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Abstract: The exploration of crop seasonality across a region offers a way to help understand the 
phenological spatial patterns of complex landscapes, like agricultural ones. Knowing the role of 
environmental factors in influencing crop phenology patterns and processes is a key aspect for un-
derstanding the impact of climate and land use changes on agricultural landscape dynamics. We 
identified pixels with similar phenological behavior (i.e., pheno-clusters) and compared them to the 
land cover map of the study area to assess the role of the land management component in controlling 
the phenological patterns identified. Results demonstrated that soil texture is the most important 
factor for permanent crops, while large amount of rainfall and high values of available water content 
are the main drivers in spring cultivations (i.e., irrigated crops). Scarce water availability (in terms 
of soil texture, low annual precipitation and high minimum temperature) represented the main 
driving factor for non-irrigated crops, whose phenology is characterized by summer drought and 
fall-winter productivity. Compared to vegetation maps that use only land cover from a single sea-
son or period, using seasonality of the NDVI time series to classify the agricultural landscape pro-
vides different and more ecologically relevant information about croplands. 
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1. Introduction 
Phenology is the study of the timing of recurring biological events, the causes of their 

timing, and the related biotic and abiotic driving forces [1]. Accordingly, phenology can 
contribute to many scientific disciplines, from climate change, biodiversity, agriculture, 
and forestry to human health. The knowledge of timing of phenological events and their 
spatial variability can provide valuable data for land-use planning, crop zonation, pest 
control, species conservation and protection, and pollen release and its implications for 
human health [2]. 

The investigation of phenology has a long tradition in agriculture and its long-term 
interest has come from the need for understanding plant development and growth dy-
namics and their relation to the surrounding environment. Recently, considerable litera-
ture [3,4] has grown up around the topic of crop phenology as an important parameter 
for crop growth monitoring, yield prediction, growth simulation, and decision-making 
tools to face climate change. 

As the impacts of climate change intensify, the need to understand the functioning 
of the agro-ecosystems has stimulated scientific communities to elucidate environmental 
controls on vegetation dynamics [5]. Phenology variables are indicated as some of the 
most sensitive data to climate conditions, and therefore represent key indicators of crop 
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growth and development and play an important role in vegetation monitoring [6]. How-
ever, compared to natural vegetation, crop growth is not only driven by natural (climate 
and soil) conditions, but also modified through field management activities. Agro-ecosys-
tems are strongly affected by natural conditions and human activities [4,7,8]. Patterns in 
crop growth are influenced by processes involving land use type, soil conditions, water 
availability, and regional climate [8,9], and any changes in crop phenology are closely re-
lated to these environmental controlling factors. 

Satellite-based observations with a wide spatial coverage and short revisit times have 
become a valuable tool for monitoring vegetation growth and retrieving vegetation phe-
nology based on remotely sensed vegetation index (VI) time-series data [4,10,11]. Vegeta-
tion index time series are powerful indicators reflecting the dynamics of vegetation 
growth and vegetation coverage, such as the Normalized Difference Vegetation Index 
(NDVI) [12]. The NDVI is the most used vegetation index applied in agricultural applica-
tions and is a measure of photosynthetic capacity of the vegetation cover [13]. The ad-
vantage of this method is that vegetation phenological information can be continuously 
monitored at local to global scales. On the downside, it must be noted that the satellite-
based indicators do not directly infer crop development stages (in sensu stricto), but are, 
instead, monitoring crop growth and the intra-seasonal variations of the agricultural land 
cover [14], which is not always closely linked to key developmental events [4]. For this 
reason, the scientific community generally refers to land surface phenology (LSP) when 
satellite-based techniques are used [3]. 

The appearance of crop profiles is affected by regional variations in climate, soil and 
management practices, and satellite images help to interpret crop vitality, soil properties, 
and climate stress. Hence, using VI time series, information about cropping phenology 
patterns can be extracted by examining the number of peaks in a vegetation index time 
series, which corresponds well to the growing cycles of crops, such as heading, maturing, 
and senescence [8]. For example, vegetation index time series of single cropping presents 
only one growth cycle per year, while that of double cropping presents two cycles [15]. 
Hence, cropping phenology patterns of a territory can be identified and mapped by ex-
amining the periodic variations in the vegetation index time series [8,16,17]. The crop sea-
sonality should be accounted for by setting-up individual crop profiles for each homoge-
nous agro-region [18,19]. Therefore, quantifying how cropping phenology patterns re-
spond to this environmental forcing at landscape scale is crucial for understanding crop 
spatio-temporal dynamics [20]. 

