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Abstract: Frontier research primarily focuses on the effect of urban development models on land use
efficiency, while ignoring the effect of new-type urban development on the green land use efficiency.
Accordingly, this paper employs a super efficiency slacks-based measure (super-SBM) model with
undesirable outputs to measure the green land use efficiency based on panel data from 152 prefecture-
level cities for the period 2004–2017. We construct a difference-in-differences (DID) model in this
paper to test the impact of smart city construction on the green utilization efficiency of urban land and
its transmission mechanism. The results showed that: (1) The smart city construction significantly
improved the green utilization efficiency of urban land, increasing the general efficiency by 15%. (2)
There is significant city-size heterogeneity in the effect of smart city construction on improving green
utilization efficiency of urban land. The policy effect is more obvious in mega cities and above than
in very-large-sized cities. (3) The city-feature heterogeneity results reveal that, in cities with a higher
level of human capital, financial development, and information infrastructure, the effectiveness of
smart city construction in improving the green utilization efficiency of urban land are more obvious,
and in cities with a higher level of financial development, the effects of the urban policy were more
optimal. (4) The smart city construction promotes the green utilization efficiency of urban land
through by the information industry development and the regional innovation capabilities.

Keywords: smart city construction; the green utilization efficiency of urban land; quasi-natural
experiment; difference-in-differences

1. Introduction

Green development is key to the transition of China’s economic development model,
and it is also an important part of enhancing high-quality economic development to realize
the “Beautiful China” strategy, which is to achieve good ecology, economy, improved
health, and people’s happiness. The goal of green development is to combine economic,
social, and ecological development to create a society that is “resource-conserving” and
“environment friendly” [1]. The land is an important vehicle for human productivity, life,
and social and economic activities. Regarding land utilization, the green development
concept, featuring the harmonious coexistence of humans and nature with sustainable
development, must be implemented throughout the process to unify the economic, social,
and ecological benefits of land utilization.

Since the reform and opening-up, China’s urbanization level has increased signif-
icantly. In 2019, the rate of urbanization was greater than 60%. The improvement in
urbanization is an important driving force for pulling economic growth, but serious is-
sues have arisen in the process. For example, the excessive expansion of urban space has
resulted in the conversion of a large amount of agricultural land into non-agricultural
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construction, urban development, and low land-use efficiency within cities [2,3]. This
rapid development has begun to threaten both land protection and national food security
while also impeding urban economic development [4,5]. In addition to that is the serious
environmental pollution that accompanies such extensive expansion of urban scale, which
has endangered the sustainable development of China’s economy and society [6,7]. Im-
proving the urban land green utilization efficiency is one of the primary tasks of developing
countries. In this context, the key to achieving the harmonious development of urban
development, land use and environmental protection are to follow the concept of green
development and promote urban land green use. The green use of urban land not only
introduces the concept of green development into the land use process, but also maximizes
the economic output and social wellbeing, while reducing environmental pollution as
much as possible [8]. Reasonable measurement of urban land green utilization efficiency
has important theoretical and practical significance for the realization of urban land green
utilization and the formulation of related policies.

The 19th National People’s Congress of the Communist Party of China report em-
phasized that supporting and encouraging green development and adjusting the urban
development model is the key to reshaping the momentum of urban growth and enhancing
the core competitiveness of cities. The announcement of the smart city pilot policy in De-
cember 2012 provided a new-type model for urban development that integrates innovation
and green development. In China, a smart city is officially defined as an urban development
model that integrates technological innovation, product innovation, market innovation,
resource allocation innovation, and organizational innovation [9,10]. Innovation drives the
green urban development model, optimizing economic development through innovative
advantages and an eco-conscious foundation. So, can smart city construction advance
the green utilization efficiency of urban land in China? Under the constraints of hetero-
geneous city sizes and urban characteristics, will the impact of smart city construction on
the green utilization efficiency of urban land differ? What transmission mechanism does
smart city construction employ to influence the green utilization efficiency of urban land?
The answers to these issues have important theoretical and practical significance for the
realization of sustainable economic development.

As the medium of a wide variety of economic activities, urban land presents a con-
centrated distribution space for both secondary and tertiary industries, which can bring
both “desirable” economic and “undesirable” outputs [11]. Incorporating undesirable
outputs into the measurement framework of urban land utilization efficiency can im-
prove the science of land utilization efficiency measurement, while also conforming to the
current state of urban land utilization cause a steep increase in regional ecological and
environmental risks. Accordingly, this paper uses the panel data of 152 municipalities in
China in 2004–2017, based on the 2012 China Smart City Pilot as the Quasi-Natural Experi-
ment, use difference-in-differences (DID) method to investigate the impact of smart urban
construction on the urban land green utilization efficiency and its transmission mechanism.

The contributions of this article are shown as follows: (1) Different from existing
research that explores the impacts of the urban development level and urban characteristics
on land utilization efficiency, they ignore the effect of new urban construction on the green
utilization efficiency of urban land with undesirable output. This study evaluates the
effects of new-type urban development on the green utilization efficiency of urban land in
a scientific manner. (2) The green utilization efficiency of urban land may be affected by
non-policy factors that vary over time and may present endogenous problems. Smart city
construction provides a quasi-natural experiment for this study, separating other factors
from policy factors to avoid endogenous problems. (3) Different from the traditional
urban development model, this article is the first one based on the perspective of the new
urban development model, and uses it to systematically examine the impact of smart city
construction on the efficiency of green land use and its transmission mechanism, and to
test the impact of smart city construction under different city scales and different city
characteristics. The difference in the impact of land-use efficiency is expected to provide
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a theoretical basis for the comprehensive development of smart cities and the in-depth
promotion of green development.

