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Abstract: The firefly species Luciola unmunsana was first discovered on the Unmunsan Mountain
in Cheongdo-gun, Gyeongsangbuk-do, South Korea and consequently named after the mountain.
The population and habitats of this once-abundant species have recently decreased significantly
due to light and environmental pollution caused by industrialization and urbanization. This study
investigated the distribution and density of L. unmunsana around the ecological landscape conser-
vation area of the Unmunsan Mountain. Additionally, we conducted molecular experiments on
regional variations, genetic diversity and phylogenetic relationships among the various populations
of L. unmunsana in South Korea. The genetic relationships among populations were also analyzed
using mitochondrial DNA by collecting 15 male adults from each of the 10 regions across South Korea
selected for analysis. Differences were observed between populations in the east, west and south
of the Baekdudaegan Mountain Range. The firefly populations collected from the eastern region,
which included Gyeongsang-do, showed a close genetic relationship with fireflies collected from the
Unmunsan Mountain. Thus, the findings of this study can be used as baseline data for re-introducing
L. unmunsana to the Unmunsan Mountain.
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1. Introduction

Urban population growth and accompanying urban expansion have rapidly pro-
gressed in the Korean Peninsula since the end of the Korean War in 1953 [1]. This rapid
urbanization has played a role in environmental pollution and habitat modification in
South Korea [2]. Habitat loss and light pollution are known drivers of insect decline [3–5].
In particular, firefly populations and their habitats have considerably decreased due to arti-
ficial light [3–6], land-use changes [3], use of pesticides [4,7,8] and habitat modification [9]
caused by rapid industrialization and urbanization [10]. Although fireflies were common
insect species in South Korea several decades ago, their current numbers have become
severely limited as a result of habitat modification by urbanization [11].

Only eight firefly species have been recorded in the Korean Peninsula [12], while
they constitute more than 2000 species in 100 genera worldwide [13]. Three species are
recognized in Korea in the genus Luciola of Luciolinae: L. lateralis, L. unmunsana and
L. papariensis [14]. Among them, L. unmunsana Doi 1931, is a species endemic to Korea [15].
It was first discovered on Mt. Unmun in 1931 by the Japanese scholar Doi and has been
named after the mountain [15]. Several genetic studies using luciferase genes showed
that L. papariensis and L. unmunsana were the same species [16,17]. Phylogenetic studies
of fireflies in Korea and Japan using luciferase and mitochondrial cytochrome oxidase I
(COI) genes confirmed that the two species were synonymous [18–20]. L. unmunsana and
L. papariensis are nearly identical morphologically [14,21]. Kim et al. [20] suggested that
L. papariensis and L. unmunsana are not different species because the pronotal semicircular
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speckle is polymorphic within species and sometimes differs between species. Kang [22]
also pointed out that L. papariensis may be the same as L. unmunsana, or at least may not
be distributed in South Korea based on topotypical specimens of L. unmunsana with the
blackish semicircular speckle on the pronotum and collected from the type locality, Mt.
Unmun [14].

According to two year-long research projects focused on L. unmunsana [23,24], it was
revealed that the firefly has a one-year life cycle and lives as a larva for the most of its life,
followed by the adult stage, which lasts only for approximately two weeks. The adults are
normally active from late May to mid-July and their time of appearance varies depending
on the altitude and climate of the habitat. Male and female adults show sexual dimorphism
in shape. Males have two light emitters at the end of the abdominal segment, while females
have only one. Furthermore, male adults can fly using their elytra and hind wings, but
females cannot fly because their hind wings are functionally degenerated. This flightless
morph in females impacts their ability to disperse [25].

Because of advances in sequencing and computational technologies, DNA sequences
have become the major source of new information for advancing our understanding of
evolutionary and genetic relationships [26]. Several types of DNA sequences have been
employed for molecular phylogenetics and population genetics [27]. The mitochondrial
cytochrome oxidase I gene (COI) has often been used to identify genetic variations within
a species [28–31], phylogenic relationships [14,32,33] and the rate of evolution [34,35]. The
mitochondrial cytochrome oxidase II gene (COII) has been used successfully to study pop-
ulation genetic structure and population history of a wide range of insect species [36–39].
The mitochondrial 16s rDNA sequence has been commonly used to clarify interspecific or
intraspecific variations [28,40–42].