While in forestry the role of the environmental factors in influencing forest phenol-
ogy patterns and processes at territorial scale has been largely explored [21–23], in agri-
cultural studies this kind of research question has received less attention, maybe due to 
the more dynamic character of agricultural systems [19] and the major interest towards 
crop type identification (Gao and Zhang, 2021,[24]). Liu et al. [25] developed a phenology-
based method to identify cropping patterns, but they did not consider any environmental 
variables as drivers. Wu et al. [26] proved that spatial patterns of cropping systems and 
phenology in Chinese cropland were highly related to the geophysical environmental fac-
tors, but without taking into account the impacts of biophysical forces and anthropogenic 
drivers. The knowledge of phenological patterns and their different drivers at landscape 
scale can provide a valuable support tool for planning agricultural land use conversion, 
managing climate change impacts, and developing adaptative strategies. The main im-
pacts of climate change on agriculture include soil production decline, water security de-
clines, and increasing frequency of weather extremes [27]; in this perspective, how land-
scape is organized and managed is central to achieving a balance between productive and 
other ecosystem services. A key challenge is therefore facing the lack of spatially differen-
tiated management approaches since climate change causes regionally differentiated im-
pacts [27]. To fill this research gap, in this study we propose a multivariate approach that 
is based on temporal NDVI profiles of crop types to quantify the dependency of crop sea-
sonality on multiple environmental drivers, at landscape scale. The proposed method 
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aims to identify crop seasonality using a three-year NDVI times series from Sentinel-2, to 
quantify the role of the main biophysical and land management controlling factors on the 
identified crop phenology patters, and to map such patterns. 

2. Materials and Methods 
2.1. Study Area 

The study area is located in the Capitanata plain (Foggia province), the second largest 
plain in Italy (about 7000 km2), in the northern part of Apulia region placed in the south-
eastern part of Italy (Figure 1). The regional topography is mainly flat or slightly sloping, 
except for the Gargano area, situated in the northwest of the region. The climate of the 
study area is classified as Mediterranean semi-arid, characterized by moderately cold and 
rainy winters and dry summer seasons. Annual rainfall (avg. 550 mm/year) is unevenly 
distributed throughout the year, being mostly concentrated during the winter months. 
Long-term mean air temperature is 15.4 °C, while the average minimum and maximum 
yearly temperatures are 3.5 and 29.5 °C, respectively; however, temperatures may fall be-
low 0 °C in winter and rise above 40 °C in summer. The soil texture of this area is predom-
inantly and homogenously clay, apart from a southern sandy clay loam area [28]. 

Due to its climatic conditions and land characteristics, Apulia is one of the most im-
portant regions in Italy for the agriculture production: in particular Foggia province is 
important for wheat, vegetables, and olive production, accounting for about 12%, 13%, 
and 4% of the wheat, total open air growing area, and the amount of olive surface at na-
tional level, respectively [29]. 

 
Figure 1. Location of the study area and distribution of the sample points. The red dots are the georeferenced sample 
points, and the yellow area represents the limit of the study area. 

2.2. Environmental Data 
In the present study the environmental data considered are soil variables (SOIL), cli-

mate information (CLIM), and land use (LU). 
The soil profiles were extracted from the National Soil Database (NSD; 

https://esdac.jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy 
https://esdac.jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy, accessed on 
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17 June 2021), complete of physical and chemical analytical data. Soil information gath-
ered and harmonized in the NSD was collected from different soil survey projects: 169 soil 
mini-pits from the statistical monitoring program of the Italian Ministry of Agricultural 
and Forestry Policies, and 95 soil profiles from soil survey of Apulia Region at 1:50,000 
scale. This set of 264 georeferenced sample points, distributed throughout the study area, 
were characterized with the biophysical variables described in the following sections. 

