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Abstract: Effective landslide detection is crucial to mitigate the negative impacts derived from the
occurrence of these natural hazards. Research on landslide detection methods has been extensively
undertaken. However, simplified methods for landslide detection requiring a minimum amount
of data inputs are still lacking. Simple approaches for landslide detection should be particularly
interesting for geographical areas with limited information or resources availability. The aim of
this paper is to present a refined, simple, GIS-based tool for the detection of landslide-prone and
slope restoration zones. The tool only requires a digital elevation model (DEM) dataset as input, it is
interoperable at multiple spatial scales, and it can be implemented on any GIS platform. The tool was
applied on a coastal slope prone to instability, located in Scotland, in order to verify the functionality
of the tool. The results indicated that the proposed tool is able to detect both shallow and deeper
landslides satisfactorily, suggesting that the spatial combination of steep and potentially wet soil
zones is effective for detecting areas prone to slope failure.

Keywords: landslides; geographical information system (GIS); natural hazards; conservation; restora-
tion; Scotland

1. Introduction

Soil loss jeopardizes the integrity and function of the Earth’s ecosystems. Landslides,
in particular, have been recognised as one of the main drivers of soil loss globally [1] with
a severity and recurrence which is most likely to increase under the predicted scenarios of
climate change due to the potential intensification of the hydrological cycle [2], which is
linked to the occurrence of rainfall-induced landslides [3]. Landslides can be classified in
accordance with scale, location of occurrence, cause, material (e.g., mud, soil, rock) and
predominant type of movement (e.g., falls, topples, flows etc.; [4]). Landslide events often
comprise more than one type of movement, so it is challenging to classify distinct types of
landslides. All landslides are potential hazards, but most of them occur in remote areas
away from densely populated urban areas (e.g., mountainous zones). However, when
landslide hazards occur near human settlements, landslides can have devastating effects
on human life, environment, and infrastructure. Thus, an effective and timely detection of
landslides is needed in order to substantially reduce the risks derived from such a natural
hazard. The physical factors such as past history, slope steepness, and bedrock are the
minimum parameters needed for assessing the likelihood of landslide occurrence.

Soil loss is a gradual process over time with a number of factors affecting it spatially
and temporally. The amount of studies focusing on the prediction of landslides timing
and location is wide-ranging, and it is still growing [5,6]. Generally, the triggers for
landslide initiation are considered to be of geological (e.g., the nature of the soil and
bedrock), environmental (e.g., precipitation, vegetation), and anthropogenic (e.g., change
in topography, hydrology and land cover due to human activity) in origin. While the
geological and anthropogenic triggers are outside of the focus of this study, it is the transient
environmental triggers influencing the soil water mass balance that can affect the strength
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of the soil and gradually reduce the stability of the slope. In particular, landslides are
commonly triggered after prolonged periods of heavy rainfall, which lead to the saturation
of the slope forming materials with water and, in turn, to the weakening of the soil shear
strength [3,7]. Connected to this is the build-up of positive pore water pressures in the soil
due to precipitation and/or groundwater ponding, which cause saturation and reduction
of the strength of the soil. Additionally, in these situations, the evapotranspiration potential
of the vegetation present on the slope may not be enough to control the pore water pressure
build up and the roots of vegetation will only contribute to the strength of the soil from a
mechanical aspect [8,9]. Thus, landslide forecasting has traditionally been based on the
establishment of rainfall triggering thresholds on steep areas [10]. However, there are
multiple approaches available to map and predict landslides (e.g., slope stability modelling,
susceptibility mapping, hazard assessment, machine learning, etc.; for review, see [6,11].

Earth observation techniques and imagery, together with the related processing and
visualisation approaches, have substantially facilitated landslide mapping (for review,
see [12–14]). The implementation of spatial algorithms combining terrain features (e.g.,
slope, aspect, curvature) as predictors of landslides has become very popular with the
advent of GIS tools (e.g., [11,15]). In these algorithms, usually a historical landslide in-
ventory and a set of landslide-related factors are combined to establish the GIS database.
Subsequently, statistically-based models (traditional or modern statistical models) are
then employed to build susceptibility maps [16]. However, the complex nature of slope
instability phenomena which involves many and varied governing factors as well as the
unique characteristics of each study site make the standardised use of one algorithm in
different areas difficult, especially in cases where there is either no record of the history of
instability or where the resolution and availability of relevant data is an issue.

