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Abstract: Understanding the spatial growth of cities is crucial for proactive planning and sustainable
urbanization. The largest and most densely inhabited megapolis of Pakistan, Karachi, has experienced
massive spatial growth not only in the core areas of the city, but also in the city’s suburbs and outskirts
over the past decades. In this study, the land use/land cover (LULC) in Karachi was classified using
Landsat data and the random forest algorithm from the Google Earth Engine cloud platform for
the years 1990, 2000, 2010, and 2020. Land use/land cover classification maps as well as an urban
sprawl matrix technique were used to analyze the geographical patterns and trends of urban sprawl.
Six urban classes, namely, the primary urban core, secondary urban core, sub-urban fringe, scatter
settlement, urban open space, and non-urban area, were determined for the exploration of urban
landscape changes. Future scenarios of LULC for 2030 were predicted using a CA–Markov model.
The study found that the built-up area had expanded in a considerably unpredictable manner,
primarily at the expense of agricultural land. The increase in mangroves and grassland and shrub
land proved the effectiveness of afforestation programs in improving vegetation coverage in the study
area. The investigation of urban landscape alteration revealed that the primary urban core expanded
from the core districts, namely, the Central, South, and East districts, and a new urban secondary core
emerged in Malir in 2020. The CA–Markov model showed that the total urban built-up area could
potentially increase from 584.78 km2 in 2020 to 652.59 km2 in 2030. The integrated method combining
remote sensing, GIS, and an urban sprawl matrix has proven invaluable for the investigation of urban
sprawl in a rapidly growing city.

Keywords: urban sprawl; Landsat; CA–Markov model; SDG 11; urban sustainable development

1. Introduction

Urbanization is a complex socioeconomic process that shifts the distribution of a pop-
ulation from dispersed rural settlements to dense urban settlements [1]. In spatial terms,
the urbanization process is manifested in the physical development of urban settlements
and the transition of landscapes into urban forms [2,3]. In the Global South, rapid and un-
planned urban sprawl leads to problems such as fragmented landscape, reduction in arable
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land, increase in urban poverty, and environmental degradation, which pose a huge threat
to sustainable development in these regions [4–6]. By 2030, Sustainable Development Goal
11 of the United Nations intends to make cities and human settlements more inclusive, safe,
resilient, and sustainable [7]. Building policies to promote the sustainable development
of cities, especially in developing countries, need accurate and timely monitoring and
understanding of the spatial growth of urban settlements [8].

Geospatial techniques have enabled the analysis and forecasting of urban growth
at regional and global scales. These methods are useful for observing and understand-
ing the dynamics of urban landscapes [6,9,10]. Previously, efforts have been made to
model and analyze urban spatial growth and patterns using methods such as cellular au-
tomata [11–13], the artificial neural network [14,15], the Markov chain [16,17], geographical
weighted regression [18], the non-ordinal and Sleuth model [19–21], the analytic hierarchy
process [22], machine learning models [23,24], and an urban sprawl matrix [25,26]. Batty
demonstrated how cellular and agent-based models have the ability to clearly incorporate
spatial interaction and mobility [27]. Considering the limitation of basic logistic regression
models, Arsanjani et al. used a hybrid model to uncover the interaction of various envi-
ronmental and socioeconomic variables that cause urban expansion [28]. By combining
the CA model’s benefit of modeling spatial variation in complex systems with the Markov
model’s advantage of long-term prediction, the CA–Markov model was developed, which
is an effective method for simulating LULC transformation. It has been widely applied to
examining and measuring urbanization and landscape dynamics [29]. The Markov model
predicts the future status of a land use based on its current rate [30]. Cellular automata
(CA) detects the geographic location of changes, whereas the Markov chain predicts future
change based on the past [30].

