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Abstract: Road development, traffic intensification, and collisions with wildlife represent a danger
both for road safety and species conservation. For planners, deciding which mitigation methods to
apply is often problematic. Through a kernel density estimate, we analyzed 715 crossing locations
and wildlife–vehicle collisions (WVCs) involving brown bears, lynx, wolf, red deer, roe deer, and
wild boar in the Southeastern Carpathian Mountains. We identified 25 WVC hotspots, of which
eight require urgent mitigation of existing infrastructure. Moreover, many of these hotspots are in
Natura 2000 sites, along road sections where vegetation is in close proximity, animal movement is
the highest, and driver visibility is low. Our study is the first in Romania to recommend practical
solutions to remediate WVC hotspots and benefit sustainable landscape management.
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1. Introduction

Natural populations and habitats are affected by roads in numerous ways, such as
wildlife–vehicle collisions (WVCs), gene flow restrictions, and decreased landscape con-
nectivity [1,2], especially in combination with habitat loss and land-use changes [3]. The
frequency of wildlife–vehicle collisions is likely to increase as road networks and traffic
volume continue to expand [4,5]. Moreover, species diversity and abundance near roads
decrease with increasing traffic volume [6,7].

Many studies over time found that WVCs were not random but spatially clustered [8,9],
and their probability was mainly predicated on accident datasets [10,11], wildlife move-
ment data [12], expert opinion, literature-based model [13], or landscape-based approaches
for delineating hotspots [14]. Other methods have applied clustering approaches [15,16] or
assessed roads based on segments of equal length, with WVC data aggregated later [17,18].

Recent techniques have used fatality-based habitat identification and characteriza-
tion [19], whereas kernel density estimation (KDE) remains the conventional spatial element
for hotspot clustering [16,20,21]. Important causes of WVCs were identified in previous
studies, such as road characteristics, traffic volume, visibility, and intersections [11,22,23].
Nevertheless, the driving forces behind mitigation efforts were human safety and eco-
nomics [20,21].

Given the existing tools and methods, new infrastructure could benefit from spatial
mapping, connectivity models, and explicit guidelines [22], so that road administrators
can implement long-term cost-effective mitigation measures with multiple benefits [23].
Identifying wildlife road-crossings and wildlife–vehicle collisions hotspots should become
priority preventive measures [4,24]. If an area is of high importance for wildlife crossing
and a collision hotspot, that is where mitigation efforts should begin [25,26].
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Some of Europe’s highest populations of large carnivores, namely brown bear (Ursus
arctos), lynx (Lynx lynx) and wolf (Canis lupus), are found in the Romanian Carpathians [27],
and they share space with their prey, such as red deer (Cervus elaphus), wild boar (Sus scrofa),
chamois (Rupicapra rupicapra), and roe deer (Capreolus capreolus) [28]. These large carnivores
do not have any natural predators, so road and train accidents are the leading causes of
mortality [29]. Bears and wolves are known to avoid paved roads and are restricted by high-
volume roads: more than 10,000 vehicles in a month for wolves [30] and approximately
100 cars in an hour for grizzly bears [31]; lynx avoid high-volume roads as well [32].
Regarding ungulates, increases in movement often lead to more WVCs during early
summer and fall during mating, dispersal, or daily foraging and resting [33].

By using a KDE, a study in Italy focusing on red and roe deer identified WVC hotspots
and road sections with the highest risk for drivers [34]. A similar approach in Iran proposed
mitigation strategies based on KDE results and adjusting locations of wildlife warning
signs [35].

Along with intensified traffic, vehicle ownership is growing, and in certain areas, the
number of cars registered in 24 h is double what it was a decade ago [17,23,36]. The road
infrastructure was not designed to carry such traffic; consequently, crossing locations and
collision hotspots for species with protected status and species of general conservation
concern need to be prioritized in mitigation efforts [25,37], so the nature of WVCs is likely
to change [38].

This study is the first model-based estimation of WVC hotspots in Southeastern
Romanian Carpathians designed to inform the development of effective road mitigation
strategies for landscape planning and traffic safety.