The utilisation of terrain attributes as variables for landslide detection is particularly
useful, as these can help to depict how water distributes and accumulates in the landscape
in relation to the location of geographical zones presenting sloped topography [17]. Terrain
attributes can be easily derived from readily-available digital elevation models (DEMs) by
implementing context operators (e.g., nearest neighbour algorithms) in any GIS software.
DEM is a 3D computer representation of elevation data to represent the relief of a terrain
(or slope). DEMs can be based on directly surveyed data from a site or, more often, remote
sensing data are used. The accuracy of DEM depends on terrain roughness, sampling
density, grid resolution or pixel size, and interpolation algorithm, and can range from
millimetre to kilometre. DEMs availability is becoming ubiquitous and, in many instances,
they are freely available at government portals (e.g., https://digimap.edina.ac.uk; https:
//www.usgs.gov/core-science-systems/ngp/tnm-delivery/gis-data-download; accessed
on: 12 April 2021), making the use of DEMs a great asset to detect landslides and to
map the associated risks under data and resources-limited situations. Terrain attributes
such as curvature, aspect, and elevation have traditionally been used in GIS-based tools
for assessment of slope instability hazards (e.g., [16]). However, while these attributes
constitute some of the major underlying slope instability factors (e.g., steep and convex
slopes are more prone to failure, same as slopes with aspects which do not favour growth of
vegetation reinforcing and stabilising slopes; [18]), they still need to be linked to the main
driver of landslides—i.e., the precipitation-derived water accumulating and saturating the
slope forming materials [19]. Simple but robust approaches linking both slope topography
and hydrology should be very interesting to support workflows for the mitigation and
restoration of landslides [20].

The problems with landslides and soil mass wasting have traditionally been solved
in a similar way for both potential slope instability and mitigation of instability which
has already occurred. Whilst the techniques and methodologies applied towards the
solution of these problems are similar, the types and use of data differ significantly [20].
Typical workflow activities include gathering desk study information (e.g., aerial photos,
geological information, hydrological mapping, historical records, etc.), undertaking site
reconnaissance (e.g., field mapping), risk assessment, slope stability design (including
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numerical modelling), and construction of mitigation measures [21]. The breadth of the
data used to inform the design of mitigation measures against landslide hazards or the
numerical model for prediction of future slope behaviour is usually dependent on the type
and depth of risk assessment, which, in turn, depends on the robustness and quality of the
available data. Because of this, in the past, only the instability of slopes which dramatically
threatened life and property has been investigated in detail. However, the instability of
natural slopes, usually in a rural setting, is a much more prevalent phenomenon than the
instability of engineered slopes and it also deserves attention although the risks to life and
property may be lower. For this to be affordable and of value for the asset owners, there is
a need for a method or a tool that can detect areas prone to instability within natural slopes
that can be demonstrated to work for relatively small scale natural slopes.

The aim of this paper is to present a simple GIS-based tool for the detection of
landslide-prone zones. The tool is a refined version of the landslides detection module
integrated within the Plant-Best model [8], which is a computer-based, plant selection tool
for slope protection. The goals of this study are to (i) provide a detailed description on
the steps needed to retrieve the location of landslide-prone zones by only using a DEM;
(ii) provide an illustrative example supporting the detection power of the proposed tool;
and (iii) verify the sensitivity, specificity, and accuracy of the proposed tool. In addition,
guidelines on how to use the proposed tool in a wider context of managing landslide
hazards are provided.

2. Materials and Methods
2.1. Assumptions

Landslides are most likely triggered by the build up of high pore-water pressures in
sloped soils [3]. This means that landslides tend to occur when the soil is saturated with
water. Under these conditions, the shear strength of slope mantled materials decreases [7].
Once the equilibrium between resisting (e.g., shear strength) and driving forces is broken,
a landslide may follow [3] In the light of the latter, it makes sense to think that landslides
will more likely occur on sloped terrain located between zones of water accumulation.
Therefore, to delineate potential zones subject to slope failure, the tool proposed herein
evaluates the location of areas with high slope gradients (e.g., >20◦) which exist between the
zones where water is likely to accumulate. It is thus assumed that the water accumulating
either upslope or downslope will or did flow through the slope-forming materials with the
potential of weakening the soil shear strength and triggering a landslide.