Karachi, Pakistan’s largest city, has seen massive urban growth in recent decades not
only in the city’s center, but also in the surrounding suburbs [6]. If the urban land expansion
rate is higher than the population increase rate, the population density in the urban area will
significantly decline, and the phenomena of urban sprawl will occur. Due to institutional
inefficiency and governance failure, rural lands have been converted into residential and
industrial areas without considering the urban planning schemes in Karachi [31]. The
massive conversion of rural lands for urban areas has caused the sprawl phenomenon
since 2000, which has led to loss of agricultural lands, an increase in commuting costs,
and flooding [31]. The unplanned urban sprawl has also resulted in a range of social
problems such as a lack of health care, shortage of education facilities and infrastructures,
an increase in criminal incidents, and sociocultural imbalance [32–34]. The introduction
of new urban forms and structures that adapt to climate change issues can mitigate the
environmental problems caused by dispersed urban area growth and create more efficient
urban economies [35]. Therefore, the spatiotemporal modeling of urban sprawl is crucial
to better understand the changing urban patterns of Karachi divisions, thus helping local
governments in prioritizing the demands of the local population and formulating strategies
and practical solutions to achieve the goal of urban sustainable development.

Previous studies have attempted to use remote sensing data to analyze the general
pattern of urban land cover changes and urban suitability in Karachi [36,37]. Although land
use land cover changes were significant based on the analysis using satellite imagery, the
landscape changes during the urbanization process were not fully investigated. Moreover,
the simulation and prediction of future LULC scenarios in the growing city have barely
been reported. To fill such gaps, this study aimed to thoroughly analyze the LULC changes
and the spatiotemporal dynamics of urban expansion in Karachi using satellite data from
1990 to 2020. The future LULC scenarios and urban expansion were also simulated using a
CA–Markov model in the city for the year 2030.
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2. Study Area and Datasets
2.1. Study Area

Karachi, the provincial capital of Sindh, is Pakistan’s largest and most densely popu-
lated megacity. It is the principal industrial center, seaport, and financial and commercial
hub. Karachi Urban Agglomeration (Karachi UA), extending over 3527 km2, is located on
the coastline of the Arabian Sea, between 24◦45′ N to 25◦15′ N and 66◦37′ E to 67◦37′ E
(Figure 1). Karachi is mainly made up of flat rolling plains with hills on the western and
northern boundaries. The southern and southeastern banks of the Malir River have a
contagious linear concentration of urban settlements [38].
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GB = Gilgit-Baltistan; KPK = Khyber Pakhtunkhwa.

According to the 2017 Census Report [39], more than 16 million people live in Karachi,
and the population will increase to more than 20 million by 2025 with a density of 4115 per-
sons per square kilometer [40,41]. The city consists of seven districts, which can be further
divided into 31 sub-divisions [39]. As an increasing metropolitan city in a developing
country, Karachi faces unplanned urban expansion, inappropriate essential infrastructure
and facilities, crises in drinking water and solid-waste management services, inconve-
nient public transport, environmental pollution, and poor governance [42]. Of the total
population, nearly 40% live in slum areas [43,44].

2.2. Datasets

The primary data source for measuring urban spatial patterns and analyzing the
trend of urban growth in Karachi was Landsat Thematic Mapper (TM) pictures from 1990,
2000, and 2010 as well as Landsat 8 OLI images from 2020 from Google Earth Engine
(Table 1). The atmospheric correction technique LaSRC was used to correct the available
Landsat Surface Reflectance Tier 1 data in Google Earth Engine. The CFMASK algorithm
was used to mask cloud, shadow, and water regions in these images. The entire study
area covered three Landsat tiles (152_042, 152_043, and 153_043). The atmospherically
corrected and cloud removed images with a ten-year interval were used to perform the
initial LULC classification. As supplementary features for land cover classification, the
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normalized difference vegetation index (NDVI) and the normalized built up index (NDBI)
were computed for each decadal image [45].

Table 1. Details of datasets used in this study.