We hypothesized the occurrence of genetic variations among the L. unmunsana popu-
lations due to the flightless morphs in females, depending on the presence of geographical
barriers between local populations (e.g., rivers, mountains). In this study, we investigated
the spatial distribution of L. unmunsana populations and performed DNA sequencing using
COII and 16s rDNA genes of L. unmunsana to identify the geographical variations among
its populations.

2. Materials and Methods
2.1. Sampling Sites for L. unmunsana

The distribution of L. unmunsana populations were surveyed for three years (2012 to
2014) from May to July, including one year of preliminary survey in 2012 before confirming
the exact study locations [23,24]. We chose 10 sampling regions: Jeju Island; Busan city;
Gyeongsan-si, Mt. Unmun and Cheongdo-gun in Gyeongsangbuk-do; Goesan-gun and
Okcheon-gun in Chungcheongbuk-do; Asan-si in Chungcheongnam-do; Jangseong-gun in
Jeollanam-do; and Namyangju-si in Gyeonggi-do (Figure 1). All L. unmunsana individuals
in these areas were confirmed to have an orange-red color pattern without a blackish
speckle on the pronotum (Figure 2). In each region, a line census was conducted from 21:00
to 24:00 local time by two or more technicians with a mechanical counter (VA-1100HC)
to assess the firefly population in the area. From this data, population averages were
determined. Target areas were mapped using ArcMap ver. 10.1, as shown in in Figure 1.
Soil organic matter and atmospheric humidity were measured to describe L. unmunsana’s
preferred habitat. Soil was sampled at four major sites (Mt. Unmun, Jeju Island, Pusan and
Namyangju) which were well known for L. unmunsana habitat. The soil organic matter in
each sample was determined using the process described by Heiri et al. [43]. We also used
a hygrometer (DT-172, Sunshi Process Systems, Deccan gymkhana pune, India) to monitor
atmospheric humidity at three major sites (Mt. Unmun, Igidae in Busan and Hannam-ri
in Jeju).
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2.2. DNA Extraction

Fifteen male adults were sampled for genetic analysis from each of the 10 regions
(Table 1). The collected adults were first immersed in distilled water (DW) at the site
for 2 h to remove ethanol. Subsequently, the samples were finely ground using a tissue
homogenizer and BioMasher II Grinder (BIOFACT Inc., Daejeon, Korea) to completely
homogenize the tissues. This process was performed using the HiGeneTM Genomic DNA
Prep Kit for Animal Tissue (BIOFACT Inc., Daejeon, Korea). DNA concentrations from
the samples were checked using electrophoresis (Takara Bio Inc., Shiga, Japan) on a 1.5%
agarose gel.
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Table 1. L. unmunsana sampling information used for genetic analysis.

No.
Sampling Site
(Population) Sampling Date

Haplotype PCR Success

16s rRNA (9)
Hd: 0.9566

COII (28)
Hd: 0.9566 16s rRNA COII

1 Asan-si 15 14.05.31 H1 H1, H2
H3. H4 15 15

2 Cheongdo-gun 15 14.06.08 H2 H5, H6
H7, H8 15 14

3 Busan city

Igidae 5 13.06.04
14.06.05

H2
H9

H10
15 12Sinseondae 5 13.06.19

14.06.05

Taejongdae 5 13.06.19
14.06.05

4 Gyeongsan-si 15 14.05.30 H2 H19, H20
H21, H22 15 14

5 Mt. Unmun 15

13.06.10
14.05.29
14.07.14
14.07.16
14.07.18

H2
H9 H28 15 13

6 Namyangju-si 15 13.06.19 H8 H24, H25
H26, H27 15 15
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Table 1. Cont.