2.2. Detection of Water Accumulation Zones

Water accumulation zones are derived from the calculation of the cartographic depth-
to-water index (Dtw; [17]). Dtw is a terrain index that predicts the distance of a given cell in a
raster grid to a cell accumulating water. Therefore, the patterns of water flow accumulation
(FA) in the landscape must be evaluated first. FA can be assessed with a GIS-based, context
operator (e.g., [22]) using a filled or depression-less DEM raster as input. FA operators
estimate the likely number of neighbouring raster cells flowing into a given cell (e.g., [23]).
Hence, DEM-derived terrain attributes such as the curvature, aspect, and elevation will
therefore determine the direction of flow and, eventually, its accumulation. Once FA is
estimated, a cost raster (i.e., a raster dataset that identifies the cumulative cost of traveling
from every cell in a raster to a specific source; [24]) can be generated by implementing a
path-distance algorithm in which the FA, slope gradient, and elevation are used as source,
cost, and surface raster, respectively (Figure 1). It is worth noting that the FA dataset needs
reclassification into a Boolean raster (i.e., a raster which contains only 0 and 1) to generate
a usable source raster. This can be achieved by setting up an appropriate threshold in
terms of the number of cells flowing into a particular cell, defining which cells in the FA
raster dataset will actually be accumulating water, similarly to how stream networks are
defined using GIS-based operation (e.g., [25]; Figure 1A). Eventually and, by definition,
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Dtw is the product of the cost raster created in the previous step and the raster resolution
(Figure 1A; [17]).
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2.3. Detection of Landslide-Prone Zones

Zones prone to slope failure will likely, and realistically, present a combination of
steep slope gradients and high soil wetness (Figure 1B; [3]). Landscape zones prone to
being wet due to the accumulation of water can be derived from Dtw (see Section 2.2;
Figure 1A) by establishing arbitrary distance thresholds, or buffers, from and to raster cells
into which water will likely flow and accumulate [17]. Distance thresholds may vary with
the resolution (i.e., cell size) of the DEM raster employed to generate Dtw. Thus, to establish
appropriate distance thresholds and, to ensure that wet zones are adequately delimited for
a given study area, it is advisable to identify the pixel or cell value within the Dtw raster at
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locations where Dtw is high. For example, using a DEM with a resolution of 2 × 2 m2, a
threshold value of 600 m was chosen (Figure 1B). Subsequently, a reclassification process
can be implemented to generate a Boolean raster in which all those pixels within the
established threshold acquire a value of 1 (Figure 1B). The latter step is meant to highlight
zones likely to be wet on the landscape and thus likely to present weak soil materials
from the geotechnical stand-point [7]. Then, the Boolean raster can be overlaid with the
slope raster through a multiplication operation using a raster calculator (i.e., Boolean wet
zones raster x slope raster in degrees; Figure 1B). The resulting raster will be comprised
of cells containing the slope gradient value for likely wet zones. With the latter, another
Boolean raster can be created to select the steepest zones only (e.g., slope gradient > 20;
Figure 1B) and, hence, to delimit zones that could be subject to landslide events on the
basis of combining steep topography and high soil wetness. The output from the former
overlay operation is a Boolean raster in which landslide-prone zones have a value of 1
while the rest of the pixels have a value of zero. The latter can be processed further by
replacing the zeros with null values, obtaining discrete polygons denoting zones prone
to landslides.