Data Details Period Source

Landsat images 30 m resolution, Path/Row 152,042, 152/043, 153/043 1990–2020 USGS
Base map scale 1:25,000 2000 SOP

Population divisional level 1990–2020 COP
DEM SRTM DEM and Slope 2015 USGS
Roads Road Network 2018 OSM

Several datasets were used as supplementary data in our study (Table 1). To distin-
guish LULC classes between plain and hilly areas, SRTM digital elevation model (DEM)
data were employed. To evaluate the accuracy of LULC, high spatial resolution images
with multiple acquisition dates collected from Google Earth and topographical maps pub-
lished by the Survey of Pakistan, Government of Pakistan were used as reference data.
District-level population data were gathered for the years 1990, 2000, 2010, and 2020 from
the official census and Pakistan Bureau of Statistics [39]. The road network data were used
to train the CA–Markov model for the LULC scenario simulation.

3. Methods

The workflow was primarily comprised of three steps: classification of land use/land
cover, analysis of urban expansion, and modeling of future LULC scenarios. Figure 2
depicts the entire data processing workflow adopted in this study.

3.1. Land Use/Land Cover Classification

We used the Google Earth Engine’s random forest classification technique to produce
land use/land cover maps for the years 1990, 2000, 2010, and 2020 in the study area [46]. The
overall accuracy (OA), producers’ accuracy (PA), and users’ accuracy of the classification
results were measured using the confusion matrix [46].

3.2. Urban Landscape Change Analysis

The post-classification change matrix methodology was used to create a land use/land
cover change map from 1990 to 2020. To analyze land use/land cover changes, a transition
model was developed using cross-tabulation in the GIS module. The transition matrix
indicates that the study area had experienced major alterations.

An urban sprawl matrix was utilized to examine urban expansion dynamics and
measure urban spatial patterns in Karachi [47]. For the categorization of urban spatial
patterns, matrix functions based on urban pixels were used. Using the urban sprawl
matrix, the study area was divided into six classes, namely, the urban primary core, urban
secondary core, suburban fringe, scatter settlement, urban open space, and non-urban area
(Table 2 and Figure 3).
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Table 2. Classification of the study area into urban spatial patterns.

Urban Spatial Patterns Criteria

Urban primary core The most densely packed set of pixels in which at least 50% of
the surrounding neighborhood is densely populated.

Urban secondary core It is at least 50% built-up in the same way as urban primary
core although it is not part of it.

Suburban fringe The built-up pixels with a 30–50% urbanness surrounded by
primary and secondary core.

Scatter settlement The built-up pixel is less than 20% built up and is located
apart from the primary and secondary cores.

Urban open space The non-urban regions encircled the primary and secondary
urban cores.

Non-urban area Apart from the primary and secondary urban cores,
non-urban area.
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3.3. LULC Simulation

CA–Markov simulation was implemented using several steps: (a) the generation of
LULC maps with the same time interval (1990, 2000, 2010, and 2020); (b) the calculation
of transition probability matrices based on LULC maps; (c) the generation of transition
suitability maps using driving factors such as distance to water body, distance to main
roads, distance to built-up areas, and slope [4,31]; (d) the evaluation of the model’s ability
to simulate future changes using a kappa index of agreement (KIA) approach; and (e) the
simulation of LULC maps for the predicted year (here, 2030). The projections of LULC
change in the study area were performed using the land change modeler (LCM) within
the TerrSet software (Clarke Labs 2019, https://clarklabs.org (accessed on 10 December
2020) [48].

As an input to the CA–Markov model, the Markov chain model was employed to
produce a transition probability matrix between an initial state and a final state. The
transitional probability matrices were generated using LULC information from 2010 to
2020 in order to investigate how each land cover class was expected to change. The Markov
model can be described using the following equation:

S (t + 1) = Pij × S(t) (1)

where S represents the land use condition at time t; S (t + 1) represents the land use status at
time t + 1; and Pij is the transition probability matrix in a certain state, which is calculated
using the following equations [49]:

‖Pij‖ =

∥∥∥∥∥∥
P1,1 P1,2 P1,N
P2,1 P2,2 P2,N
PN,1 PN,2 PN,N

∥∥∥∥∥∥ (2)

(0 ≤ Pij ≤ 1) (3)

where P refers to the transition probability; Pij refers to the probability of changing from
state i to state j in the next time; and PN refers to the state probability of any time. The low
transition probability is close to 0, and the high transition probabilities is close to 1 [49].