2. Materials and Methods
2.1. Study Area

The study area (45.6427◦ N, 25.5887◦ E) overlaps Brasov and Prahova counties and
includes Romania’s most popular tourist regions (Busteni, Sinaia, Predeal, Azuga, and
Brasov), which have the most crowded roads: DN1, DN1A, DN73, and DN13 [36] (Table 1).
According to CORINE Land Cover 2018 v.2020_20u1 (https://land.copernicus.eu/pan-
european/corine-land-cover/clc2018?tab=download (accessed on 20 December 2020)),
the forests in the area are all mesophyllous with local variation: the vicinity of DN1 is
mostly mixed deciduous/broad-leaved coniferous followed by mountain beech; near DN13,
mountain beech predominates, followed by hill beech; around DN73A, the forest is mostly
mixed deciduous/broad-leaved-coniferous; and around DN1A, there is mostly mountain
beech followed by mixed deciduous/broad-leaved coniferous. In 2019, official traffic police
reports on these roads showed WVCs involving 30 roe deer, 9 wild boars, 19 brown bears,
and 3 wolves. Landscape elements may be a critical cause [38]. Our research focuses on
four case studies represented in Figure 1, with the following location of each road:

Table 1. Geographic coordinates for the analyzed roads.

Road
ID Road Name L_km Longitude_

Start
Latitude_

Start
Longitude_

Middle
Latitude_
Middle

Longitude_
End

Latitude_
End

DN73A Predeal—Rasnov 17.38 25.458306 45.566100 25.503381 45.520229 25.565210 45.486959

DN1A Sacele—Maneciu 51.47 25.708819 45.622253 25.885344 45.485949 25.979315 45.326025

DN1 Prahova Valley 50.99 25.708819 45.622253 25.561324 45.470219 25.619251 45.284737

DN13 Bogatii Valley 18.50 25.332324 45.975736 25.404895 45.914955 25.495926 45.907309

Road ID = road name in the national classification system; L_km = length of the road in kilometers; Longitude_Start, Middle, End = longitude
along the road length in WGS84; Latitude_Start, Middle, End = latitude along the road length in WGS84.

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
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Figure 1. Study area in the Southern Eastern Romanian Carpathians and the roads’ location (DN1—red; DN73A—green;
DN1A—blue; DN13—yellow).

2.2. Sampling and Field Survey

From 2018 to 2019, we conducted a field survey of 715 GPS locations with experts
from National Research Institute for Research and Development in Forestry Marin Dracea
(INCDS Marin Dracea) to evaluate the effects of roads and railways on wildlife. The varied
dataset included data on animal WVCs and crossing locations. Species included brown
bear (Ursus arctos), wolf (Canis lupus), lynx (Lynx lynx), red deer (Cervus elaphus), wild boar
(Sus scrofa), and roe deer (Capreolus capreolus). The case studies on the four roads (DN1,
DN1A, DN73, and DN13) are represented in Figure 1, along with the section of each road
that had the greatest traffic throughout the year [36].

Experts conducted inventories on both lanes of the roads, and observations were
classified as road/train mortality (M), road crossing (T), road crossing using underpasses
(P), wildlife direct observation next to the road (V), or tracks next to the road (without
confirmation for road crossing) (I). Ten experts performed 200 surveys over 138.34 km.
Railway fatalities (19 brown bears) were also considered. However, we suspect that the
total number of animals killed by train collisions was underestimated because engineers
do not report fatalities involving smaller species.

2.3. Data Analysis

To analyze the risk of a WVC, we had to apply weighted factors to each collision
hotspot. For species (S), we used a three-point scale, attributing the highest score (3) to
large carnivores (brown bears, lynx, and wolf); 2 for red deer, roe deer, and wild boar; and
1 for smaller animals (badger, European pine marten, red fox, hare, and squirrel).