2.4. Tool Verification

To verify the predictive capacity of the proposed tool, the cartographic model shown in
Figure 1A,B was implemented on a small-scale, study site with a history of landslide events.
To implement the proposed tool, a 2 × 2 m2 resolution DEM was used as input [26] and
the steps depicted in Figure 1A,B were implemented in ESRI ArcGIS Desktop v.10.5 [24].
Eventually, the retrieved outcomes were compared against aerial images captured in
2016 and 2017 and provided by ESRI Imagery (http://www.esri.com/arcgis/imagery-
remote-sensing/content; accessed on 12 April 2021) and Tomtom-Apple Inc. Maps v2.1,
and supplemented with a ground verification process outlined below. The sensitivity,
specificity, and accuracy of the proposed tool was assessed through conducting an ROC
(receiving operating characteristic curve) analysis (e.g., [27]). To this end, an ROC curve
was built by plotting the rate of true positive cases of landslide detection (i.e., sensitivity)
against the rate of false positive cases (i.e., 1-specificity). We considered that true positive
cases of landslide detection were those landslide-prone zones detected by the proposed tool
in which an active or past landslide exists on the ground within the polygon established
by the tool. We considered that false positive cases of landslide detection were those
landslide-prone zones detected by the tool in which an active or past landslide is not visible
on the ground. True negatives were assumed to be those zones in which landslide-prone
zones were not detected and where landslides do not actually exist on the ground. The area
under the ROC curve (AUR) was calculated using a polygons method with the R package
pROC [28].

The study site is adjacent to Catterline Bay, Aberdeenshire, UK (WGS84 Long: −2.21 Lat:
56.90). Catterline Braes (CB) is a 400 m long, 30 m high coastal slope forming the northeastern
end of the Catterline Bay, Figure 2). The site is within the maritime climate zone with
mild summers and cool winters, relatively narrow annual temperature range with the
precipitation being relatively evenly dispersed throughout the year (the mean temperature
at the site is 8.9 ◦C and the mean annual rainfall is 565.13 mm; [29]. Geomorphological
studies carried out on the site [19] showed slopes within the site area to be typically inclined
at 34◦ (range: 25–50◦) with a general ESE aspect. CB includes a series of exposed slope
sections interspersed with gully-outcrop forms ranging in height between 2 and 10 m. A
small, 2.0 m wide tarmac-surfaced access road divides the slope into upper and lower,
traversing from SW to NE and dropping in level from 26 mAOD (metres above Ordnance
Datum) at the SE end to 2.5 mAOD at the pier stage at the NE end of the bay. Twelve
private residential properties are located along the crest of the slope that effectively has
no owner, with a grassed, non-fenced public footpath offsetting the residential properties
from the actual slope. A branch of the footpath leads to a mid-slope structure—a former
pumping station used in the past to capture the water from the slope and supply the
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adjacent residential properties with fresh water. Remnants of a sea defence wall comprising
rounded boulders of 200–300 mm diameter exist at the toe of the slope delineating it from
the beach. The sea defense wall comprises sections of mass poured concrete gravity wall
of trapezoidal cross-section, gabion baskets interconnected with a metal chain of approx.
200 mm diameter links, and an array of concrete cubes of 1 m3 volume. The line of the
sea wall is broken and the structures comprising it damaged to various degrees due to the
action of the waves and potential seepage from the slope.

Land 2021, 10, x FOR PEER REVIEW 6 of 16 
 

series of exposed slope sections interspersed with gully-outcrop forms ranging in height 
between 2 and 10 m. A small, 2.0 m wide tarmac-surfaced access road divides the slope 
into upper and lower, traversing from SW to NE and dropping in level from 26 mAOD 
(metres above Ordnance Datum) at the SE end to 2.5 mAOD at the pier stage at the NE 
end of the bay. Twelve private residential properties are located along the crest of the 
slope that effectively has no owner, with a grassed, non-fenced public footpath offsetting 
the residential properties from the actual slope. A branch of the footpath leads to a mid-
slope structure—a former pumping station used in the past to capture the water from the 
slope and supply the adjacent residential properties with fresh water. Remnants of a sea 
defence wall comprising rounded boulders of 200–300 mm diameter exist at the toe of the 
slope delineating it from the beach. The sea defense wall comprises sections of mass 
poured concrete gravity wall of trapezoidal cross-section, gabion baskets interconnected 
with a metal chain of approx. 200 mm diameter links, and an array of concrete cubes of 1 
m3 volume. The line of the sea wall is broken and the structures comprising it damaged to 
various degrees due to the action of the waves and potential seepage from the slope. 