The pedological (SOIL) variables selected are (Table 1): texture (sand and silt), soil 
organic carbon content (OCC), and available water content (AWC). We considered these 
variables because they are strictly connected with the crop growing. Soil texture indicates 
the relative content of particles of various sizes, such as sand, silt, and clay in the soil; it is 
an important soil characteristic that influences stormwater infiltration rates and conse-
quently how much water is available to the plant [30]. It is one of the most important 
properties of a soil since it greatly affects crop production, land use, and management The 
OCC is important to soil nutrient status in agroecosystems, has an important role in the 
physical, chemical, and biological function of agricultural soils [30]. AWC is an indicator 
of a soil’s ability to retain water and to make it sufficiently available for plant use. AWC 
is the water held in soil between its field capacity and permanent wilting point [31]. 

Table 1. Soil data statistics in the study area. 

 Sand (%) Silt (%) OCC (Unitless) AWC (Unitless) 
Min 0.5 0.5 0.14 59.07 
Max 96.5 80 4.5 219.14 

Mean 28.8 35.43 1.28 140.70 

Climatic (CLIM) variables were acquired from the WorldClim V2 dataset 
(http://www.worldclim.org/bioclim, accessed on 17 June 2021) which is a set of 1970–2000 
global climate layers (monthly gridded temperature and precipitation data) with a spatial 
resolution of 1 km2 [32]. Even though the NDVI dataset refers to 2017–2019 and in 20 years 
there could have been evident variations in climate, their effects on crops may involve the 
associated responses (e.g., anticipation in the growing season, prolonged duration, en-
hancer the production), rather than the kind of influence itself. Furthermore, WorldClim 
V2 dataset represents climate annual trends, seasonality, and extreme or limiting factors, 
and consequently it has been widely used for agroecological studies. The climatic varia-
bles considered in this study were the following: Max Temperature of Warmest Month 
(Tmax), Min Temperature of Coldest Month (Tmin), Annual Precipitation (Ptot). For each soil 
sample point, the corresponding CLIM variables were extracted. 

Land management information of the study area were derived from the Land Use 
(LU) map of Apulia region (www.sit.puglia.it, accessed on 17 June 2021). The LU map 
referred to year 2011 and was realized according to the Corine Land Cover (CLC) project 
(https://www.eea.europa.eu, accessed on 17 June 2021). Since agricultural land (class 2) in 
CLC database for Apulia region did not change much from 2012 and 2017—only 0.06% 
(from 15,615.7 km2 in 2012 to 15,606.2 km2 in 2017) [33], in this study the LU map was 
chosen for its relatively higher spatial resolution (1:5000) with respect to the CLC map, 
although it is older. For this study, only agricultural classes were selected (Table 2). 

Table 2. Main agricultural land use classes of the Capitanata plain and their surface. 

LU Code Description Surface (ha) 
211 Non irrigated arable land 70,915 
212 Permanently irrigated lands 181,107 
221 Vineyards 28,563 
223 Olive groves 28,858 
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2.3. Satellite Data 
For this research, Copernicus Sentinel-2 (S2) imagery of the study area was collected 

for years 2017, 2018, and 2019. All available images were downloaded and analyzed 
through Google Earth Engine platform (https://code.earthengine.google.com, accessed on 
17 June 2021) [34]. S2 imagery was collected with an approximate 5-day temporal resolu-
tion. Band 4 (red, 10 m spatial resolution) and band 8 (near infrared, 10 m spatial resolu-
tion) were used to compute NDVI. Images featuring more than 5% of clouds and cirrus 
pixels were discarded. Cloudy pixels on remaining images were masked using the QA60 
bit-mask band provided. The QA60 band masks opaque and cirrus clouds at 60 m spatial 
resolution. Due to its coarser resolution than the optical bands, NDVI may be computed 
on undetected cloudy pixels, particularly at the boundary between the cloud and non-
cloud mask [35], resulting in out of bound values. NDVI profiles for the sample points 
were collected, and profiles consisting of less than 15 time points per year were discarded. 
To address the removal of entire cloudy images, the masking of cloudy pixels and the 
presence of out of bound NDVI values at the cloud’s boundaries a harmonic model of 
time was fitted to each profile and NDVI harmonic trajectories were predicted every 15 
days (Figure 2): 

𝑁𝐷𝑉𝐼௧,௫,௬^ = 𝛼௫,௬ + 𝛿௫,௬𝑡 + ෍ൣ𝛽ఠ,௫,௬𝑐𝑜𝑠ሺ2𝜋𝜔𝑡ሻ + 𝛾ఠ,௫,௬𝑠𝑖𝑛ሺ2𝜋𝜔𝑡ሻ൧ଷ
ఠୀଵ  (1)

where 𝛼,𝛿,𝛽ఠ , and 𝛾ఠ  are harmonic model coefficients fitted to each (x,y) coordinates 
pair. The resulting datasets consisted of 25 images per year (Table 3); for each sample 
point, the modeled temporal trajectories for the years 2017, 2018, and 2019 have been ex-
tracted. 
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Figure 2. Six exemplary sample points of NDVI values collected for year 2017 (cyan dots) and harmonic models of time 
fitted to them (red lines). Missing NDVI values were due to cloudy image removals and clouds masking. 