Using the multi-criteria evaluation (MCE) module, suitability maps, which show the
suitability of cell transformation for a particular land cover type, were created for the
application of the CA model. The characteristics of LULC types were taken into considera-

https://clarklabs.org
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tion. For example, the built-up area cannot be converted into a water body [50,51]. As an
inherent part for geospatial modeling, the kappa index of agreement (KIA) representing
the model’s simulation accuracy was used here to evaluate the model’s ability to simulate
the spatial pattern of land use [52,53]. The KIA was calculated with the following equation:

KIA = Pr(a) − Pr(e)/1 − Pr(e) (4)

where Pr (a) refers to the observed agreement, and Pr(e) refers to chance agreement. The
kappa coefficients (K-no, K location, and K-standard as well as the overall kappa co-
efficient) were used to compare the simulated and the LULC map based on remote sensing
data of 2020. The kappa coefficient values were calculated using TerrSet IDRISI software.

4. Results and Discussion
4.1. LULC Change

In the study area, six LULC classes were identified: bare land, built-up area, cultivated
land, grassland and shrub land, water body, and mangroves (Figure 4). According to the
accuracy assessment results, the overall classification accuracies were 89, 91, 91, and 89%
for 1990, 2000, 2010, and 2020, respectively. The kappa coefficient values were 0.86, 0.90,
0.89, and 0.87 for 1990, 2000, 2010, and 2020, respectively.
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Over the last three decades, the land use/land cover in the study region has changed
dramatically (Table 3). Between 1990 and 2020, the area covered by built-up area and grass-
land and shrub land expanded, while the area occupied by agricultural land, mangroves,
and open bare ground declined. Divergent changing trends were revealed in the time
periods before 2000 and after 2000 for cultivated land, grassland, and shrub land, and
mangroves (Table 3). The increase in the area of mangroves and grassland and shrub land
since 2000 indicates that afforestation programs have played a positive role in improving
vegetation coverage in the study area. The Sindh Forest Department made great efforts to
restore and plant endangered mangrove species. With the help of local communities, they
planted more than 800,000 saplings of Rhizophora mucronata mangroves in the coastal
zone of Pakistan in 2013 [54]. The decrease in cultivated land was observed near the
built-up area, which indicates urban expansion at the cost of cultivated land (Figure 4).

Table 3. Areal changes in each land use land cover type in Karachi.

LULC Classes
Area (sq.km) Change Rate (%)

1990 2000 2010 2020 1990–2000 2000–2010 2010–2020

Bare land 2663.7 2811 2491.7 2156.6 5.53 −11.35 −13.44
Built-up area 221.1 358.7 424.3 573.9 62.23 18.28 35.25

Cultivated land 112.2 159.3 148.4 81.5 41.97 −6.84 −45.08
Grassland and shrub land 534.3 370.5 563 867.7 −30.65 51.95 54.12

Mangroves 65.9 13.8 14.2 17 −79.05 2.89 19.71
Water bodies 23.8 46.5 54 56.8 95.37 16.12 5.18

The increase in urban areas in different districts of the study area is illustrated in
Figure 5. It was observed that districts near coast and far from the core area (Karachi Central,
South, and East districts) had a record high urban growth from 1990 to 2020, particularly
in the Malir (417.92%), West (279.38%), and Kiamari (257.05%) districts (Table 4). Among
the core areas, the East district of Karachi experienced a higher increase in the built-up
area than that in the Central and South districts of Karachi. The central city’s congestion
caused outgrowth at the periphery of the megacity during the study period. As a main
driver of built-up area growth, the density of the population in Karachi has constantly been
increasing over the last three decades. The population of central city has remained highly
concentrated, and its population increased from 1.8 million in 1990 to 3.09 million in 2020.
Simultaneously, the population of the suburban Malir and West districts increased from
0.8 million and 0.7 million in 1990 to 2.8 million and 2.23 million in 2020, respectively [39].
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Table 4. Built-up area increases in each district of Karachi (in percentage).