For the number of animals at a specific location (N), we assigned 1 point if one was
seen, and 2 if there was more than one. Data were ranked on a scale of importance (T),
from the lowest to highest risk of collision: mortality (M), highest score; road crossing (RC),
average score; road crossing using an existing underpass (P) or wildlife presence next to the
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road (V), medium to low score; and a track next to the road (without crossing the road) (I),
the lowest score. We estimated the risk of wildlife collision by using the following formula:

Wildlife collision hotspot = S × N × T
S—species
large carnivores = 1 point,
red deer, roe deer and wild boar = 2 points
badger, European pine marten, red fox, hare, squirrel and other species = 3 points.
N—number of individuals at a certain location:
1 individual = 1 point,
more individuals = 2 points.
T—types of data:
M = 5 points, P = 4 points, RC = 3 points, V = 2 points, I = 1 point.

Furthermore, to estimate high-density accident zones, we used a kernel density es-
timate (KDE) analysis of the hotspots [35,39]. The study was conducted by using ESRI
ArcGIS version 10.3.1 with Spatial Analyst extension and the free “Custom Home Range
Tools Toolbox for ArcGIS” [40], available from GISInEcology.com/Home_Range_Tools.zip.
This tool created a KDE and 95 and 50% volume contours from a point data layer of loca-
tions where an accident or animal presence was recorded near the road. KDE calculated
the density of the point features around each output raster cell. Conceptually, a smoothly
curved surface was fitted through each point [41]. The surface value was the highest at the
location of the point, lower with increasing distance, and zero at the search radius distance
from the point since only a circular neighborhood is valid. The density at each output
raster cell was calculated by adding the kernel surface values where they overlay the raster
cell center; the kernel function was based on the quartic kernel function [40].

2.4. Speed Limits and Existing Local Mitigation Measures

To analyze the effects of roads on wildlife movements, we also collected information
regarding speed limits, sector lengths, and warning signs for wildlife (WSW) (Table 2).

Table 2. Speed limits and wildlife warning signs in the four case studies.

Prahova Valley
(DN1)

Predeal–Rasnov
(DN73A)

Sacele–Maneciu
(DN1A)

Bogatii Valley
(DN13)

SL L WSW SL L WSW SL L WSW SL L WSW
50 4.9

4

30 0.5

0

20 2.4

4

40 0.6

2
70 20.2 50 4.1 30 3.4 60 12.3
80 9.9 70 0.9 40 15.6 - -
90 15.2 90 11.1 50 5.1 - -
- - - - 90 24.4 - -

L—sector length (km), SL—speed limit (km/h), WWS—a wildlife warning sign.

Furthermore, we analyzed local options for mitigating collisions and providing safe
wildlife crossings [3,42], together with modern systems such as Animal Vehicle Collision
Prevention Systems (AVC PS) and Virtual Fence (https://life.safe-crossing.eu/techniques
(accessed on 20 November 2020). Moreover, we tested their surface clusters with the WVC
hotspots to determine the optimal local mitigation measures.

3. Results
3.1. Kernel Densities Estimate Analysis for WVC Hotspots

We located 25 WVC hotspots that involved multiple species, including large mammals,
out of which seven registered as high risk (see WVC 1, 2, 3, 4, 15, 18, and 19 in Figure 2).
In addition, the cumulative effect of roads, railways, and, in some areas, rivers, were
registered. The distances between a railway and a road were minimal (0–50 m) in hotspots
such as Timisul de Jos (WVC 15), Timisul de Sus (WVC 18, 19), Sinaia (WVC 1), and Azuga
(WVC 2). WVC 3 and WVC 4 from Azuga registered greater distances between a road
and railway but were still in proximity (40–140 m). At the landscape scale, Prahova Valley

https://life.safe-crossing.eu/techniques
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comprises few areas that are crucial for brown bear gene flow, as previously noted in
landscape genetic analyses [23]. The WVC surface varies from 2.38 ha in WVC 1 to 12.03 ha
in WVC 18 (Table 3), while, for the entire study area, the mean was approximately 6 ha.
Along the DN1 road sector, the forest facilitates species movement and creates low visibility
and poor conditions for fast driver reaction.