No.
Sampling Site
(Population) Sampling Date

Haplotype PCR Success

16s rRNA (9)
Hd: 0.9566

COII (28)
Hd: 0.9566 16s rRNA COII

7 Okcheon-gun 15 13.06.08
14.05.31 H7 H23 15 15

8 Goesan-gun 15 14.05.31 H1
H6

H17
H18 15 15

9 Jeju Island

Cheongsu 5 13.07.08
14.06.26

H3
H4

H11
H12
H13

15 15Hannam 5 13.06.24
14.06.27

Seonheul 5 13.06.26
14.06.29

10 Jangseong-gun 15 14.06.05 H5 H14, H15
H16 15 15

2.3. Sequencing

The extracted DNA was diluted 10 times for sequence amplification using the poly-
merase chain reaction (PCR) process. Subsequently, 1.0 µm DNA template was amplified
using a 10× PCR buffer, 2.5 mM dNTP, 5 U Taq (DNA Polymerase), Band Doctor solution,
10 pmole primer set (TK2-J-3037, TK-N-3785/LR-J-12887-1, LR-N-13398-1) and rinsed thrice
with DW. The primers were selected based on the studies of Suzuki and Kim [18,44,45].
Furthermore, some sequences were modified for 16s rRNA analysis (Table 2).

Table 2. Primers used in the analysis of genetic relationships.

Gene Sequence Reference

COII
TK2-J-3037 5′-ATGGCAGATTAGTGCAATGG-3′

[44,45]TK-N-3785 5′-GTTTAAGAGACCAGTACTTG-3′

16s rRNA
LR-J-12887-1 5′-CCGGTTTAAACTCAGATCATGT-3′

[18]LR-N-13398-1 5′-TGCCTGTTTATTAAAAACAT-3′

The conditions of the PCR process were as follows: pre-denaturation at 94 ◦C for
5 min, denaturation at 94 ◦C for 1 min, annealing at 60 ◦C for 1 min and extension at 72 ◦C
for 1 min. These steps were repeated 30 times. In addition, a final extension at 72 ◦C for
7 min was followed by cooling at 4 ◦C for 10 min. The amplified PCR products were loaded
on a 1.5% agarose gel, mixed with an eco-dye and checked under UV light. Samples which
exhibited faint or invisible bands during electrophoresis were subjected to PCR again and
the entire process was repeated. PCR products with normal bands were purified using a
HiGeneTM PCR Purification Kit and sequenced along with the primer (Table 2).

Sequences of cytochrome oxidase II (COII) and 16s rRNA genes were sorted and edited
using Geneious ver. 5.6.7 and MEGA X. The sequences were identified as L. unmunsana
through a basic local alignment search tool (BLAST) by the National Center for Biotechnol-
ogy Information (NCBI). Haplotype and haplotype diversity were calculated using DNA
sp ver. 5. Different sequences were considered as different haplotypes. Accordingly, a
network of sequence haplotypes was prepared using TCS ver. 1.21. Additionally, a maxi-
mum likelihood (ML) method was created in MEGA X based on the gamma distributed
with an invariant sites (G + I) pattern by the general time reversible (GTR) model [46]. To
determine the most appropriate base substitution model for the Bayesian inference (BI)
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method, a model test was performed using Jmodeltest 2.1.7. Then, based on the highest
score using the Akaike information criterion (AIC), the HKY + g and the general time
reversible models were selected for COII and 16s rRNA analysis, respectively. Based on
these models, Bayesian analysis was performed using MrBayes 3.2.3 [47,48] until the value
after 3,000,000 generations was less than 0.05. The tree sampling option of each model was
analyzed using the HKY + g and GTR models and the log-likelihood value of each model
was analyzed using the Markov Chain Monte Carlo (MCMC) method. A phylogenetic tree
was generated from the results using FigTree ver. 1.4.4.

2.4. AMOVA Test

The genetic diversity of each population was analyzed through an analysis of molec-
ular variance (AMOVA) test and pairwise differences were determined using Arlequin
ver. 3.5.1 [48,49]. Among the 10 selected study sites, the west and east sides of the Baekdu-
daegan Mountain Range (Figure 1) and Jeju Island were identified to have three separate
populations. This was based upon the assumption that the female L. unmunsana’s inability
to fly could have separated the populations due to mobility limitations. The genetic vari-
ations among groups, among populations within a group and within populations were
determined using the standard AMOVA test. Finally, genetic distances between haplotypes
were assessed based on pairwise differences.