District 1990–2000 2000–2010 2010–2020 1990–2020

Kiamari 118.49 3.08 14.13 257.05
Central 29.67 −3.95 3.11 128.43
South 29.07 −0.77 11.64 142.97
West 96.63 26.78 12.07 279.38
East 47.61 3.95 22.57 188.07

Korangi 29.91 10.75 28.98 185.59
Malir 66.16 19.13 111.12 417.92

Figure 6 shows the land transformation in various districts and time periods induced
by the process of urbanization. The majority of areas converted to urban land at the expense
of open bare land, grassland and shrub land, and agricultural land (Table 5).
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Table 5. Land transformation from other LULC classes to built-up area during the periods of 1990–2000, 2000–2010, and
2010–2020.

Urban Land Transformation
Area (km2) Change Rate (%)

1990–2000 2000–2010 2010–2020 1990–2000 2000–2010 2010–2020 1990–2020

Bare land to Built-up 114 68.7 134.2 4.28 2.44 5.38 117.71
Cultivated land to Built-up 8.4 9.7 12.5 3.79 2.70 2.94 148.81

Grassland and Shrub land to Built-up 42.6 13.1 30.2 37.96 8.22 20.35 70.89
Water to Built-up 3 0.1 0.9 0.56 0.02 0.16 30.00

Mangroves to Built-up 2.1 2 3.2 3.18 14.49 22.53 152.38
Expansion of Built-up Area 170.1 93.6 181 714.70 201.29 335.18 106.40

4.2. Urban Landscape Change

The urban sprawl matrix was used to create urban landscape maps in the study
area. The area of urban primary core increased from 145.9 square kilometers in 1990 to
363.5 square kilometers in 2020 (Table 6). In 1990, changes in the area of the primary
core were registered in the areas that comprise the CBD area, namely, the South, East,
and Central districts, and later in 2020, the urban primary core expended further into the
suburban districts of Karachi such as the Malir, West, and Kiamari districts (Figure 7). The
area of the urban secondary core also changed from 25.9 sq.km 1990 to 22.3 sq.km in 2020
(Table 6). In 1990, the urban secondary core was observed only in the districts of Malir and
Korangi, while later in 2020, the urban secondary core could be observed in other suburban
areas of Karachi such as the districts of West and Kiamari. The observed urban secondary
core areas in 1990 merged with the urban primary core in 2020 due to rapid expansion, and
a new urban secondary core area emerged in the suburban areas of Karachi (Figure 7).



Land 2021, 10, 700 11 of 17

Table 6. Urban landscape changes in Karachi during the periods of 1990–2000, 2000–2010, and 2010–2020.

Urban Spatial Patterns
Area (sq.km) Change Rate (%)

1990 2000 2010 2020 1990–2000 2000–2010 2010–2020

Urban Primary Core 145.9 248 255 363.5 69.979 2.823 42.549
Urban Secondary Core 25.9 29.3 40 22.3 13.127 36.519 −44.250

Suburban Fringe 25.2 22 22.09 35.8 −12.698 0.409 62.064
Scatter Settlement 16.7 32.8 33.9 42.2 96.407 3.354 24.484
Urban Open Space 121.8 152.5 168.2 234.3 25.205 10.295 39.298

Non-Urban Open Space 3272 3131 3089 2911 −4.309 −1.341 −5.762
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The area of the suburban fringe and scatter settlements showed a marginal increase
(Table 6). The urban open space increased from 121.8 sq.km in 1990 to 243.3 ssq.km in 2020,
which indicates an increase in green space under the urbanized area. Most of this increase
was observed in the core of districts of East, Korangi, and Kiamari. A drastic decrease from
3272 sq.km in 1990 to 2911 sq.km in 2020 in the area of non-urban open space can also
be observed.