The remainder of this research is arranged as follows: Section 2 presents literature
review; Section 3 presents the methodology and data; Section 4 discusses the impact of
smart city construction on the green utilization efficiency of urban land and the robustness
test; Section 5 presents the heterogeneity analysis; Section 6 is the inspection of transmission
mechanism; and Section 7 offers conclusions, implications, and suggestions.

2. Literature Review

Urban land is an important medium for economic and social development. Under
the background of accelerated urbanization and urban spatial expansion, the traditional
extensive development model has increased the intensity of land resource consumption
and severely deteriorated land ecology. So improving land utilization efficiency is a great
challenge for urban development. The current issue of land utilization efficiency mainly
focuses on three aspects.

The first is the measurement and evaluation of land utilization efficiency [12–14].
Conventional land utilization efficiency only considers a single indicator, such as land-use
density or yield per unit of land [15–18]. However, the single-index evaluation method does
not fully reflect the relationship between multiple inputs and outputs in the process of ur-
ban land utilization in terms of efficiency. Therefore, the evaluation of urban land efficiency
has evolved from single- to multi-index evaluation methods that consider economic, social,
environmental, and political factors [19–23]. However, issues remain with the multi-index
comprehensive evaluation method, e.g., the wide-ranging subjectivity of evaluation indica-
tor weights and difficulty in determining the ideal values, which affects the generalizability
of evaluation results. With the continuous development of research technology, the data
envelopment analysis (DEA) can apply an optimized method to determine the weights of
various inputs, avoid human subjectivity, and effectively evaluate efficiency values more
objectively, and it is gradually becoming a mainstream method for measuring urban land
utilization efficiency. For example, Xin et al. [24] and Yang et al. [25] used conventional DEA
methods that did not consider undesirable outputs to measure urban land efficiency from
different scales. However, economic output is not the only output in the process of land
use. In the efficiency calculation, environmental output such as SO2 emissions, wastewater
emissions, and solid waste must be considered as the undesirable output of land use, so
that the land-use efficiency can be measured more accurately [26–28]. With the deepening
of green development and the advancement of research methods and technologies, the
measurement of green utilization efficiency of urban land has gradually become a central
issue in the research of current evaluations of land utilization. The slacks-based measure
(SBM) undesirable model has improved on the conventional DEA model to account for the
undesirable output of land use, thus becoming the mainstream measurement method for
land utilization efficiency. For example, Yang et al. [29], Tao et al. [30], and Yu et al. [31]
each applied this research approach to measure and study the green utilization efficiency of
urban land at different scales. However, an issue remains with the SBM-undesirable model.
The efficiency value of the effective decision-making unit cannot be broken down, resulting
in the loss of effective decision-making information. Consequently, the super-efficient
SBM model based on undesirable outputs can effectively resolve this issue in practical
application [32–34].

The second is the analysis of the driving factors of land utilization efficiency. Current
research suggests that land utilization efficiency is highly correlated with the level of eco-
nomic development [18,35], the degree of market openness [36,37], the level of R&D [35,38],
and the level of public infrastructure [39–41]. The main reason for this is that socioeconomic
development results in more advanced technology and management skills in terms of
regulating land utilization, reducing production costs, and eliciting the expansion of indus-
trial land reproduction. Related studies on the subject demonstrate that land utilization
efficiency is subject to city size, industrial development, and national macro policies [14,42].
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Research by Guastella et al. [19] holds that land utilization efficiency has a positive linear
relationship with city size, meaning that the larger the city size is, the higher city’s land uti-
lization efficiency is. In contrast, Yan et al. [35] applied data from cities in Eastern China to
explore the nonlinear effect of city size on land utilization efficiency, revealing an inverted
U-shaped relationship between city size and land utilization efficiency. As the scale of a
city expands, urban land utilization efficiency apparently exhibits a trend of initially rising
and subsequently falling. Of course, some scholars have analyzed the reasons for low
urban land utilization efficiency, including blind urban expansion, non-transparent land
pricing, and the illegal transfer of land-use rights [14,43,44]. Researchers also proposed
improvements to urban land utilization efficiency by implementing urban border policies
to curb urban expansion [45]. However, none of these studies focused on the impacts on the
green utilization efficiency of urban land. Existing studies on the green utilization efficiency
of urban land mainly focus on measurements [27,28,32], while a mere handful of scholars
have conducted research on the influencing factors. For example, Yu et al. [31] evaluated
the land utilization efficiency of 12 city clusters in China, and suggested economic level,
economic structure, and government oversight as the three main driving forces of land
utilization efficiency. Li et al. [46] used the Tobit model to analyze the impact of economic
development, openness, and technological progress on the green utilization efficiency of
urban land. Lu et al. [33] investigated 285 cities in China from 2003 to 2016, applying
the DID method to evaluate the impact of high-tech development zones on the green
utilization efficiency of urban land. The study found that high-tech development zones
also significantly improved the green utilization efficiency of urban land. Moreover, given
the regional heterogeneity, the policies for cities in Eastern China are more significant.