3. Results and Discussion
3.1. Population Density of L. unmunsana

Surveys during two consecutive years (2013 and 2014) showed that several villages in the
Jeju island (e.g., Cheongsu and Hannam) in South Korea had relatively higher L. unmunsana
populations. Cheongsu had the largest population counts (452 in 2013, 327 in 2014) during
100-m line censuses. Outside of the Jeju island, Okcheon had the largest L. unmunsana inland
population. There, 144 individuals were counted during the 100-m line census of 2013.
Though Mt. Unmun was famous as type locality for L. unmunsana, populations there were
lower than at other locations (7 to 12 individuals in 2013 and 4 to 28 individuals in 2014).
Gyeongsan and Jangseong had slightly higher populations in a one-year, 100-m census with
over 70 individuals counted at both areas (Table 3 and Figure 3).
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Table 3. Census results of L. unmunsana in South Korea.

No. Observation Sites Date
(2013) No. of Males Date

(2014) No. of Males

1 Mt. Unmun

6 June 2013 8
8 June 2014 4

29 June 2014 28

14 June 2013 12
14 July 2014 14

16 July 2014 7

18 June 2013 7 18 July 2014 5

2 Cheongdo-gun No field investigation 8 June 2014 43

3 Gyeongsan-si No field investigation
30 May 2014 78

7 June 2014 17

3 Seonheul-ri (Jeju)
26 June 2013 141 29 June 2014 17

29 June 2013 81

4 Hannam-ri (Jeju) 27 June 2013 250
27 June 2014 97

1 July 2014 78

5 Cheongsu-ri (Jeju) 34 June 2013 452

26 June 2014 327

28 June 2014 289

30 June 2014 143

6 Okcheon-gun 7 June 2013 144
31 May 2014 24

7 June 2014 20

8 Igidae (Busan) 5 June 2013 27

5 June 2014 23

10 June 2014 24

11 June 2014 7

9 Sinseondae (Busan) 6 June 2013 15

5 June 2014 47

10 June 2014 62

11 June 2014 47

10 Taejongdae (Busan) 4 June 2013 32
5 June 2014 12

11 June 2014 34

11 Namyangju-si 19 June 2013 55 No field investigation

12 Asan-si No field investigation 31 May 2014 17

13 Jangseong-gun No field investigation 5 June 2014 78

14 Goesan-gun No field investigation

We found that every site having a relatively large L. unmunsana population (e.g., three
areas on Jeju Island) had more organic matter in the soil. Results of soil organic matter
sample analyses from several sites showed that three regions in Jeju had higher soil organic
matter (Table 4) than other regions (including Unmun Mt., Sinseondae and Namyangju).
This suggests that L. unmunsana prefers soils abundant in organic matter. Furthermore,
they appear to prefer topsoil with a pronounced organic litter layer.

The field survey also revealed that preferred habitats of L. unmunsana included forest
edges with abundant water resources such as a lake or continuously wet valley (Figure 4).
This suggests that humidity, as well as soil organic matter, may be a key factor in habitat
preference. However, survival of L. unmunsana populations in regions with steep and/or
rough topography (e.g., Mt. Unmun, three regions in Busan, Gyeongsan, etc.) suggests that
L. unmunsana can survive regardless of topsoil and humidity conditions. The population
occurrence of L. unmunsana is along the Mt. Unmun’s biggest watershed where there is a
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continuously wet valley that contributes humidity for its habitat, even without significant
soil organic matter (Figure 4h). Three regions in Busan (Igidae, Sinseondae and Taejongdae)
also supported small populations of L. unmunsana despite having less than ideal soil and
topographic conditions. These regions receive moist air carried by sea winds from the East
Sea (Figure 4c).

Though there is no major river or lake on Jeju Island, the humidity derived from
plentiful surface water running through a wide buffer strip along Mt. Halla (Figure 4g)
reliably substitutes for the humidity otherwise associated with a continuously wet valley
(Figure 4a–f,h). As Figure 5 shows, the three major habitats for L. unmunsana (Okcheon and
Mt. Unmun for inland conditions and Jeju for island conditions) had relatively high daily
mean humidity levels.
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Table 4. Comparing organic matter and color of soil in the representative habitats of L. unmunsana.