 
Figure 2. Study area. Circles denote approximate locations of historic (pre-2021) failures. Source 
image: [30]. 

There is a history of landslide activity along the slope, demonstrated through the 
series of hollows, gullies, outcropping rock mounds, and bulges, which represent 
washouts, near-surface slope failures linked to the springs, and areas of ongoing creep 
(Figure 3; [31]). Local sources document landslips dating back from the 1950s with the 
more recent major events (1994, 1995, and 2013 and 2020; Table 1) resulting in creation 
and enlargement of the gullies and failure scars on the slope. Based on the detailed site 

Figure 2. Study area. Circles denote approximate locations of historic (pre-2021) failures. Source
image: [30].

There is a history of landslide activity along the slope, demonstrated through the
series of hollows, gullies, outcropping rock mounds, and bulges, which represent washouts,
near-surface slope failures linked to the springs, and areas of ongoing creep (Figure 3; [31]).
Local sources document landslips dating back from the 1950s with the more recent major
events (1994, 1995, and 2013 and 2020; Table 1) resulting in creation and enlargement of
the gullies and failure scars on the slope. Based on the detailed site inspection, several
mechanisms of failure become evident. Translational slips of 0.5–1.0 m depth (Figure 3a)
occur mainly on the upper slope in the sparsely vegetated and exposed areas of the slope
potentially due to oversteep slopes combined with the surface and/or groundwater acting
as a destabilizing agent. These failures are progressive up- or down-slope and result in
exposing the superficial soil deposits which are then further eroded by the surface/ground
water. At the locations where the surface/ground water is the main driving agent, these
slips can take the form of a mudslide or mudflow after a heavy rain or storm event, resulting
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in deposition of washed-out fine material but also shrubs/small trees and blockage of the
access road (Figure 3a). In both cases, the washed-out material blocks the gravel drain,
which causes further erosion and instability by running off and penetrating into the soil on
the lower slope. Deeper slides (1.0–2.0 m depth) were recorded on the lower slope which
may be connected to the stability and retention capacity of the seawall defence. During
the event in 2013, high waves topped the seawall and started eroding the lower slope at
the same time increasing the pore water pressures in the lower slope. This resulted in
instability of the seawall which was destroyed at the gabion sections and dislocated at
the concrete block sections. This collapse allowed the movement of the soil on the slope
(Figure 3b), which resulted in subsidence of the access road embankment. It is possible
that this failure can migrate upslope and lead to further instability, potentially affecting the
properties at the crest.
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Table 1. Historic records of failures on the slopes of the case study site.

Year Event Consequence

1958 Major slip above the south pier of the harbour Collapse of a road section
1950s–1970s Drains and water supply channels blocked Vegetation overgrowth

1980s Slope failure at far western end Major damage to residential property
1992 Distortion of the carriageway surface Cracked pavement

1993 -
Localised bulging of the slope and

development of longitudinal cracking
along the footpath on the embankment

1994 Slope failures above and below the road due to
heavy continuous rainfall over a period of 4 days Road blockage

2009 Surface washouts and mud flows at the
south-east end; major slip at the far western end

Undermined road embankment; major
damage and abandonment of residential

property
2013 Storm surge, erosion of the slope toe Breached seawall defence

2020
Slope failure initiated mid-slope after a period of

continuous rainfall (occurred after the
completion and verification of the model)

Road blockage

2021 Slope failure initiated below the road on the
southern extent of the access road

Undermined and exposed existing road
drainage infrastructure

Published geological maps [32] show the superficial soils at the site area (Figure 2) to
comprise Raised Beach Deposits (RBD) of sands and gravels of the Quaternary period on the
slopes and Mill of Forest Till Formation (Glacial Till) at the crest of the slope. The bedrock is
indicated to comprise Catterline Conglomerate Formation of early Devonian age with clasts
mainly of lava, but also containing psammite, quartzite, vein-quartz and feldspar porphyry
in a medium-grained lithic sandstone matrix. Trial pitting and subsequent laboratory
tests [33] carried out at 25 locations across the Upper and Lower slope to depths of 500 mm
confirmed the published information and recorded the uppermost soil horizons as 300 mm
thick topsoil underlain by reddish-brown gravelly silty sand (sand: 79.82%; silt: 5.85%; clay:
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3.08%) of low dry strength and low plasticity [34]. The saturated hydraulic conductivity of
this soil (Ks = 5.82 × 10−5 m s−1) indicates well drained conditions.