The third is the transmission mechanisms of smart city construction on the green
utilization efficiency of urban land. The impact of smart city construction on the green
utilization efficiency of urban land is inextricably linked with the development of a local
information technology (IT) industry and innovation capabilities. First, the construction
of smart cities must endeavor to transform the existing traditional industry through the
development of the IT industry. According to the 2012 National Smart City (District and
Town) Pilot Indicator System report published by the Chinese Ministry of Housing and Urban-
Rural Development, the presence and advancement of emerging innovative industries
are considered to be an important performance indicator. IT industry development is a
significant guarantee of an emerging industry and has a key influence on the level of smart
city local construction by enhancing workers’ skills and advancing industry upgrades [47].
The construction of smart cities requires the support of IT, and the development of a local
IT industry provides such support through establishing IT infrastructure and talent. IT is a
technology and capital-intensive industry that is a quintessential example of an emerging
industry and a technological prerequisite for the development of a new economy. The
development of the IT industry generates technological support that plays a key role in
advancing the digitalization of other industries, including the manufacturing and service
industries. Thus, the development of the IT industry can itself bring about industrial
structural optimization, as well as facilitate the technological upgrade of other local in-
dustries and the realization of industrial structural optimization. Smart city construction
has generated a massive demand for emerging industries, stimulating the development of
the IT industry and exerting a demand-pull that expands its growth. Industrial structural
optimization can be achieved by increasing the presence and proportion of IT, which is
representative of emerging industries, and the information industry can also expand the
technological prowess of secondary, tertiary, and other industries. The improved efficiency
caused by industrial structural optimization results in the advancement of the original
resources and elements of other industries, reducing pollution emissions and improving
land utilization efficiency.

Smart city construction promotes the green utilization efficiency of urban land through
the development of innovation capabilities. Smart city construction uses modern IT to inno-
vate on the urban development model [48], through the technology effects, configuration
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effects, and structural effects of in-novation, thereby reducing urban environmental pollu-
tion [49]. The development of China’s economy is undergoing a stage of transition from
that of “factor-driven” to “innovation-driven” strategies. Strong local innovation capability
implies that the added value of technology created by the same resources is higher, output
capacity is stronger, and output efficiency is higher. Technology has an amplifier effect that
can work wonders, and this kind of innovation effect has two aspects. One is that smart
city construction promotes the improvement of green utilization efficiency of urban land
through the innovative effect. The technological innovation of the IT industry will enhance
a city’s innovation capabilities. In addition, the development of a new generation of IT
and new materials will promote the accumulation of high-end talent, high-tech companies,
R&D capital, and other innovative elements, thereby raising the level of local technological
progress (technology effect), with an innovative amplifier effect to improve the green
utilization efficiency of urban land. Second, through the empowerment of other industries’
innovation capabilities, the amplifier effect achieved will promote the green utilization
efficiency of urban land. Therefore, in cities with strong preexisting innovation capability,
the construction of a smart city “redoubles power” for innovation. With a higher level of IT
development and the degree of intelligence in the city, its innovation capabilities can be
further enhanced, increasing the output efficiency of tertiary industries, while reducing
pollution emissions and improving the local green utilization efficiency of urban land.

In general, most of the existing literature is based on the perspective of conventional
urban development models to investigate the impacts of macro factors, such as economic
development, city size, and market openness on land use efficiency. In the context of the
acceleration of urbanization, more attention should be paid to the qualities of the urbaniza-
tion process, and the exploration of new urban development models has become key to the
urban development strategy in the new era. As a new type of urban development model,
smart cities rely on emerging information science and technology to transform urban
governance models, which enhances the clustering effect of large-scale cities, while also
improving the allocation and utilization efficiency of urban resources to solve urban chal-
lenges to transform and upgrade urban development. China selected the first batch of pilot
smart cities in December 2012, making it possible and necessary to scientifically evaluate
the impact of smart city construction on the green utilization efficiency of urban land and
its transmission mechanism from the perspective of this new urban developmental model.

3. Methodology and Data
3.1. Benchmark Model

China initiated the Pilot Smart City Project in December 2012. The Ministry of Housing
and Urban-Rural Development instituted the Interim Management Measures for National
Smart City Pilot Project. The first batch of pilot smart cities included 90 prefectural-level
(county-level) cites. This study regards the Smart City Pilot Project as a quasi-natural
experiment, applying the DID model to quantitatively evaluate the impact of smart city
construction on the green utilization efficiency of urban land, with sample data at the
prefecture city level for research. According to the DID model, pilot smart cities are
regarded as the treatment group and non-pilot cities are regarded as the control group. The
sample data were processed as follows: (1) When setting up a smart city, in some cities,
only a certain county or district within the prefecture-level city is used as a pilot city (for
example, Chaoyang District of Beijing and Huairen County of Shuozhou are considered
pilot smart cities). As this study uses prefecture-level city data, if this type of prefecture-
level city is used as a pilot smart city, the green utilization efficiency of urban land in the
smart city may be underestimated. Therefore, in the course of data processing, samples of
this type of city were factored out. (2) As the second and third batches of smart cities were
established in 2013 and 2014, respectively, to ensure that the results estimated in this study
are the net effect of the 2012 smart city pilot policy, newly established city samples in 2013
and 2014 were also factored out. Thus, a specific econometric model is built as follows:

lnGLEit = β0 + βi(Treati × Postt) + γXit + δt + µi + εit (1)
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where i represents cities, t represents years, and GLE represents the green utilization
efficiency of urban land. Treat is a grouping variable for cities, wherein if the city is a pilot
smart city, it will be 1, and if not, it will be 0. Post is a grouping variable for time; if Post = 1,
this indicates that the smart city pilot policy was implemented during the t period, and if
Post = 0, this indicates that the smart city pilot policy was not implemented during the t
period. Due to the fact that the first batch of pilot smart cities was established in December
2012, this study takes the year 2013 as the first effective year of the policy. X indicates the
set of control variables, δt is the time fixed effects, µi is the city fixed effects, and ε is the
disturbance term.