Site Name DW WLI LOI
(% wt. loss) TOC OM

(%) Soil Color

Cheongsu 10 3.8 38 17.00 29.31

Brownish black
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Figure 5. Daily mean atmospheric humidity in June (left) and July (right), 2014.

3.2. Genetic Analysis

PCR and sequencing were performed on the mitochondrial COII and 16s rRNA genes
of 150 L. unmunsana fireflies. Of these, results from 143 and 150 fireflies, respectively, were
viable. The species were identified as L. unmunsana through the BLAST search in the NCBI
database. Furthermore, COII had a length of 615 bp and 27 haplotypes (H1–H27), while 16s
rRNA exhibited a length of 468 bp and 9 haplotypes (H1–H9). A network was developed
using TCS 1.21 software. We conducted a systematic analysis using Bayesian inference
(BI) methods and maximum likelihood (ML); with L. lateralis, L. cruciata, Hotaria parvula
and Hotaria thushimana as outgroups. A network developed using the TCS program with
the 27 haplotypes of the COII gene indicated a clear distinction between the populations
of Gyeongsang-do, Chungcheong-Gyeonggi, Jeollabuk-do, Jeollanam-do and Jeju Island,
separated by the Baekdudaegan Mountain Range (Figure 6). A characteristic of the TCS
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program is that the populations are not interconnected after the 95% connection limit is
exceeded. Therefore, the disconnection between the Jeju Island, Jeollabuk-do, Jeollanam-
do, Chungcheong-Gyeonggi and Gyeongsang-do regions in the network indicates that
the populations are distinct from one another. Furthermore, small populations around
each constellation-shaped population indicated that the firefly populations stabilized after
past mutations that occurred within the group. By contrast, although the groups formed
around Gyeongsang-do, Chungcheong-do, Gyeonggi-do, Jeollabuk-do, Jeollanam-do and
Jeju Island in the network based on the 16s rRNA gene analysis were similar to those
observed based on the COII results, no significant differences in the distances between the
groups were observed, despite regional distances (Figure 7). The possible reasons for this
are as follows: First, due to the differences in the number of haplotypes in the gene, the
short 16s rRNA sequence showed a limited number of variations. Second, the frequency
of haplotypes shared among the groups in each region was low. The small number of
haplotypes shared among the groups, combined with the unique haplotypes in each region,
shows that the degree of differentiation in each region had progressed considerably.
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The systematic analysis of the haplotypes of the COII and 16s rRNA genes resulted
in one group, comprising firefly populations of the Mt. Unmun, Cheongdo-gun, Busan
City and Gyeongsan-si in the BI and ML trees, for both COII and 16s rRNA genes, similar
to the network results (Figures 8–10). Furthermore, every node value in the BI and ML
analyses was supported by 70% or higher on the BI and ML trees using the COII and
16s rRNA genes. However, the correlations between the regions in the trees were not
distinct because of low genetic variations. A distinct genetic distance was observed in the
network generated from haplotype-based analysis of the Jeju Island populations. However,
in the ML analyses, the island populations appeared closer to those in the eastern region of
Baekdudaegan, which is unlikely. This is because few or no haplotypes were shared by the
populations and each population had already undergone genetic variations over previous
years, resulting in unique regional haplotypes.
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tree) of L. unmunsana. The trees were developed by the Bayesian inference method using the Mrbayes software.
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3.3. AMOVA Test