Fewer high-risk hotspots were identified in the study of the Sacele–Maneciu road
(DN1A) (Figure 3), which is often used as an alternate route for the crowded Prahova
Valley, where four high-risk hotspots (WVC 5, 10, 13, and 16) were identified. Their area
varied from 0.2 ha (WVC 13) to 23.82 ha (WVC16).

The KDE analysis of the Predeal–Rasnov road (DN73A) (Figure 4) identified seven high-
risk hotspots (WVC 6–9, 11, 12, and 14), yet a highway is planned because of high vehicle
traffic. Surfaces vary from 0.7 ha (WVC 17) to 74.28 ha (WVC 9). It is the most extensive
surface of the entire study area (Table 3) and requires multiple mitigation solutions and
a special regime put in place for future infrastructure development.

While the first three case studies were complex, mainly due to anthropogenic pressure,
the Bogatii Valley is less fragmented and less affected. However, 10 hotspots for collision
risks were identified: WVC 25–34 (Figure 5). Most are in broadleaf forests close to the road,
while a few are on transitional woodland–shrub and pasture. However, a peculiarity is the
presence of concrete embankments, which affect permeability and could create traps and
bottlenecks, forcing species to cross the road under unsuitable conditions.

Table 3. Proposed mitigation measures for the existing and future infrastructure for each WVC hotspot.

WVC Road/Location Name

Mitigation
Measures on

Existing
Infrastructure

Mitigation
Measures on

Linear
Infrastructure

WVC
Hotspot

Surface (ha)

Medium
Distance from

WVC Center to
Vegetation (m)

Average
Slope in the

WVC

1 DN1/Sinaia WSW WSW 2.3803 744.8 17.8
2 DN1/Azuga 1 VF Viaduct 6.8984 932.1 27.2
3 DN1/Azuga 2 WSW Viaduct 8.7819 966.3 29.6
4 DN1/Azuga 3 VF Green bridge 6.2131 979 24.4
5 DN1A/Cheia WSW WSW 4.5036 966.5 16.1
6 DN73A/Paraul Rece 1 VF Viaduct 8.4956 1092.60 20.9
7 DN73A/Paraul Rece 2 VF WSW 4.8785 1108.30 31.9
8 DN73A/Paraul Rece 3 VF WSW 1.8759 1073.40 32.3
9 DN73A/Paraul Rece 4 VF, WSW, AVC Viaduct 74.2823 877 27.4
10 DN1A/Babarunca VF AVC 0.547 873.8 12.9
11 DN73A/Paraul Rece 5 AVC Viaduct 12.2627 742.8 11.2
12 DN73A/Cheile Rasnoavei 1 VF Viaduct 11.632 714.7 12.2
13 DN1A/Sacele 1 VF WSW 0.2871 817.7 6.8
14 DN73A/Cheile Rasnoavei 2 WSW VF 4.9574 695 5.2
15 DN1/Timisul de Sus VF Green bridge 4.5344 798.4 46.9
16 DN1A/Sacele 2 AVC AVC 23.8224 790.6 35.7
18 DN1/Timisul de Jos 1 VF, WSW WSW 0.7832 890.2 65
19 DN1/Timisul de Jos 2 VF AVC 12.036 721.9 29.5
25 DN13/Valea Bogatii 1 WSW WSW 5.6678 719.6 45.1
26 DN13/Valea Bogatii 2 WSW WSW 4.0412 532.7 35.2
27 DN13/Valea Bogatii 3 VF, WSW Viaduct 22.4453 499.1 13.1
28 DN13/Valea Bogatii 4 WSW WSW 1.8891 541.1 6.5
29 DN13/Valea Bogatii 5 WSW WSW 0.058 409 0.9
30 DN13/Valea Bogatii 6 WSW WSW 5.2627 411.1 3.8
31 DN13/Valea Bogatii 7 AVC WSW 3.5389 642.9 37.5
32 DN13/Valea Bogatii 8 VF VF 8.3874 677.4 25.1
33 DN13/Valea Bogatii 9 VF Viaduct 12.4276 639 43
34 DN13/Valea Bogatii 10 VF VF 9.223 622.2 51.7

Warning sign for wildlife crossing (WSW), virtual fence (VF), AVC Prevention System.
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3.2. Road-Kills and Speed Limits

The amount of roadkill seems to be growing as the speed limit increases. The highest
number was registered in sectors with a 90 km/h limit, while the lowest were in the
50 km/h limit category (DN1A). However, the large mammals’ numbers were higher on
sectors with high speed limits on DN1A (results not shown).