3.2. Variables

For the measurement of the green utilization efficiency of urban land, Tone [50] pro-
posed the super-efficiency SBM model with undesirable output based on the conventional
SBM model. This model simultaneously integrates the advantages of the super-efficiency
model and the SBM model. The effective decision-making unit with an efficiency value of
1 is further broken down and included in the model, thereby avoiding the loss of effective
decision-making unit data. The model is formulated as follows:

minρ =

1
m

m
∑

i=1
(xi/xik)

1
r1+r2

(
r1
∑

s=1
yd

s /yd
sk +

r2
∑

q=1
yu

q /yu
qk

) (2)

subject to



x ≥
n
∑

j=1,j 6=k
xijλj

yd ≥
n
∑

j=1,j 6=k
yd

sjλj

yu ≥
n
∑

j=1,j 6=k
yu

qjλj

x ≥ xk; yd ≤ yd
k ; yu ≥ yu

k
λj ≥ 0
i = 1, 2, . . . , m; j = 1, 2, . . . , n; s = 1, 2, . . . , r1; q = 1, 2, . . . , r2.

(3)

In Equation (3), it is assumed that there are n decision-making units; every decision-
making unit is composed of input m, desired output r1, and undesirable output r2, x, yd,
yu, which are the factors in the corresponding input matrix, desired output matrix, and
undesirable output matrix. ρ represents the value of the green utilization efficiency of
urban land.

Based on the implications of the green utilization efficiency of urban land, previous
studies [51,52] were referenced, and the following indicators for evaluating the green
utilization efficiency of urban land were selected: (1) Desired Output: Considering that
utilization of urban land is mainly intended for industrial and commercial purposes, the
real added value of the secondary and tertiary industries in the urban district is used
as the desired output indicator. Actually, the GDP index is used to convert the nominal
industrial added value using 2004 as the base period. (2) Undesirable Outputs: In light of
the change in caliber of industrial smoke (dust) emissions in 2010, industrial wastewater,
industrial sulfur dioxide, and carbon dioxide emissions were selected as undesirable output
indicators in this study. The figures on carbon dioxide were calculated referencing the
method in Chen et al. [53]. (3) Land Inputs: Indicated by urban construction land area in
urban districts. (4) Capital Inputs: Expressed by fixed-asset investment in urban districts
from 2004 as the base period, the fixed asset investment price index is used to convert
the nominal fixed asset investment value into a comparable actual fixed asset investment,
applying the perpetual inventory method to calculate the capital stock of each city over the
years [54]. (5) Labor Inputs: Expressed as the total number of employees in urban public
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units and private companies and self-employed workers (per ten thousand people) in the
urban districts. The average green utilization efficiency of urban land from 2004 to 2017
is shown in Figure 1, and the spatial distribution of efficiency values of specific cities is
shown in Figure 2 (only 2004, 2008, 2013, and 2017 are listed).

Figure 1. Average Efficiency of Each Year. Notes: the horizontal axis represents the year from 2004 to
2017; the vertical axis represents the green utilization efficiency of urban land.

Figure 2. Green Utilization Efficiency of Urban Land (GLE) in 2004, 2008, 2013 and 2017.

To reduce the endogeneity problem caused by missing variables, a series of control
variables were added for this research, including (1) Level of Economic Development
(lnpgdp), expressed by the logarithm of the city’s actual per capita GDP; (2) Foreign Direct
Investment (fdigdp), measured by the ratio of the total amount of foreign capital actually
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used to GDP calculated after the exchange rate conversion of the current year; (3) Level of
Scientific Development (sci), expressed by the scientific expenditure per unit of total GDP.
(4) Financial Development Efficiency (fe), measured by the ratio of loan balances to deposit
balances; and (5) Government Intervention (gov), the percentage of the GDP used in the
local government’s general fiscal expenditures.

Intermediary Variables: (1) Information Industry Development (inf), expressed as the
ratio of employees in the data transfer, computer services, and software industries to the
overall employment figures and (2) Regional Innovation Capabilities (inno), measured by
the number of patents filed per 10,000 employees in each prefecture-level city.

3.3. Data

The data was acquired from the China City Statistical Yearbook over the period 2005–2018
and the CEIC database. The patent data is from the China Research Data Service platform.
Finally, we obtained a strong balanced panel data for 152 prefectural-level cities in China
from 2004 to 2017, included 31 are pilot smart cities. The descriptive statistics of each
research variable are listed in Table 1.

Table 1. Descriptive Statistics.

Variable Obs. Mean Std. Dev. Min Max

lnGLE 2128 −1.139 0.534 −2.659 0.668
Treat 2128 0.204 0.403 0 1
Post 2128 0.357 0.479 0 1
inf 2128 0.011 0.009 4.29 × 10−4 0.201

inno 2128 19.811 26.332 0.217 244.550
lnpgdp 2128 9.359 0.544 7.662 10.842
fdigdp 2128 0.017 0.019 0 0.182

sci 2128 16.662 16.838 0.145 193.758
fe 2128 0.642 0.209 0.247 5.613

gov 2128 0.065 0.026 0.018 0.204

4. Empirical Analysis
4.1. Variable Collinearity Test

The test results in Table 2 demonstrate that the correlation coefficients between vari-
ables are rather small, and the correlation coefficient between government intervention
(gov) and the level of scientific development (sci) is the highest at 0.552.

Table 2. Correlation Analysis.

Variable lnGLE Treat Post lnpgdp Fdigdp Sci Fe Gov

lnGLE 1.000
treat −0.026 1.000
post 0.325 0.000 1.000

lnpgdp 0.100 0.385 0.081 1.000
fdigdp −0.012 0.200 −0.096 0.400 1.000

sci 0.170 0.213 0.348 0.278 0.213 1.000
fe 0.026 0.159 0.102 0.243 0.011 0.123 1.000

gov 0.233 0.168 0.372 0.382 0.279 0.552 0.179 1.000

Variance Inflation Factor (VIF) Analysis. The VIF test results of the explanatory
variables in this study are summarized in Table 3. Among all variables, the largest VIF
value is 1.88, which is much less than 10.
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Table 3. VIF Test.