The changes in each urban spatial pattern class within districts were analyzed (Table 7).
Between 1990 and 2020, the Kiamari, East, West, and Korangi districts had rapid growth
in the primary urban core. From 1990 to 2020, no urban secondary core was found in the
district of Kiamari, Central, South, West, or East, while this was observed in the districts
of Malir and Korangi. The urban secondary core in the Korangi district merged with
the urban primary core in 2020. The newly developed Malir district experienced high
urban secondary core growth due to the large number of commercial and residential
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developmental activities over the last two decades. The suburban fringe increased in the
districts of Kiamari, West, East, and Malir, while the urban open space decreased within the
Central and South districts. The decrease in open space in the CBD area might be attributed
to the conversion of open space to residential and commercial lands.

Table 7. Urban landscape changes in different districts of Karachi (in percentage).

District
Primary Core Secondary Core Suburban Fringe Urban Open Space

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

Kiamari 103.66 1.80 12.44 0.00 0.00 0.00 0.00 100.00 29.45 73.26 −0.89 13.18
Central 30.77 −3.86 3.25 0.00 0.00 0.00 0.00 0.00 0.00 −52.39 24.26 −15.33
South 44.86 −5.02 15.44 0.00 0.00 0.00 0.00 0.00 −100.00 −12.23 60.64 −7.21
West 98.47 16.87 11.42 0.00 0.00 2100.00 0.00 0.00 −9.18 33.73 37.25 33.09
East 40.37 8.52 26.99 0.00 −100.00 0.00 427.78 76.62 50.00 103.99 10.64 22.85

Korangi 5728.57 7.78 251.51 100.10 25.38 −100.00 46.63 −114.47 −100.00 1.23 12.82 3.69
Malir 0 35.96 402.63 −350.61 69.31 30.39 122.99 18.69 144.37 59.99 4.67 148.41

4.3. Transition Probability Matrix Analysis

The transition probability matrix was generated for the time periods of 1990–2000,
2000–2010, and 2010–2020 to demonstrate the probability that each land cover type was
projected to change (Table 8). The values on the diagonal of the matrix represent the
possibility of a land cover type maintaining its original state, and the values on the non-
diagonal represent the possibility of a land cover type converting to other types. From 1990
to 2000, bare land was the most stable class with 0.77 probabilities, while the most dynamic
class was cultivated land with transition probabilities of 0.32. From 2000 to 2010, water
bodies were the most stable class with 0.67 probabilities, and grassland and shrub land
were most dynamic with 0.20 probabilities. Similarly, from 2010 to 2020, mangroves were
the most stable class with 0.76 probabilities, and cultivated land was the most dynamic
class with 0.20 probabilities. The transition probability matrix from 2010 to 2020 was used
to simulate the LULC map for Karachi city in 2030.

Table 8. Transition probability matrix of LULC classes in Karachi from 1990 to 2000, 2000 to 2010, and 2010 to 2020.

Class Time Period Bare Land Built-Up Cultivated
Land

Grassland and
Shrub Land Mangroves Water

Bodies

Bare land
Phase 1 0.77 0.10 0.40 0.06 0.00 0.00
Phase 2 0.68 0.05 0.02 0.23 0.00 0.00
Phase 3 0.61 0.05 0.01 0.32 0.00 0.00

Built-up
Phase 1 0.14 0.70 0.05 0.08 0.00 0.00
Phase 2 0.14 0.76 0.03 0.05 0.00 0.00
Phase 3 0.03 0.85 0.03 0.03 0.03 0.03

Cultivated land
Phase 1 0.39 0.88 0.32 0.18 0.00 0.00
Phase 2 0.25 0.12 0.29 0.30 0.00 0.01
Phase 3 0.27 0.05 0.20 0.46 0.00 0.00

Grassland and
shrub land

Phase 1 0.30 0.30 0.30 0.85 0.03 0.03
Phase 2 0.54 0.14 0.10 0.20 0.00 0.00
Phase 3 0.55 0.04 0.04 0.34 0.00 0.00