A review of satellite imagery from the past 10 years, the land cover maps and field
observations from the past four years record the slope to be a neutral grassland covered
with a range of vegetation types to a varying degree. Grasses, herbs, shrubs and planted
trees are present on the slope, with the coverage varying seasonally from approximately
20% in winter to approximately 80% during the vegetative period. At the crest of the slope
and beyond the residential properties, arable and horticultural land use is recorded.

Published hydro-geological maps [35] indicate the superficial aquifers to be of moder-
ate to high productivity with predominantly intergranular flow. The aquifers are indicated
to be vulnerable to pollutants not readily adsorbed or transformed [36]. Detailed site in-
spection showed a visible seepage line at the level of and adjacent to the pumping house, as
well as 25 m north of the pumping house, indicating a spring or a series of non-ephemeral
springs, which then flows along naturally formed gullies towards a non-maintained gravel
drain running along the access road which discharges into the sea at the landing stage. The
surface water from the residential properties is discharged mainly near the crest of the
slope, and collected in the same gravel drain at the side of the access road.

3. Results and Discussion

The results shown in Figure 4 indicate that the proposed tool is able to satisfactorily
detect landslide-prone zones. In addition, 84.7% of the polygons generated by the tool fell
on zones presenting slope failure events (i.e., 89 out of 105 polygons), or they appeared to
be adjacent to zones with clear landslide signs (i.e., bare zones without vegetation cover;
Figures 4 and 5). The slight mismatch between the delimited polygons and landslides
featuring in the aerial image (Figure 4) could be due to the differences between the location
of landslide initiation and deposition zones [37]. The latter may imply that the proposed
tool is mainly capable of detecting landslide initiation zones. In addition, the results
suggest that both shallow (i.e., visible in the northern half of the coastal slope; Figure 4)
and deeper (i.e., visible in the southern half of the coastal slope; Figure 4) landslides can be
detected with the proposed tool. The ROC curve for the proposed landslide detection tool
(Figure 5) indicates that the predictive accuracy of the tool is very satisfactory (AUC = 0.707;
i.e., there is a 70% chance that the tool will detect a true landslide zone), considering its low
input requirements—i.e., just a high-resolution DEM. The ROC curve retrieved from the
analysis showed a straight profile because the same set of polygons were used in the ROC
analysis following a manual classification into “true” or “false” landslide (Figure 6) rather
than using an alternative landslide map for the study area (e.g., [27]). The ROC curve also
suggests that the tool presents a satisfactory trade-off between sensitivity and specificity
(e.g., [38]). The latter outcome was affected negatively by the size of some landslide-prone
polygons classified as “false” positives (Figure 6C). It is worth noting that most of the
polygons classified as “false” landslides do not currently show landslide signs because, in
reality, they have slope stabilisation elements such as a dense cover of woody vegetation
(Figure 7C; [8]) or ground stabilisation structures (i.e., concrete retaining walls; Figure 7D),
supporting further the ability of the proposed tool to identify landslide-prone zones in
the study area. Therefore, the combination of potentially wet soil and steep zones was
effective for detecting zones within the study site, with the added value that both zones
can be retrieved from a single DEM raster dataset (Figure 1).