Variable Did Treat Gov Sci Lnpgdp Post Fdigdp Fe Mean
VIF

VIF 1.88 1.75 1.73 1.60 1.52 1.50 1.30 1.09 1.55
1/VIF 0.53 0.57 0.58 0.63 0.66 0.67 0.77 0.91 0.66

Based on the analysis results of the correlation coefficients and VIF test, there is no
concern regarding collinearity between variables.

4.2. Parallel Trend Test

This study employs the DID method to evaluate the effects of policy on smart city
construction. One of the preconditions for the effectiveness of the DID estimation is that the
treatment group and the control group must fulfill the parallel trend assumption [55,56],
that is, before the smart city proposal, the time trend changes of the green utilization
efficiency of urban land between the control group and the treatment group should be
as similar as possible, and after the implementation of the smart city policy, changes in
this parallel trend are mainly reflected in the comparison between the non-smart cities
and the smart cities regarding the value of the green utilization efficiency of urban land.
Figure 3 presents the DID parallel trend. According to Figure 3, before implementing the
smart city project, the green utilization efficiency of urban land in pilot and non-pilot areas
was essentially the same. After the policy implementation, the regional growth rate of the
value of green utilization efficiency of urban land in the pilot area was higher than that of the
non-pilot area, exceeding that of the non-pilot area for the first time in 2013. Therefore, this
study uses the DID model to test the impact of smart city policy on the green utilization
efficiency of urban land, which fulfills the parallel trend assumption.

Figure 3. Mean Variation of Green Utilization Efficiency of Urban Land. Notes: the horizontal axis
represents the year from 2004 to 2017; the vertical axis represents the green utilization efficiency of
urban land.

4.3. Benchmark Regression

The effects of smart city construction on the green utilization efficiency of urban
land are presented in Table 4 the regression result without control variables is shown in
column (1), the regression result with control variables is presented in column (2), the
time-dependent effect of policy regression results is shown in column (3), and the time-
dependent effects of policy regression results under parallel trend control is presented in
column (4). The regression results in columns (1) and (2) reveal that the coefficients (Treat



Land 2021, 10, 657 10 of 18

× Post) of the policy items are all significant at the 1% level, indicating that smart city con-
struction can significantly improve the green utilization efficiency of urban land. The green
development efficiency of pilot cities increased by 14.8% following the implementation
of the smart city policy in column (2), indicating that the smart city pilot policy strongly
influences the development green utilization efficiency of urban land. Compared with
regression results without control variables, the goodness of fit of the model is significantly
higher after adding control variables. The further exhibits the time-dependent effects of
policy implementation in column (3), demonstrating that the policy effect of smart city
construction on land utilization efficiency has a trend of increasing first and then decreasing,
with the significance gradually weakening.

Table 4. The impact of smart city construction on green utilization efficiency of urban land.

Variable
(1) (2) (3) (4)

lnGLE lnGLE lnGLE lnGLE

Treat × Post 0.152 *** 0.148 ***
(0.032) (0.032)

Treat × year2005 −0.076
(0.079)

Treat × year2006 −0.021
(0.079)

Treat × year2007 0.073
(0.079)

Treat × year2008 0.020
(0.079)

Treat × year2009 0.027
(0.079)

Treat × year2010 −0.020
(0.079)

Treat × year2011 0.049
(0.079)

Treat × year2012 0.101
(0.079)

Treat × year2013 0.164 *** 0.183 **
(0.059) (0.079)

Treat × year2014 0.171 *** 0.190 **
(0.059) (0.080)

Treat × year2015 0.172 *** 0.191 **
(0.060) (0.080)

Treat × year2016 0.117 * 0.136 *
(0.060) (0.080)

Treat × year2017 0.113 * 0.133 *
(0.060) (0.080)

lnpgdp 0.434 *** 0.434 *** 0.443 ***
(0.055) (0.055) (0.055)

fdigdp 0.082 0.110 0.131
(0.533) (0.534) (0.535)

sci 0.0018 *** 0.0018 *** 0.0017 ***
(6.568) (6.601) (6.652)

fe −0.072 −0.071 −0.073
(0.047) (0.047) (0.047)

gov −1.716 *** −1.734 *** −1.753 ***
(0.607) (0.608) (0.609)

_cons −1.173 *** −5.035 *** −5.038 *** −5.113 ***
(0.023) (0.505) (0.506) (0.508)

N 2128 2128 2128 2128
adj. R2 0.274 0.302 0.301 0.300

City fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Note: Column (4) excludes the policy dummy variables of the base year to avoid collinearity. Values in parentheses are standard deviations,
*, **, *** indicate significance at the 10%, 5%, and 1% significance levels, respectively.

To further demonstrate that this model’s agreement with the parallel trend test, a
dummy variable of time for the period prior to the policy implementation is added in
column (4) to assess the time trend of the treatment group. The time trend regression
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results of the treatment group in each year prior to the Smart City Pilot Project are not
significant, satisfying the parallel trend assumption.

In terms of control variables, the level of economic development, foreign investment,
and scientific development are significantly positive at the 1% level, indicating that the level
of economic development, foreign investment, and scientific development positively impact
the green utilization efficiency of urban land. However, the effect of financial development
efficiency is not significant, and government intervention exhibits a significant inhibitory
effect on the utilization efficiency of urban land.

4.4. Robustness Testing

PSM-DID Test. To control for the systemic differences between the treatment group
and the control group and reduce DID estimation bias, the Propensity Score Matching
(PSM) method is applied to screen the two groups of samples, performing DID estimation
basis. Specifically, the Logit model that is used, with treat as the dependent variable,
and level of economic development (lnpgdp), foreign direct investment (fdigdp), level of
scientific development (sci), financial efficiency (fe), and government intervention (gov)
as the dependent variables, using a radius matching method for robustness testing. The
regression result using the radius matching method is shown in column (1) of Table 5. The
result shows that the core explanatory variable (Treat × Post) is significantly positive at the
1% level, which is consistent with the regression results mentioned above, indicating the
robustness of regression results.