Mangroves
Phase 1 0.09 0.14 0.02 0.01 0.41 0.30
Phase 2 0.04 0.05 0.00 0.00 0.63 0.25
Phase 3 0.07 0.04 0.00 0.02 0.76 0.08

Water bodies
Phase 1 0.49 0.38 0.04 0.02 0.00 0.39
Phase 2 0.12 0.12 0.00 0.00 0.05 0.67
Phase 3 0.13 0.05 0.01 0.02 0.09 0.66
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4.4. LULC Simulation Results

The validation results showed strong agreement with the simulation map (Table 9).
The kappa values indicate that the CA–Markov model used is suitable for simulating future
LULC maps in the study area.

Table 9. Validation results of the CA–Markov model.

Year Kappa Parameters

2020
K-location K-no K-location Strata K-standard Overall Kappa Value

0.91 0.91 0.91 0.87 0.87

The simulated LULC maps for Karachi city in 2030 are shown in Figure 8, and the
changes for each LULC type are tabulated in Table 10. The simulation results show that
the bare land area will significantly decrease in 2030 due to its conversion to a built-up
area. The districts of Malir, South, and Kiamari are seeing the most growth in terms of
urban built-up area. The spatial pattern of the predicted LULC indicated that the city’s
new residents would settle in sub-urban fringes surrounding the urban cores. Living in
these areas allows them to be closer to work and facilitates a more convenient commute.
Grassland and shrub land covered about 838.42 km2 in 2020 and are expected to gradually
increase to 999.06 km2 in 2030.
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Table 10. Predicted LULC changes for Karachi city in 2030.

LULC Class
Area (sq.km) Change

2020 2030 Sq.km %

Bare land 2031.74 1750.84 −280.9 −86.17%
Built-up 584.78 652.59 67.81 111.60%

Cultivated land 78.39 99.46 21.07 126.88%
Grassland and

shrub land 838.42 999.06 160.64 119.16%

Mangroves 15.61 33.36 17.75 213.71%
Water bodies 53.35 66.97 13.62 125.53%

Although the validation results showed that the CA-Markov model was a reliable
method for simulating land use change, there are several limitations in our study. Socioeco-
nomic factors are among the most important variables influencing land use changes. Our
study was unable to investigate several potential socioeconomic causes of urban expansion
due to a lack of spatial data. Moreover, more sophisticated models can be developed to
simulate urban growth in different areas of the study area [55]. Landsat images with a
resolution of 30 m were used to construct the land-use/cover maps for LULC modeling.
High-resolution satellite data may be employed in the future to generate more detailed
observations of specific agricultural and urban covers.

5. Conclusions

An urban sprawl matrix methodology was used in this study to analyze changes in
urban spatial patterns in Karachi over three decadal epochs (1990–2000, 2000–2010, and
2010–2020). The utilization of the urban sprawl matrix provided an accurate and effective
assessment of Karachi’s urban expansion tendencies. Future land cover changes in the
study area were predicted using a CA–Markov model for 2030. The results indicate that the
built-up area had expanded in a considerably unpredictable manner, which was mainly at
the expense of agricultural land. The increase in mangroves and grassland and shrub land
demonstrated the effectiveness of afforestation programs in improving vegetation coverage
in the study area. Fast urban development was recorded in districts including Malir, West,
and Kiamari from 1990 to 2020. The primary urban core expanded from the core districts,
namely, the Central, South, and Eastern districts, and a new urban secondary core was
observed in Malir in 2020. The LULC simulation results for 2030 revealed a significant
increase in urban built-up area of 111.6% compared with that in 2020, mainly distributed in
sub-urban fringes.

This study proved remote sensing and GIS techniques to be valuable tools in tracking
and assessing changes in urban spatial patterns. The findings of the analysis can provide
policy implications for future urban land transformation management and planning in
order to achieve the Sustainable Development Goals. Future research could explore the
forces that drive urban sprawl and examine how they interact with social, economic, and
environmental repercussions in fast growing cities.
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