The results of the landslide detection (Figure 4) show a very good correlation with the
locations of historic instability at Catterline Braes (Figure 2; Table 1). While the dissipation
of pore water pressures and formation of gullies as forms of preferential drainage pathways
have locally reduced the risk of instability in the south/east slopes of the Braes (Figure 2),
the risk of instability remains relatively high in the north/west part of the Braes, despite the
higher frequency of instability on this area of the slope. This can be partially explained by
the presence of the non-ephemeral springs in that part of the slope, which have historically
been exploited and then capped (Table 1). This action may have blocked the established
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seepage pathways for the groundwater and expanded them to the north and south of the
now disused pumping station where the most recent slip has occurred (Figure 8).
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Figure 6. Over 84% of the polygons detected as landslides by the proposed tool (A) fell in zones
presenting real signs of landslides within the study site; (B) The remaining 16% of the polygons
did not belong to zones with active landslides; (C) Most of study site’s surface is not subjected to
landslides, being the proposed tool effective in classifying these areas as “true” negative landslide
polygons (D). The labeled polygons (A), (B), (C), and (D) are shown in Figure 7.
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The applicability and veracity of the proposed tool were verified in February 2020 and
2021, respectively, when, after a period of prolonged rainfall, two new landslips occurred
(Table 1) in the northern parts of Catterline Braes and below the car park in the access
road to the Pier (Figures 4 and 8). These landslips, similar in behaviour to the shallow
translational slips recorded on site before (Table 1, Figure 3a) occurring in areas mapped
as ‘high risk’ by the proposed tool (framed areas in Figure 4). They originated in areas of
high soil wetness where precipitation, potentially combined with groundwater from the
non-ephemeral springs, had saturated the soil and created positive pore water pressures,
which were then dissipated by a flow over a steeper slope gradient and removal of the
uppermost soil horizons along the way to the deposition zone on the beach (Figure 8a) and
the access road, which, in turn, was ultimately blocked by the debris (Figure 8b).

The application of the tool proposed herein on a broader scale can provide an insight
into the exposure of wider areas (e.g., watershed) to landslides and how these may impact
on other hazards such as floods and debris flows (e.g., [39]). However, the spatial resolution
of the DEM, which for the present study was of 2 × 2 m2, should be taken into account,
as less detailed DEM datasets will likely lead to poorer definitions of landslide-prone
zones. In fact, the authors believe that the proposed tool could be of limited use with
coarse resolution DEM rasters (i.e., point spacing of kilometers), as the terrain features of
the landscape related to surface water accumulation can be hardly portrayed with them
at the site scale, so the assumptions behind the proposed tool (Section 2.1) would not
hold. This limitation is somehow balanced by the tool’s ability to identify landslide-prone
zones using a single input (i.e., DEM; Figure 1). DEM datasets are readily available from
spatial libraries (e.g., UK’s Digimap, USGS), making the proposed tool very interesting
under data-limited situations. The output from the proposed tool can also be an excellent
basis for multi-criteria analysis approaches (e.g., [40]), by which multiple environmental
attributes relevant to landslides detection and prediction (e.g., soil type, soil depth, bedrock
type, land cover, rainfall intensity, etc.; [3]) can be merged to refine landslide detection
and mapping exercises. However, it must be worth noting that our tool can effectively
capture two key drivers of slope instability—i.e., surface water accumulation and slope
gradient, constituting a simple but robust approach that links both slope topography and
hydrology. The proposed tool can thus serve as a basis to gain spatial knowledge about
the interaction of different environmental and natural processes, and how those combine
to create instability for slopes in a wider area (e.g., watershed) to inform and support
workflows for the mitigation and restoration of landslides [20]. A systematic approach like
the one suggested by [20], which underpins this tool, will ultimately allow the identification
of instability drivers, which, in turn, can allow identification of the most suitable mitigation
or protection methods to interrupt the key driving process rather than attempting smaller,
potentially more numerous, solutions for providing local remediation.

The spatial nature of the proposed tool’s output makes possible its use in the evalu-
ation and mapping of hazards and risks associated with landslide events (e.g., [40–42]),
the identification of zones needing slope restoration to avoid instability events [8], the
detection of landslides on larger geographical areas or at different spatial scales than the
one showcased here, or the generation of real-time land-slide prediction systems if the tool
is combined with a more comprehensive evaluation of the soil and climate features.