Table 5. Robustness Testing.

Variable

(1) (2) (3) (4)

PSM-DID One-Time-Period
Control Variable Lag 1–99% Winsorization Exclude the Sample of

Provincial Capitals City

lnGLE lnGLE lnGLE lnGLE

Treat × Post 0.148 *** 0.149 *** 0.173 *** 0.144 ***
(0.032) (0.032) (0.031) (0.034)

lnpgdp 0.434 *** 0.345 *** 0.213 *** 0.409 ***
(0.055) (0.058) (0.053) (0.054)

fdigdp 0.082 −0.296 0.920 * −1.029 *
(0.533) (0.548) (0.549) (0.557)

sci 0.0018 *** 0.0023 *** 0.0016 ** 0.0013 *
(6.568) (7.152) (7.531) (6.655)

fe −0.072 −0.014 −0.162 ** −0.079 *
(0.047) (0.047) (0.079) (0.047)

gov −1.716 *** −2.392 *** −1.873 *** −1.785 ***
(0.607) (0.612) (0.607) (0.603)

_cons −5.035 *** −4.499 *** −2.656 *** −4.761 ***
(0.505) (0.533) (0.493) (0.502)

N 2128 1976 2128 2030
adj. R2 0.302 0.329 0.171 0.304

City fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Note: The values in parentheses are standard deviations. *, **, *** indicate significance at 10%, 5%, and 1% levels, respectively.

One-Time-Period Lag of the Controlled Variables. A potential problem of the bench-
mark regression equation is that the dependent variables may have an inverse effect on
the independent variable. In the event of the existence of simultaneous equation bias, the
estimate of βi will be biased. To eliminate the possibility of reverse causality and evaluate
the impact of smart city construction on the green utilization efficiency of urban land as
accurately as possible, a one-time-period lag is used on all explanatory variables except
dummy variables, again carrying out the regression. The results are presented in column
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(2) of Table 5 below. The coefficient of the policy item is still significant at the 1% level,
confirming the robustness of the benchmark regression results.

Elimination of Latent Outlier Influence. To eliminate the estimation bias caused by
individual outliers in the sample data, 1–99% winsorization is performed on all variables
except dummy variables in the regression model, followed by the regression test. The
result is displayed in column (3) of Table 5, indicating that the coefficients of policy items
are significantly positive at the 1% level, once again confirming the robustness of the
benchmark regression results.

Exclude the sample of provincial capital cities. Great differences may exist in economic
scale, resource endowments, and innovation capabilities between provincial capital cities
and other prefectural-level cities. Therefore, the relevant data of provincial capital cities
based on all samples is factored out and the data are re-estimated. In Table 5, the DID
coefficients remain significantly positive in column (4), which is basically consistent with
the benchmark regression results.

5. Heterogeneity Analysis
5.1. City-Size Heterogeneity

The previous analysis indicates that smart city construction has a significant influence
in improving the green utilization efficiency of urban land. However, does a “policy effect”
exist for cities of different sizes? If so, are there differences in policy effects? In terms of
city size, larger cities display a clustering economic effect. Accordingly, resource allocation
and utilization efficiency are better, thus enabling improvements in the green utilization
efficiency of urban land. Subsequently, mega cities are prone to encounter a congestion
effect, intensifying urban problems, and pollution issues. Therefore, it is necessary to test
the improvement effects of the green utilization efficiency of urban land in smart cities of
different sizes.

This study bases on the most recent standards in the Notice of the State Council on
Adjusting the Standards for Categorizing City Sizes issued by the State Council in 2014.
According to the total population of the city, cities with a population of less than 500,000
are classified as small-sized cities, cities with a population of more than 500,000 and
less than 1 million are classified as medium-sized cities, and cities with a population
of more than 1 million are classified as large-sized cities. The policy effects of smart
city construction of different city sizes on the green utilization efficiency of urban land
are tested. The policy effects regression results of small-sized, medium-scale, and large-
sized cities are presented in columns (1)–(3) of Table 6, respectively. Regression results
indicate that smart city construction has no significant impact on the green utilization
efficiency of urban land in small and medium-sized cities. For large-sized cities, the policy
effect is significant at the 1% significance level, indicating that smart city construction can
significantly promote the green utilization efficiency of urban land in large cities. This
implies that the impact of smart city construction on the green utilization efficiency of urban
land has significant city-size heterogeneity. Additionally, large cities are further divided
according to population size into very large-sized cities and mega cities. The regression
results are shown in columns (4)–(5) of Table 6. The results show that the green utilization
efficiency of urban land in the different sizes of large cities is significantly diverse. Smart
city construction in large-sized cities, very large-sized cities, and mega cities alike can
promote the improvement of the green utilization efficiency of urban land, with the latter
showing more evident policy effects. It is possible that the scale effect of larger cities and a
more reasonable industrial structure are of influence here.
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Table 6. City-size Heterogeneity Analysis.