3.3. Mitigation Measures and Digitalization of WVC

To prioritize corridors to mitigate WVCs, we overlaid the existing road infrastructure,
the current linear infrastructure development plan, and the protected areas, and, based on
expert opinion, we determined the local mitigation solution to be applied.

Our results indicated that local conditions influenced the type of mitigation measure,
while the WVC surface determined their number and management practices. Moreover,
existing WSWs were found to be insufficient over the entire study area. In Figure 6, we
overlaid the current road infrastructure layer, WVC hotspots, and protected areas to pro-
vide a digital tool for ensuring traffic safety and reducing wildlife species losses. Moreover,
many of the WVC hotspots are located in Natura 2000 sites, such as Piatra Mare ROSCI0195,
Bucegi Mountains ROSCI0013, Ciucas ROSCI0038, Aninisurile de pe Tarlung ROSCI0001,
and Padurea Bogatii ROSCI0137, while others (DN73A) bisect a crucial conservation
area [28]. A combination of mitigation methods is required to address roadkill [43], es-
pecially in large surfaces such as WVC 9 on DN73A, WVC 18 on DN1, and WVC 27 on
DN13 (Table 3). In all, eight hotspots along the Prahova Valley (DN1) and Rasnov–Predeal
(DN73) roads require urgent infrastructure mitigation measures: WVC 1, WVC 2, WVC 3,
WVC 4, WVC 9, WVC 15, WVC 18, and WVC 19.
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Regarding proposed solutions to mitigate the impact of linear infrastructure, viaducts
were suitable for eight WVC hotspots and a green bridge for one, while, for others, an AVC
PS, WSW, or virtual fence (VF) was the best solution (Figure 7). For example, in Timisul de
Jos (https://life.safe-crossing.eu (accessed on 10 March 2021), the first (VF) was recently

https://life.safe-crossing.eu
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installed spanning WVC 18 and 19. It comprises a series of small sensors that detects the
light from oncoming cars and sounds an alert to deter an animal from crossing the road [44].
While wildlife fencing could be one of the most effective ways to keep large animals off the
road [45], it may create barriers [25]; therefore, we decided not to consider fencing.
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However, landscape configuration, WVC surface, vegetation coverage, and species
requirements influence the mitigation type, and because many hotspots are in Natura
2000 sites, mitigation measures must have multiple long-term benefits for species conser-
vation. Overall, based on the existing infrastructure, a VF could be the best mitigation
measure, and this is supported by previous studies that showed its great potential for
reducing roadkill [46].

4. Discussion

The characteristics of WVC locations vary significantly [47], and since they only cover
a tiny part of the road infrastructure, they are ideal for targeted mitigation measures [17].
For instance, in our study of the seven hotspots in the Prahova Valley, the road, railway,
and river all exert local barrier effects [48], and just installing a simple VF could reduce
WVCs to zero [44]. A monitoring system to evaluate the effectiveness of road mitigation
measures should be included in road planning practices [37], along with specific criteria
included in the Natura 2000 sites management plans for Piatra Mare ROSCI0195 and
the Bucegi Mountains ROSCI0013. Integrating mitigation measures at the design phase
is far cheaper and more efficient than restoring connectivity and gene flow on existing
linear infrastructure [23]. However, well-performed evaluations of the effectiveness of road
mitigation measures are needed [37].

