock bag was 500 g. The
obtained soil samples were dried in an oven at 105 ◦C for 48 h before testing, and stones
with particles larger than 2 mm were separated from the dry soil (using a 2 mm sieve). The
soil indicators tested during this study comprised pH scale, organic matter, total nitrogen,
available phosphorous, and available potassium. The soil pH scale was measured by the
potentiometric technique, the organic matter was measured by the potassium dichromate
method–external heating method, the total nitrogen was measured by the Semi-micro
Kjeldahl method, the effective phosphorus was measured by the 0.5 mol/L NaHCO3
extraction-molybdenum antimony colorimetric method, and the available potassium was
measured by the 1 mol/L NH4OAc extraction-flame emission spectrometry method.

2.4. Soil Quality Index

To determine the Soil Quality Index (SQI), this paper used Principal Component
Analysis (PCA) to pick acceptable variables [59–61], then analyzed and confirmed the
weights of every variable to be employed in the calculation of SQI [28,62]. We used the five
soil chemical indicators (SOM, TN, AP, AK, and pH), antecedently tested by soil sampling,
to run PCA. Underneath the principal component (PC) of the run, we left variables with a
high load factor. When keeping multiple variables on one principal component, we used
correlation to work out whether or not these variables would be utilized in the SQI. If the
correlation was too high, it was deleted from the SQI [63], if the high load factors were
irrelevant or the correlation was low, then we tended to believe that every one of those
factors was vital and that we could keep all the factors within the SQI. Finally, the weighted
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summation methodology was employed to calculate the Soil Quality Index (SQI). The
ultimate SQI equation supported PCA is as follows:

SQI =
n

∑
i=1

(Wi× Si) (3)

where Wi is the weighting factor of the indicators derived from the PCA conducted, Si is
the score of indicator, and n is the number of selected variables.

2.5. Statistical Analysis

For all analyses, we tended to use Microsoft excel and SPSS Statistics 20.0. We used
a one-way analysis of variance (ANOVA) to check the average values of the assorted
indicators of the vegetation and soil within the mining area. The distinction between
individual means that were tested by Duncan’s multiple range test (DMRT), and also the
significance level, was p < 0.05. Principal component analysis was employed to work out
the index weight of the soil.

3. Results and Discussion
3.1. Changes in Soil Properties

Figure 5 shows the dynamic changes of physical and chemical soil properties within
the two plots from 1993 to 2020 for which we have done a polynomial fitting. All starting
points in the figure are the same, which are the original soil content before the vegetation
restoration in 1993. Improving soil quality is extremely necessary because it will leave
reasonable agricultural productivity and environmental quality for future generations [64].
Underlying this premise, soil organic matter is a very important indicator to be considered
within the analysis. It can be seen from Figure 5 that the soil organic matter content
increased sharply after 2005. The organic matter content of Plot I increased from 16.69 g/kg
in 1993 to 65.5 g/kg in 2020, with a rate of growth of 292.48%, and also the rate of growth
of organic matter content in Plot II was 217.33%. The growth rate of Plot I is more than that
of Plot II.

In 2016, Lei et al. [65] found that it takes 23 to 25 years for soil index values to return to
their initial level in vegetation restoration areas. In this paper, the soil nitrogen content in
each plot was inflated after 27 years of reclamation. In 2015, the N content of the two plots
tended towards the initial landform, which is analogous to the results of H. Lei et al., 2016.

The variations in soil characteristics between vegetation types are primarily associated
with AP, AK, and the soil pH scale [66]. A crucial indicator for evaluating soil health is the
pH scale, particularly in mine soil, which has a significant impact on key soil processes [67].
Analysis additionally shows that the foremost appropriate pH scale value for soil is 6–7. In
the soil PH fitting of this paper, it was found that the soil PH of the two plots area were
each at the alkalescent level; however, this decreased to variable degrees by 2020. The soil
PH value of Plot I dropped sharply from 1993 to 2010, but by 2020 it was the same as Plot
II. Though the PH value has not reached the foremost appropriate value, each plot has
slightly improved.