Variable

(1) (2) (3) (4) (5)

Small-Sized
Cities

Medium-Sized
Cities Large-Sized Cities Very-Large-Sized

Cities
Mega Cities and

Above

Population Less than 50 50~100 ≥100 100~500 >500
(Ten thousand) lnGLE lnGLE lnGLE lnGLE lnGLE

Treat × Post 1.209 0.168 0.154 *** 0.128 *** 0.238 ***
(0.749) (0.173) (0.033) (0.036) (0.063)

lnpgdp 2.515 0.447 ** 0.387 *** 0.195 *** 0.257
(1.829) (0.222) (0.059) (0.060) (0.182)

fdigdp 42.673 1.938 0.001 −0.013 1.849
(74.705) (1.807) (0.564) (0.566) (1.877)

sci −0.127 −0.001 0.002 *** 26.363 *** 0.005 ***
(651.691) (25.105) (7.052) (8.984) (18.581)

fe −0.933 0.411 −0.071 −0.124 0.013
(1.778) (0.263) (0.048) (0.095) (0.054)

gov 8.295 3.945 −1.473 ** −1.985 *** −0.110
(9.119) (2.827) (0.638) (0.675) (2.146)

_cons −25.601 −5.632 ** −4.633 *** −2.471 *** −3.808 **
(16.961) (2.141) (0.542) (0.572) (1.661)

N 23 91 2014 1454 496
adj. R2 0.511 0.307 0.309 0.138 0.426

City fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes

Note: The values in parentheses are standard deviations. **, *** indicate significance at 5%, and 1% levels, respectively.

5.2. City-Feature Heterogeneity

Smart city construction mainly relies on emerging information technologies, such as
the Internet of Things, big data, and artificial intelligence, to enhance the presence and
perception of market information. Human capital, financial development, and information
infrastructure are critical to ensuring the development of emerging IT, maximizing the
orderly development of smart city construction. Accordingly, this article examines the
characteristics of urban development from the three aspects of human capital, financial
development, and information infrastructure, conducting a heterogeneity analysis of the
improvement effect of smart city construction on green utilization efficiency. Specifically,
due to the lack of first-hand city-level data to accurately measure the indicators of urban
human capital, the number of college students per 10,000 population in the city is selected
as a reflection of the level of human capital, the GDP proportion of the balance of deposits
and loans of financial institutions is used to measure the level of financial development, and
the number of Internet broadband access users is used to measure the level of information
infrastructure. In addition, each index is divided into high and low groups according to
the median value, and a classification test is conducted.

The regression results of the city group with low human capital level and the city group
with high human capital level are presented in columns (1)–(2) of Table 7, respectively.
The results indicate that in cities with high levels of human capital, the policy effect
coefficient is 0.239, and the coefficient is significantly positive at the 1% level; however, in
cities with low levels of human capital, the policy effect is not significant. This implies
that in cities with high levels of human capital, the improvement effect of smart city
construction on green utilization efficiency is more significant. The regression results of
the city groups of low-level financial development and high-level financial development
are shown in columns (3)–(4), respectively. The results indicate that in cities with high
levels of financial development, the impact coefficient of smart city construction on the
green utilization efficiency of urban land is positive at the 1% significance level, and the
impact coefficient is the largest, indicating that the level of financial development has the
greatest impact of all features in terms of the effect of smart city construction on green
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utilization efficiency. The possible reason is that financial development provides sufficient
financial protection for smart city construction, which, in turn, provides financial support
for the improvement of green utilization efficiency. The regression results of city groups
with low-level and high-level information infrastructure are shown in columns (5)–(6). The
results show that smart city construction has a significant improvement effect on green
utilization efficiency in cities with high-level information infrastructure. Therefore, when
the information infrastructure, which serves as the basis for smart technology, is ubiquitous
and comprehensive, it can provide a technical guarantee for smart city construction to
promote green utilization efficiency.

Table 7. City-Feature Heterogeneity Analysis.

Variable

(1) (2) (3) (4) (5) (6)

Human Capital Financial Development Information Infrastructure

Low High Low High Low High

Treat × Post −0.196 ** 0.239 *** −0.073 0.310 *** 0.083 0.191 ***
(0.077) (0.034) (0.056) (0.044) (0.074) (0.036)

lnpgdp 0.388 *** 0.648 *** 0.348 *** 0.506 *** 0.460 *** 0.727 ***
(0.085) (0.073) (0.090) (0.083) (0.084) (0.095)

fdigdp −1.467 1.861 *** −0.322 −0.148 −0.519 2.299 ***
(0.985) (0.661) (0.860) (0.747) (0.875) (0.759)

sci 0.003 0.0004 0.0007 0.0012 0.004 *** −0.0005
(16.909) (6.652) (14.899) (8.239) (13.877) (8.533)

fe −0.121 −0.022 −0.244 ** −0.008 −0.170 −0.001
(0.116) (0.048) (0.112) (0.053) (0.107) (0.045)

gov 0.394 −3.345 *** −1.863 * −1.139 −0.618 −2.435 ***
(0.981) (0.756) (1.001) (0.842) (0.882) (0.923)

_cons −4.488 *** −7.218 *** −4.109 *** −5.762 *** −5.098 *** −7.981 ***
(0.761) (0.700) (0.832) (0.768) (0.763) (0.902)

N 1064 1064 1064 1064 1064 1064
adj. R2 0.167 0.436 0.297 0.242 0.018 0.412

City fixed
effects YES YES YES YES YES YES

Year fixed
effects YES YES YES YES YES YES

Note: The values in parentheses are standard deviations. *, **, *** indicate significance at 10%, 5%, and 1% levels, respectively.