Once the instability drivers and slope instability hazards have been outlined and
mapped using the proposed tool, the management of the potential risks will have to
take cognisance of the broader strategy for protection and mitigation before defining and
implementing specific investigations. This strategy should be derived in consultation
between land owners and the relevant stakeholders. In cases where there is no legal owner
of the site at risk, such as the case study site presented here, the relevant stakeholders
(residents at and on adjacent sites, recreational users, interest groups and similar) can define
the strategy and also provide insight into the history of instability on the site (Table 1),
which can form the basis of a more detailed instability inventory [43]; Figure 9).
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The detailed investigations should target not only the drivers of instability but also
the other elements of the system [20], including the soil, vegetation, flora/fauna, and their
interactions. The mitigation measures can be targeting the high-risk areas identified by
the GIS-based tool and can be instrumented to provide an insight into their behaviour
and effect on the surrounding environment and areas of lower risk. The monitoring data
can then be used to provide more detailed information on the interactions between the
mitigation measures and the broader environment, which, in turn, will enrich the GIS-
based tool with information from which a long-term behaviour can be predicted, perhaps
using machine learning algorithms (e.g., [12,29]).

Land 2021, 10, x FOR PEER REVIEW 14 of 16 
 

implementing specific investigations. This strategy should be derived in consultation 
between land owners and the relevant stakeholders. In cases where there is no legal owner 
of the site at risk, such as the case study site presented here, the relevant stakeholders 
(residents at and on adjacent sites, recreational users, interest groups and similar) can 
define the strategy and also provide insight into the history of instability on the site (Table 
1), which can form the basis of a more detailed instability inventory [43]; Figure 9). 

 
Figure 9. The application of the new proposed GIS-based tool for landslip detection within the process for management 
of slope instability. 

The detailed investigations should target not only the drivers of instability but also 
the other elements of the system [20], including the soil, vegetation, flora/fauna, and their 
interactions. The mitigation measures can be targeting the high-risk areas identified by 
the GIS-based tool and can be instrumented to provide an insight into their behaviour and 
effect on the surrounding environment and areas of lower risk. The monitoring data can 
then be used to provide more detailed information on the interactions between the 
mitigation measures and the broader environment, which, in turn, will enrich the GIS-
based tool with information from which a long-term behaviour can be predicted, perhaps 
using machine learning algorithms (e.g., [12,29]). 

The advantage of the GIS tool presented here is that it can be used and updated by 
designers and asset managers alike, without much knowledge on GIS, geology, or 
hydrology, for preliminary landslide hazards mapping. However, we stress that the use 
of the proposed tool should be supplemented with ground inspection and investigation, 
and that the actions directed to manage landslide hazards identified by the tool should be 
designed appropriately by competent experts. Future extensions of the current work may 
include the investigation of other advanced machine learning and metaheuristic methods 
to enhance the performance of the landslide detection tool, inclusion of nature-based 
solution particulars for hazard assessment, inclusion of other factors governing the 
behaviour of landslides, as well as applying the current tool for hazard management in 
other study areas. 

  

Figure 9. The application of the new proposed GIS-based tool for landslip detection within the process for management of
slope instability.

The advantage of the GIS tool presented here is that it can be used and updated
by designers and asset managers alike, without much knowledge on GIS, geology, or
hydrology, for preliminary landslide hazards mapping. However, we stress that the use
of the proposed tool should be supplemented with ground inspection and investigation,
and that the actions directed to manage landslide hazards identified by the tool should be
designed appropriately by competent experts. Future extensions of the current work may
include the investigation of other advanced machine learning and metaheuristic methods to
enhance the performance of the landslide detection tool, inclusion of nature-based solution
particulars for hazard assessment, inclusion of other factors governing the behaviour of
landslides, as well as applying the current tool for hazard management in other study areas.

4. Conclusions

This paper presented a refined, simple, GIS-based tool for the detection of landslide-
prone and slope restoration zones. The tool only required a DEM dataset as input to
retrieve spatial information on the location of steep and potentially wet soil zones, whose
combination allowed detection of both shallow and deeper landslides satisfactorily. The
tool is readily implementable at different spatial scales and its output is readily usable in
landslide hazards and risk mapping exercises. However, it is advisable to implement the
proposed tool in combination with ground investigations collecting information on the
geotechnical properties of the slope soil materials, as well as creating a landslide inventory,
to ascertain the likelihood of slope failure and hence evaluating the hazards of landslides
occurrence more realistically.
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