The most restrictive nutrient within soil for plant growth is nitrogen, followed by
phosphorus, though this is plentiful within soil [68]. The phosphorus content within the
soil in the two plots has been decreasing over time. Plot I reduced from 28.3 mg/kg in
1993 to 3.77 mg/kg in 2020, and Plot II reduced from 28.3 mg/kg to 4.19 mg/kg. The
reduction rates were 86.68% and 85.19%, respectively, indicating that there is a significant
shortage of phosphorus within the Pingshuo mining area, particularly within the degraded
or accumulated soil, where the phosphorus content is incredibly lacking, and recovery is
incredibly troublesome [69].
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Due to its special structure and composition, the K content of mine soil is usually
low [70]; this is additionally the case within the early stages of reclamation of the area
studied during this article, However, with the passage of time, the available potassium
content of the two plots showed an increasing upward trend. It can be seen from Figure 4
that the offered available potassium content of the two plots increased moderately before
2005, and increased considerably after 2005. Before 2020, the content of available potassium
in Plot I is higher than that in Plot II.

3.2. Changes in Vegetation Indices

One artificial restoration measure regarding vegetation restoration is to show the land
turning from non-vegetation or non-tillable land into plant-covered land, and it has been
used as a good measure of a revived damaged natural ecosystem [71]. This has attracted
additional attention from society and has become a popular topic in ecological analysis.
Previous studies have shown that vegetation plays a major role in raising the physical and
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chemical properties of soil in mining areas [72,73], and there are also other findings [74];
within the natural restoration method of vegetation, dominant woody plants are a crucial
index to boost soil structure. Generally, woody vegetation is employed to enhance soil
fertility; among these, legumes have the most optimum effect [75,76].

This paper focuses on Robinia pseudoacacia species and studies the changes of assorted
plant indicators in Robinia pseudoacacia-Ulmus pumila-Ailanthus altissima mixed forest and
pure Robinia pseudoacacia forest compares them with reclamation time (Figure 6). It can
be seen from the figure that the vegetation indicators (height, diameter at breast height,
canopy area, and biomass) increase over the years of reclamation. In the two plots, the
vegetation indicators of Robinia pseudoacacia showed an increase; in Plot II, the plant height
and biomass were more than that of Plot I before 2015 and were equivalent by 2020. Plant
diameter at breast height from 1993 to 2020 was considerably higher in Plot II than in Plot
I, whereas the canopy area of plants was higher in Plot I than in Plot II from 1993 to 2020;
however, it was equivalent in 2020. It can be seen that, within the land reclamation, the
height, diameter at breast height, and canopy area of Robinia pseudoacacia within the Plot II
sample area were beyond those within Plot I. This confirms that there are different species
within the Plot I sample area that need decent soil nutrients throughout the growth process,
and therefore keep within the limits the growth rate of the Robinia pseudoacacia.
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3.3. Soil Quality Index

In some of the literature, there are two main strategies for choosing indicators, one of
which is professional opinion [44] and the other is an alternative mathematical-statistical
system, such as regression equation and principal component analysis [59,77].The Soil
Quality Index is widely used for analysis because of the dependableness and accuracy of
the results [78].

Therefore, this paper conducted principal component analysis on the soil characteris-
tics of the reclaimed land in the Pingshuo mining area to calculate the soil indicators of
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the ultimate Soil Quality Index. Two principal components were derived for every year.
As a result of there being no significant correlation between every index, five soil indexes
were finally determined in step with the weight below every principal element, in essence,
all the soil indicators designated during this article: soil pH scale, total nitrogen, organic
matter, available phosphorus, and available potassium. According to the weights of the
two principal components within the principal element analysis, and therefore the scores
of every soil index, the SQI equation was used to calculate the Soil Quality Index of every
year within the two plots.

Studies such as those by Ngo-Mbogba [61] have shown that the SQIs of various vegeta-
tion sorts are considerably different. Some recent studies have additionally confirmed that
different vegetation restoration types have different abilities to enhance soil quality [79,80].

The dynamic changes of the Soil Quality Index over time are shown in Figure 7. It
can be seen that the Soil Quality Index of Plot I and Plot II was not modified considerably
from 1993 to 2010, and tended to be stable. After 2010, the SQI of each plot rose. The Soil
Quality Index of Plot I was once greater than that of Plot II in each year. The Soil Quality
Index of Plot I rose from 0.501 in 1993 to 0.538 in 2020, with a rate of 7.48%, and Plot II
increased from 0.501 to 0.529; the growth rate was 5.56%. Conjointly, the rate of Plot I used
to be greater than that of Plot II.