6. Transmission Mechanisms

The above empirical analysis indicates that smart city construction significantly im-
proved green utilization efficiency in the pilot area. So, what are the mechanisms that can
improve the green utilization efficiency of urban land in smart cities? Empirical research
shows that IT industry development and regional innovation capabilities both have a signif-
icant influence on improving green utilization efficiency in smart cities. Smart cities require
the support of information industry development, and smart city construction stimulates
the demand for emerging industries, which drives information industry development,
thereby exponentially accelerating upgrades to the industrial structure and improvement
in the efficiency of urban green development. Consequently, smart city construction uses
modern IT to promote innovation in the urban development model, which promotes the
accumulation of high-level talent, high-tech enterprises, R&D capital, and other elements
of innovation, improving local capacities for technological innovation overall, thereby
enhancing cities’ core competitiveness and accelerating sustainable development. To put
this mechanism to the test, this study draws on the research ideas of Baron and Kenny [57],
Papyrakis and Gerlagh [58], and Groizard et al. [59] to test the transmission mechanism
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of correlation of IT industry development and regional innovation capabilities on the
improvement effect of smart cities on green utilization efficiency:

Medit = α0 + ϕi(Treati × Postt) + βiXit + δt + µi + εit (4)

lnGLEit = α0 + γi(Treati × Postt) + θi Medit + βiXit + δt + µi + εit (5)

In the Equations (4) and (5), Medit is the mechanism variable representing the two
transmission channels of the IT industry development and regional innovation capability
improvement effects that impact the role of smart city construction on green utilization
efficiency. ϕi represents the effect of smart city construction on the mechanism variable;
θi represents the effect of the mechanism variable on smart city construction; and γi
represents the effect of smart city construction on green utilization efficiency after joining
the transmission mechanism. The configuration of other variables is consistent with
Equation (1). See Table 8 for regression results.

Table 8. The transmission mechanism test.

Variable
(1) (2) (3) (4)

inf lnGLE inno lnGLE

Treat × Post 0.002 ** 0.136 *** 7.845 *** 0.126 ***
(0.001) (0.032) (1.575) (0.032)

inf 7.198 ***
(0.946)

inno 0.003 ***
(0.000)

lnpgdp −0.001 0.444 *** −11.349 *** 0.465 ***
(0.001) (0.054) (2.654) (0.054)

fdigdp 0.026 ** −0.104 90.528 *** −0.168
(0.013) (0.526) (25.888) (0.530)

sci −0.000 0.002 *** 0.694 *** −0.000
(0.155) (6.478) (319.206) (7.255)

fe −0.002 * −0.056 3.708 −0.082 *
(0.001) (0.047) (2.292) (0.047)

gov 0.027 * −1.913 *** −94.382 *** −1.455 **
(0.014) (0.599) (29.479) (0.603)

_cons 0.023 * −5.202 *** 105.817 *** −5.328 ***
(0.012) (0.499) (24.558) (0.503)

N 2128 2128 2128 2128
adj. R2 −0.041 0.321 0.548 0.314

City fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Note: The values in parentheses are standard deviations. *, **, and *** indicate significance at the 10%, 5%, and 1%
levels, respectively.

The results of the transmission mechanisms of the IT industry development effect are
presented in columns (1)–(2) of Table 8. The coefficient of smart city construction on the IT
industry is significantly positive at the 1% level in column (1), i.e., the construction of smart
cities can significantly improve the development of the IT industry. The results in column
(2) further imply that smart city construction can promote the improvement in the green
utilization efficiency of urban land by driving the development of the information industry.
The results of the transmission mechanism of the innovation capability improvement
effect are presented in columns (3)–(4) of Table 8. The impact coefficient of smart city
construction on regional innovation capability is significantly positive at the 1% level in
column (3), i.e., smart city construction can significantly promote the improvement of
regional innovation capabilities. The results in column (4) further imply that smart city
construction can stimulate the green utilization efficiency of urban land by improving
regional innovation capabilities.
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7. Conclusions and Policy Implications

Smart city construction is a critical measure for improving the quality of Chinese urban
development, and the development of a means to accurately assess the impact of smart city
construction on improving green utilization efficiency is of practical significance. In light
of this, this study uses the DID method to test the effect of smart city construction on the
green utilization efficiency of urban land, based on panel data from 285 prefectural-level
cities in China from 2004 to 2017. The conclusions of this study indicate the following:
(1) Smart city construction significantly improves the green utilization efficiency of urban
land, and on average, the improvement rate of green utilization efficiency of urban land
is approximately 15%. (2) City-size heterogeneity analysis results show that the larger
the city is, the more evident the impact of smart city construction on the green utilization
efficiency of urban land is. (3) The city-feature heterogeneity analysis results indicate
that smart city construction has a significant effect on improving the green utilization
efficiency of urban land in cities with high levels of human capital, financial development,
and IT infrastructure, and the effect of urban policy in cities with a high level of financial
development is optimal. (4) The investigation of mechanisms reveals that smart city
construction can affect the green utilization efficiency of urban land through IT industry
development and the regional innovation capability improvement effects.

There are three significant policy implications of these conclusions of this study. First,
the government should expand the scale of pilot smart city construction, actively promote
the new urban development model, and improve the quality of urban development in
China. The government should implement policy regulations, using big data and other
innovative resources to the fullest to encourage resource sharing and accelerate smart city
construction while also attending to environmental protection and improving the green
utilization efficiency of urban land. Second, full consideration should be brought to the
heterogeneity of urban development, and smart city construction projects should be carried
out according to local conditions, based on factors such as city-scale and urban features.
The implementation of smart city construction projects should not entail a “one size fits all”
model for all cities, but the priority for implementation should be given to cities that have
developed a certain level of human capital, financial development, and IT infrastructure,
as smart cities have been shown to exert the best effect in such cities. Third, IT industry
development and optimization of the urban industrial structure must be accelerated, while
simultaneously leaning on artificial intelligence, cloud computing, and other technologies
to advance the level of urban innovation and smart city construction. The government must
play an active and positive role as a public service provider, building an innovative platform
for research and development, establishing peerless R&D environments for scientific
research and innovation and enhance regional innovation capabilities. Moreover, the
government should continuously optimize the business environment from the institutional
perspective, in an effort to provide institutional guarantees for the continuous development
of the IT industry.
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