Table 3. Correspondence between NDVI temporal bands and date. 

Temporal Bands Date DOY Temporal Bands Date DOY 
b01 1-Jan 1 b14 15- Jul 196 
b02 16- Jan 16 b15 30- Jul 211 
b03 31- Jan 31 b16 14-Aug 226 
b04 15-Feb 46 b17 29- Aug 241 
b05 2-Mar 61 b18 13-Sep 256 
b06 17-Mar 76 b19 28- Sep 271 
b07 1-Apr 91 b20 13-Oct 286 
b08 16-Apr 106 b21 28-Oct 301 
b09 1-May 121 b22 12-Nov 316 
b10 16- May 136 b23 27-Nov 331 
b11 31- May 151 b24 12-Dec 346 
b12 15-Jun 166 b25 27-Dec 361 
b13 30-Jun 181    

2.4. Methodology 
The multivariate approach used in this work consists of three steps according to the 

flowchart of Figure 3. 

 
Figure 3. Flowchart of the multivariate approach used in this work. 

First, information on the crop phenology of Capitanata was obtained from the S2 
NDVI modeled time-series from 2017 to 2019 (25 images per year). On this basis, we per-
formed a Principal Component Analysis (PCA) to summarize the phenological infor-
mation associated to the temporal bands of the three annual NDVI time-series [14,36] and 
took into consideration the first three PCs. 

In the second step, we performed a Redundancy Analysis (RDA) on the sample 
points to explore the explanatory power of the quantitative biophysical drivers on the 
crop phenology patterns through the years. RDA is a supervised multivariate statistical 
technique that measures redundancy, i.e., the proportion of the total variance of one set 
of response variables explained by a canonical variate from another set of explanatory 
variables [37]. Accordingly, the RDA axes represent the percentage of the variance of the 
response variables explained by the predictors. The first three PCA axis of each year were 
considered as response variables, while the bioclimate and soil variables were used as 
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predictors. Due to their high heterogeneity, the explanatory variables were standardized 
prior to analysis. 

Then, to identify homogeneous units in terms of phenology patterns (i.e., pheno-clus-
ters, PhCls), a k-Means (kM) classification was performed all over the study area based on 
the first three PCA axis of each year, and the mean NDVI annual profile for each cluster 
was computed. Finally, to compute the separation among the different pheno-clusters in 
terms of land use, we carried out a Corresponding Factor Analysis (CFA) across the whole 
study area. The CFA is a multivariate technique that detects associations and oppositions 
existing between categorical subjects (LU types) and objects (PhCls), measuring their con-
tribution to the total inertia for each factor [38]. All the statistical analysis of this study 
were performed with XLSTAT [39]. 

3. Results 
The PCA of the NDVI temporal bands provided high proportions of explained vari-

ance for the first three principal axes (PC1, PC2 and PC3), 80% for 2017, 79% for 2018, and 
77% for 2019, respectively (Figure 4). According to Figure 5, all the three years behaved 
similarly: the first PC is mainly related to the summer NDVI temporal bands, while the 
second PC to the fall-winter bands, and the third PC to the spring ones. Accordingly, the 
first three PCs can be considered a synthetic expression of the crop annual seasonality in 
terms of timing and number of productivity peaks. 

 

Figure 4. Principal Component Analysis (PCA) biplot for each year with the distribution of the 25 NDVI temporal bands 
(red vectors) according to the first two PCA axis: (a) 2017; (b) 2018; (c) 2019. 
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Figure 5. Histogram of the Principal Component Analysis (PCA) factor loadings of the NDVI tem-
poral bands over the first three PC axis (year 2019 as an example). 