Land 2021, 10, x FOR PEER REVIEW 11 of 16 
 

increased from 0.501 to 0.529; the growth rate was 5.56%. Conjointly, the rate of Plot Ⅰ  

used to be greater than that of Plot II. 

 

Figure 7. Soil Quality Index dynamics. 

It can be seen from Figure 8 that the Soil Quality Index and varied plant indicators 

within the two plots are positively correlative. Plant height, diameter at breast height, 

canopy area, and biomass all increased with the rise of SQI, which additionally proves 

that SQI is useful for the area of study. The quality of the soil determines the growth of 

vegetation, and vegetation succession will promote the development of soil quality. 

Therefore, vegetation and reclamation recovery time are the two main reasons for the de-

velopment of soil quality within the process of vegetation succession. 

Figure 7. Soil Quality Index dynamics.

It can be seen from Figure 8 that the Soil Quality Index and varied plant indicators
within the two plots are positively correlative. Plant height, diameter at breast height,
canopy area, and biomass all increased with the rise of SQI, which additionally proves
that SQI is useful for the area of study. The quality of the soil determines the growth
of vegetation, and vegetation succession will promote the development of soil quality.
Therefore, vegetation and reclamation recovery time are the two main reasons for the
development of soil quality within the process of vegetation succession.
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Figure 9 shows the dynamic changes of the scores of varied soil index parameters with
the length of reclamation. It can be seen from the fitting curve that the soil organic matter
and total nitrogen scores are gibbous curves in the two plots, indicating that the SOM and
N content scores increase in the early stage of reclamation; however, they tend to decrease
in the later stage. By 2020, the SOM and N content scores were similar to those of 1993.
The SOM score of Plot I is usually more than that of Plot II; however, the N score of Plot I
is more than that of plot II before 2010, and less than that of Plot II in 2010. The soil pH
scores of the two plots are different during reclamation. Plot II tends to be stable, whereas
Plot I present a concave curve that first decreases and then increases during reclamation.
However, in 2020, the soil pH scores are less than those in 1993. In the two plots, the score
of available phosphorus is modified very little over time, from 0.204 in 1993 to 0.212 in 2020
in Plot I, and from 0.204 to 0.207 in Plot II, which tended to be stable within the reclamation
stage. In the fitting curve of available K, the scores of the two plots are in a rising state in
2005, and tend to be equal in 2020. The AK score of Plot I increased from 0.173 to 0.229,
with a rate of growth of 32.43%, and Plot II increased from 0.173 to 0.225, with a rate of
growth of 30.24%.
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4. Conclusions

In this paper, two plots with completely different vegetation configuration patterns
with a similar reclamation period were studied. The two plots were compared by the
statistics of plant characteristics and physical and chemical soil properties, and also the
Soil Quality Index was established by principal component analysis. On the whole, with
increasing years of reclamation, the Soil Quality Index of Plot I more than that of Plot
II in 2020. Although there was a decrease within the initial stage of reclamation, with
the passage of time, the Soil Quality Index rate of increase of Plot I is more than that of
Plot II. In short, within the 27 years of land reclamation within the Pingshuo mining area,
Robinia pseudoacacia in broadleaf mixed forest improved soil quality more than pure Robinia
pseudoacacia broadleaf forest.

Therefore, the Soil Quality Index calculated based on the five indicators of soil organic
matter, total N, PH, available phosphorus, and available K is useful in assessing soil quality
and changes within the process of soil reclamation in mining areas. Although it ought to
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be verified in every mining area, the SQI established during this article also can be utilized
in different mining areas to reclaim the land. This method can be used to evaluate soil
quality after land reclamation in other coal mining areas to determine the changes in soil
quality during long-term reclamation, and it can also provide a reference for the selection of
reclaimed vegetation in other coal mining areas. Besides the assessment of the reclamation
status of the mine soil, this indexing approach can be useful as a tool for the selection of
plant species and the role of amendments on the improvement of soil function, which will
meet ecological restoration goals. Therefore, to promote ecological restoration, we suggest
the following: adding appropriate fertilizers for plant growth and reducing the soil pH of
alkaline soils. This article only studies the chemical properties of the soil; in the future, it is
necessary to conduct a comprehensive study based on the physical properties of the soil,
the microorganisms in the soil, and the local climate.
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