Regarding the Sacele-Maneciu study, fewer hotspots were identified, but they bisect
two Natura 2000 sites: Ciucas ROSCI0038 and Aninisurile de pe Tarlung ROSCI0001, so
they require extra effort to minimize their impact. However, nighttime, the time when the
traffic volume is low, corresponds to the main activity period of most animals [43,49].
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The Predeal–Rasnov study registered the highest traffic volume during weekends
when most tourists travel to and from Bucharest and the Bran region. Moreover, extensive
hotspots along the road suggest the need for a complex system of mitigation measures to
preserve this area’s ecology [22,28].

The last case study, Valea Bogatii, is very complex, because most of the sector has
forests on both sides and close to the road, reducing driver response time and creating
low-light conditions. WVCs were more likely to occur where roads crossed valley bottoms
near patches of suitable habitat and where vegetation was close to the road [47]. Our results
were similar to those obtained in Italy on red deer and roe deer, and in Iran for multispecies,
using similar approaches [21,38].

We suspect that the number of large mammals killed on the road is higher than
officially reported, considering the traffic volume and that scavengers may have moved
carcasses before the research was conducted, or that the carcasses were located far from
the area searched, as shown by [50]. The number reported and the datasets collected from
the field could also suffer from underestimation due to the lack of wildlife road or train
accidents in the reporting system.

Traffic volume and predictable wildlife behavior to perceived risk could help efforts
to reduce animal–vehicle collisions and the barrier effect of roads [51]. On the other hand,
road mitigation measures can pay off in 2 years, 9–25 years if the WVC hotspot is mitigated,
and 16–40 years for the entire road [52]. Even if there is a lack of accurate data regarding
the number of incidents, the expense to prevent economic loss is justified: USD 8 billion in
the US in 2008 [3]; and in Sweden (in 2015 prices), USD 1.2 million for wild boar and USD
119 million for roe deer accidents [53,54].

For many years, the system for reporting collisions and mortalities lacked a straight-
forward intervention procedure and institutional responsibility. However, in early 2020,
the updated law 407/2006 (Art. 13 (7)) provided a framework to manage WVCs (species
from Annex 1 and 2): if warning signs for wildlife crossing (WSWs) are in place, the driver
is responsible for damages; if there is no WSW, the road administrator is responsible.

However, road agencies should consider installing mitigation measures on a trial basis
to maximize insights gained about their influence on population dynamics [37], and in
the near future, police, road administrators, local authorities, insurance companies, forest
administrators, scientists, and drivers could collect additional data [55]. Digitization of
WVC locations on a landscape scale encourages mitigation investment to focus on areas
where it could be most effective [56] and should be considered in an Environmental Impact
Assessment and included in any ecological corridor designation.

WVCs should be analyzed in a complex socioeconomic framework: in and around
main cities [57], in areas where fragmentation caused by roads is high [58], and along roads
where fatalities were the highest in the European Union in 2019 (https://ec.europa.eu/
commission/presscorner/detail/en/ip_20_1003 (accessed on 11 January 2021). Moreover,
through time, new high-speed infrastructure could decrease animal gene flow in some
threatened areas if no proper mitigation measures are taken.

5. Conclusions

Our study is the first in Romania to report on wildlife collision hotspots involving mul-
tiple species and suggests practical local solutions for ensuring the safety of both drivers and
animals, and directly benefitting landscape planning and sustainable landscape management.

The WVC hotspots identified in the four case studies require immediate action to stop
animal fatalities. An emergent issue concerns the Prahova Valley, where the cumulative
effect of traffic and existing infrastructure proximity to the railway pose a high threat to
animal and human safety. Likewise, the planned linear infrastructure to cross the Prahova
Valley and Rasnov–Predeal demands mitigation, as does DN1 around Azuga in the Bucegi
Mountains ROSCI0013 and DN73A on Cold River. Knowing the WVC locations will
enable road administrators to better cope with stringent time limits when developing road
infrastructure. Because many WVC hotspots are in Natura 2000 sites and bisect crucial

https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1003
https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1003
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conservation areas, the designation of ecological corridors to facilitate species movement is
urgently needed, according to the newly published IUCN Guidelines.
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