The canonical axes obtained from the RDA between the first three PCs and the CLIM 
and SOIL driving variables (Figure 6) explained about 80% of the total variance of the 
response variables, with a high significance level (p < 0.001). Considering the coarse-scale 
approach of this study, this result proves the strong influence of soil and climate on the 
vegetation seasonality of Capitanata crops, and that for the three years considered the PCs 
have the same phenological meaning. RDA demonstrated that PC1 is guided by soil var-
iables, while PC2 and PC3 by climatic ones. In detail, crops with summer productivity 
(i.e., PC1) are mainly driven by soils with high value of sand in the texture and low values 
of OCC. To the contrary, crops characterized by a fall-winter productivity (i.e., PC2) are 
controlled by high Tmin, high variability in annual precipitations, and low AWC values. 
Meanwhile, PC3, linked to spring productivity, resulted as explained by low Tmax, large 
amount of annual precipitation, and soils with high value of silt in the texture. This means 
that crops with high summer NDVI values, and thus with peak of productivity during the 
dry season, are usually associated to drained soils. Crops with high PC2 values, i.e., au-
tumn-winter crops, mainly depend on mild winter times and a marked alternance of dry 
and wet period. Finally, crops with high spring NDVI values, and thus with a peak of 
productivity during the wet season, are controlled by abundant rainfall and high available 
water content. 

The k-Means classification allowed distinguishment of four phenologically homoge-
neous clusters, called pheno-clusters (PhCls). Figure 7 shows their mean annual NDVI 
profile. PhCl1 showed highest NDVI values during the summer season and moderate val-
ues in the other months; this could represent the typical NDVI curve of permanent tree 
crops (i.e., vineyards, olive groves, and fruit trees). PhCl2 showed an opposite, bimodal 
behavior: low NDVI values during the dry season and high NDVI values during spring 
and fall-winter. PhCl2 is characterized by a rainfed crop NDVI curve, with homogeneous 
coverage: during the summer season NDVI values are low, approximately between 0.2 
and 0.4, like for grasslands, and it could be associated with rainfed pastures, largely dif-
fuse in the Capitanata. 

PhCl3 and PhCl4 showed a marked unimodal NDVI curve with a peak in spring in 
both cases, but with different intensity, lower in the former (NDVI value around 0.5) and 
higher in the latter (NDVI value around 0.7). During summertime, NDVI presents very 
low values, less than 0.2, typical of bare soil, and these curves could be associated with 
rainfed arable land. The NDVI of PhCl4 has the typical curve related to a single winter 
cropping system, like winter wheat which is the dominant cultivation in this area. 
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Figure 6. Correlation biplot based on Redundancy Analysis (RDA) performed in the sample points 
with the SOIL and CLIM variables as predictors, and the PCs for each year as response variables. 

 
Figure 7. Mean NDVI profile of the four pheno-clusters (PhCls) identified. 

The CFA biplot of Figure 8 (about 83% of explained variance) shows that the PhCl1 
is positively correlated with the agricultural LU class of 221 and 223, while LU class 211 
corresponds to two different pheno-clusters: PhCl2 and PhCl4, classes associated at typi-
cal NDVI related to single winter crops. The non-irrigated arable lands (211) resulted as 
mainly explained by high late spring NDVI-based productivity; the presence of this LU 
type is mainly linked to the water load derived from the early spring precipitations which 
nourish the subsequent growing season. The irrigated arable lands (212) were mainly 
characterized by high NDVI values during spring-summer, and low NDVI values in win-
ter; this LU type is the less dependent on the precipitation seasonality, due to the human-
based water provision, and hence its NDVI-based productivity can continue also during 
the dry months. Finally, the LU classes of vineyards and olive groves (221 and 223, respec-
tively) were explained by high values of NDVI-based productivity from summer to win-
ter; this LU type represents a perennial tree cropping system, able to sustain the summer 
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dryness and to maintain green leaves until fall-winter, when the photosynthetic activity 
gradually stops, or even beyond (e.g., olive groves are evergreen crops). Figure 9 shows 
the distribution of the pheno-clusters throughout the study area. 

 
Figure 8. CFA biplot between the four pheno-clusters (PhCl) (blue dots) and the agricultural land 
use types (red triangles). 

 
Figure 9. Distribution of the pheno-clusters throughout the study area. 