Groups were artificially set up in all the regions based on the network and BI and
ML tree methods were used to analyze the genetic variations through the AMOVA test.
However, the network results showed that the COII gene was becoming isolated. Hence,
four groups were established around the Baekdudaegan Mountain Range: the eastern
region (Mt. Unmun, Cheongdo-gun, Gyeongsan-si and Busan City); western region
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(Goesan-gun, Asan-si, Okcheon-gun and Namyangju-si); southern region (Jangseong-
gun); and the Jeju Island, which was established separately. This shows that isolation
must have progressed further on the island than in the inland areas. Consequently, the
percentage of variation was 69.54% among the groups, 23.9% among populations within
groups and 6.47% within populations (Table 5). This suggests that genetic variations
between the groups have progressed to some degree, whereas the degree of variation
among populations in each group was low. The genetic distance among the groups implied
that differentiation was underway as the species had stabilized much earlier. This was
similar to the initial assumption of mobility being limited by flightless female adults. The
relatively low frequency of genetic variation among populations in each group indicated
that the gene transfer rate was low. Pairwise difference analysis showed values close to
0 for Mt. Unmun, Busan City, Cheongdo-gun and Gyeongsan-si. This indicates close
genetic distances, whereas the values for the other regions were close to 1, indicating wide
genetic distances (Table 6). Because each group had unique haplotypes and few or no
haplotypes were shared among the groups, the results of genetic diversity comparisons
were marginally significant. Although the genetic distances or the values comparing
genetic relationships among the regions were uncertain, the populations genetically closest
to those found in the Mt. Unmun ecological landscape conservation area were identified.

Table 5. Hierarchical analysis based on the mitochondrial COII gene.

Source of
Variation df Sum of

Square VC PV FI ST

Among group 3 698.70 6.33 69.54 0.75444 0.00000
Among populations within group 6 188.31 2.18 23.99 0.92869 0.00000

Within populations 133 78.31 0.59 6.47 0.70960 0.00098
Total 142 965.32 91 100

df = degrees of freedom; VC = variation components; PV = percentage of variation; FI = fixation indices;
ST = significance tests.

Table 6. Pairwise differences in the genes among the regional population by the distance method
using the mitochondrial COII gene.

Site CD UM NC BS SD AS OC GS JS JJ

CD -
UM 0.3777 -
NC 0.5644 0.6667 -
BS 0.3180 0.4609 0.5561 -
SD 0.9159 0.9392 0.8954 0.8807 -
AS 0.9212 0.9455 0.9008 0.8868 0.6202 -
OC 0.9662 0.9864 0.9473 0.9390 0.8905 0.8677 -
GS 0.9496 0.9691 0.9324 0.9220 0.9286 0.9262 0.9785 -
JS 0.9681 0.9794 0.9562 0.9503 0.9660 0.9699 0.9887 0.9800 -
JJ 0.8717 0.8871 0.8575 0.8398 0.8601 0.8655 0.8980 0.8849 0.9080 -

CD = Cheongdo-gun; UM = Unmunsan Mt.; NC = Gyeongsan-si; BS = Busan City; SD = Namyangju-si;
AS = Asan-si; OC = Okcheon-gun; GS = Goesan-gun; JS = Jangseong-gun; JJ = Jeju Island.

4. Conclusions

This study investigated the distributions of L. unmunsana male adults in the major
regions of the Korean Peninsula, conducted genetic analysis of the male adults observed in
each region and derived genetic relationships among the regional populations.

Among the regions in Korea where L. unmunsana population was detected, the Jeju Is-
land had the highest L. unmunsana population counts, with densities of more than 300 male
adults per unit area. Additionally, L. unmunsana appeared in other regions (including
Busan City, Okcheon-gun, Gyeongsan-si, Namyangju-si, Jangseong-gun and Asan-si), but
their density was approximately 30 to 50 male adults per unit area. L. unmunsana popu-
lations were nationally distributed and appeared from late May to mid-July. The time of
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appearance varied regionally; from late May to mid-July in inland areas and from mid-June
to mid-July on the Jeju Island. In particular, the fireflies appeared later on the Jeju Island,
although it experiences a warm and humid climate in all seasons. Furthermore, results of
genetic analyses indicated a difference in the genetic distance between populations on the
Jeju Island and those in inland areas. However, these findings require further investigation.

Genetic analysis of male adults was performed for the 10 regions in South Korea
using mitochondrial DNA to analyze the genetic relationships among the L. unmunsana
populations. A genetic distance was observed between the east and west sides of the
Baekdudaegan Mountain Range. A different genetic distance was observed in the Jeju
Island. Because the habitats of fireflies are gradually decreasing, many local governments
are attempting to preserve and restore firefly species in South Korea. Thus, establishing
clear directions for restoration and introduction of fireflies, to maintain genetic diversity, is
important from an ecological perspective.
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