4. Discussion 
This paper attempted to identify crop phenology patterns in a robust and cost-effi-

cient way across a large agricultural landscape in a Mediterranean region and potentially 
in retrospective, by using a multivariate approach. In this study, the spatial and temporal 
variability of crop growth was assessed using remote sensing phenological information 
in relation to the main biophysical and anthropogenic drivers. Accordingly, our study 
demonstrates the potential of satellite-based phenology to provide information about tem-
poral and spatial variability of crop growth across a typical Mediterranean landscape, 
which, additionally, may provide relevant information for agricultural management. Phe-
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nological patterns provide comprehensive insight of the spatio-temporal crop growth var-
iability across the variable seasons, which advances our understanding of the crop re-
sponses to changing conditions, at local to regional scale [40]. The method proposed in 
this study provides a pathway towards effective estimation and monitoring of crop 
growth variability through time and space, which is a key concern for sustainable agricul-
ture success. It can be used to develop future, more detailed studies to fully utilize the 
potential of phenological indicators for site characterization, monitoring, and prevision of 
the impact of extreme weather events, identification of crop response patterns to a disease, 
etc. 

Results confirmed that climate, in terms of precipitation and air temperature, is the 
main driver of phenology in a Mediterranean landscape, in particular for arable crops, by 
controlling soil moisture and water availability to plants and affecting evapotranspiration 
[41]. Precipitation seasonality, high temperature, and consecutive droughts in this region 
strongly affect the crop cover dynamics and have resulted in adaptations of farming sys-
tem management in response to climatic variation. These factors could all have affected 
the phenological variability and the productivity of the cropping systems in the study 
region, resulting in phenological changes over space. The results from this study are ex-
pected to represent a framework for other investigations about agriculture adaptation and 
mitigation strategies, for instance, to drought and water stress. The phenology datasets 
and the trend results could be combined with climate data to estimate the crop water re-
quirements and provide a tool for landscape managers and stakeholders to make deci-
sions for the extension of agricultural areas according to the available water resources in 
a context of water stress. In this study, we simplified anthropogenic factors into generic 
land use, therefore, further work is needed to separate the effects of climate and human 
activities fully and precisely on agroecosystems at local scale [23]. 

Furthermore, the framework presented allowed to map the crop phenology pattern 
distribution across the landscape. Due to the dynamic character of agricultural systems, 
crop mapping based on multi-temporal approaches is superior to single-date image anal-
yses [19]. While traditional approaches using classification algorithms entail field obser-
vations to train or test the classifier, the use of crop-specific VI temporal profiles (i.e., be-
havior of a certain crop type throughout the year) is independent of ground truth data 
[19]. Several studies investigated the use of crop-specific seasonal profiles for crop dis-
crimination and mapping at different spatial scales, from local to regional level [18,19]. VI 
temporal features are taken as the major theoretical basis for distinguishing crops from 
other vegetation, and one crop type phenology from another [41]. Time-series-based 
methods for cropping pattern identification exploit the fact that VI annual trends repre-
senting a specific crop seasonality are usually more similar than profiles representing dif-
ferent crops [19, 42]. 

5. Conclusions 
Our analysis demonstrates the potential of phenology to assess crop growth variabil-

ity and to provide a comprehensive understanding of the joint role of soil, climate, and 
land use on crop seasonality. Single vegetation index images have been successfully uti-
lized to recognize crop variability across a region [43,44]. However, the single image ap-
proach has been criticized for lacking information on intra-seasonal growth dynamics 
[45]. Multi-seasonal images and the associated phenological patterns allow the revelation 
of the intra-annual biophysical properties of crops across the landscape, as jointly driven 
by soil, climate, and land use [40]. This potentially provides a better understanding of crop 
variability, which is a key factor to improve management practices at farm level and to 
monitor land use changes in agricultural areas. 

Furthermore, the method presented in this analysis shows the efficacy of phenology 
to recognize crop growth variability, obtained in a cost-effective way, over large areas, 
using high resolution satellite. Considering the increasing availability of remote sensing 
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imagery, the spatio-temporal variability estimation using phenological patterns can pro-
vide valuable information for agriculture suitability assessment, in terms of energy de-
mand and water stress. Currently, Sentinel-2 is the appropriate imagery for such analysis 
thanks to its high spatial and temporal resolution, suitable to study heterogeneous land-
scapes, like agricultural ones, and seasonal phenomena, like those related to crop phenol-
ogy. 
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