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Abstract: Urban agglomeration is an important spatial organization mode in China’s attempts to
attain an advanced (mature) stage of urbanization, and to understand its consequences, accurate
simulation scenarios are needed. Compared to traditional urban growth simulations, which operate
on the scale of a single city, urban agglomeration considers interactions among multiple cities.
In this study, we combined a spatial Markov chain (SMC) (a quantitative composition module)
with geographically weighted regression-based cellular automata (GWRCA) (a spatial allocation
module) to predict urban growth in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA), an
internationally important urban agglomeration in southern China. The SMC method improves on the
traditional Markov chain technique by taking into account the interaction and influence between each
city to predict growth quantitatively, whereas the geographically weighted regression (GWR) gives
an empirical estimate of urban growth suitability based on geospatial differentiation on the scale of
an urban agglomeration. Using the SMC model to forecast growth in the GBA in the year 2050, our
results indicated that the rate of smaller cities will increase, while that of larger cities will slow down.
The coastal belt in the core areas of the GBA as well as the region’s peripheral cities are most likely to
be areas of development by 2050, while established cities such as Shenzhen and Dongguan will no
longer experience rapid expansion. Compared with traditional simulation models, the SMC-GWRCA
was able to consider spatiotemporal interactions among cities when forecasting changes to a large
region like the GBA. This study put forward a development scenario for the GBA for 2050 on the scale
of an urban agglomeration to provide a more credible scenario for spatial planning. It also provided
evidence in support of using integrated SMC-GWRCA models, which, we maintain, offer a more
efficient approach for simulating urban agglomeration development than do traditional methods.

Keywords: urban agglomeration; spatial Markov chains; cellular automata; geographic weighted
regression; land use/cover change

1. Introduction

Recent decades have seen a period of rapid urbanization, particularly in develop-
ing countries such as China [1–3], but the urban sprawl that results from economic and
explosive population growth poses serious challenges to sustainable development [4–7].
Urbanization, regardless of country or region, has historically tended to follow a pattern: it
accelerates at a rate of approximately 20%, slows down when it reaches around 60%, and
stabilizes between 70 and 80% [8]. China’s National Bureau of Statistics noted that in 2020
the rate had exceeded 60% [9]. When urbanization entered a mature stage, China adopted
an organizational model based on the spatial structure of the urban agglomeration to
promote high-quality development [10–12]. Within this context, models that can simulate
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growth scenarios are needed; therefore, research into such models has the potential to
constitute an important aid to policymakers for promoting sustainable urbanization [13].

A broad spectrum of simulation models has been developed to provide insight into
dynamic urban growth scenarios [14,15]. Usually, these contain two modules: one dedi-
cated to quantitative composition and one to address spatial allocation. The former focuses
on analyzing changes in quantitative land use, while the latter focuses on analyzing the
evolution of spatial patterns [16,17]. While the quantity of land-use change is mainly deter-
mined by the development of regional economies and social conditions, the spatial pattern
is largely dependent on location conditions [18]. For example, undertaking residential
and industrial development requires a supply of land, but that is determined by spatial
factors such as terrain and transportation. Because quantitative land-use demand and
the corresponding spatial pattern of land use are both determined by these two driving
mechanisms, modelers often need to include coupling models. [19–21].

Previous studies have used a range of different methods to perform quantitative predic-
tions of urban growth. The quantitative demand module in such models is often calculated by
means of an independent external model such as the Markov chain (MC) [22–26], or system
dynamics (SD) [27–29]. The latter model considers interactions between land-use change
and social and economic development and can predict land-use demand in complex situa-
tions [30]. However, it first needs to abstract land-use and socioeconomic development into
several independent subsystems and then establish the input and feedback mechanisms
that link them [31,32]. Although SD can accurately reflect the complex mechanisms in
land-use change, it has several important limitations: subsystem abstraction requires a high
level of modeling experience, and model calibration requires a large number of historical
or empirical parameters [33,34]. The trend interpolation approach (one alternative to the
system dynamics model) has similar limitations in that it needs long-term sequential obser-
vational data to establish a change curve. In contrast to these two methods, the Markov
chain model is able to predict changes in land-use structure based only on the land-use
transfer probability. For this reason, the Markov chain method is widely used to predict
the size of urban growth [35–37].

Usually, Markov chain models are constructed for a single city, so there are obvious
risks in employing it on the scale of an urban agglomeration because the development
of each city is quite different [38,39]. Consequently, a feasible measure is to establish
a Markov process for an agglomeration can be described as a “spatial Markov chain”
(SMC) [40,41]. Using this approach to estimate changes in land use entails more than
simply building a Markov model for each city. While each city does require its own
independent Markov process, the interaction and influence between urban agglomerations
must also be considered [42,43] because land-use changes in a given city may be driven by
forces exerted by surrounding cities [44,45]. In addition, the process must also be calibrated
to reflect a given city’s level of urbanization and unique resource and environmental
constraints, such as China’s “red line” policy, which seeks to ensure ecological security and
basic farmland protection, limits the growth of some cities [46,47].

Although the quantitative composition module of an urban growth simulation is very
important, an additional module is required to predict the spatial pattern of corresponding
land-use changes. The basic allocation module uses either spatial probability, cellular
automata (CA), or agent-based modeling (ABM) [48,49]. Among these, an allocation model
based mainly on an evaluation of urban growth suitability constitutes the prototype for
almost all other spatial allocation models [50]. By assuming that the growth of a city can
be described probabilistically, the modeler can, for instance, employ a series of spatial
factors (terrain, traffic conditions, distance from existing cities) to estimate the probability
of urban sprawl [51,52]. The estimation algorithms include logistic regression [53]; decision
trees [54], support vector machines [55], random forest techniques [56], and, more recently,
deep learning neural networks [57]. Although the performance of these algorithms is
different, they all mine the sample data to obtain the required parameters to estimate
suitability. Despite its advantages, though, spatial probability-based allocation models
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have natural defects [14,15]. For example, if an insufficient number of change samples
is collected during model estimation, the developmental probability of a region with
ostensibly high potential can be seriously underestimated [58]. Once a spatial allocation
model has determined an area’s probability, it tends to remain relatively unchanged, and
that can cause researchers to miss dynamic effects [18]. This phenomenon is contrary to the
findings of many observational studies that suggest that a region can drive the development
of surrounding areas once it has reached a developed state. If neighborhood interaction
is to be considered, the simulation framework must be able to discretize the whole into
individuals, and the model to do this is cellular automata (CA) [48,59], at present the most
widely used bottom-up model for simulating urban pattern evolution [49].

In general, the CA model focuses on analyzing spatial dynamic processes, while its
counterpart, ABM, focuses more on analyzing the spatial movement of subjects [48]. For
land-use change simulation, CA and ABM do not differ significantly from one another, so
because this study focuses on the spatial pattern change of urban growth rather than an
analysis of land-use change resulting from a particular socioeconomic behavior, we mainly
used the CA model. As mentioned above, the essence of the CA approach is to consider
neighborhood interaction based on an estimation of spatial probability, and estimating the
spatial probability of urban sprawl was the key aim of the CA modeling in this study. The
estimation was conducted in the same manner as using a traditional spatial probability
allocation model. Whether researchers used the most advanced deep-learning neural
network or the most classical logistic regression method to address the scale simulation of
an urban agglomeration, the characteristics of geographic differentiation always had to be
considered. Therefore, because historical change cannot fully account for a city’s future
development and since even the best parameter-fitting method will only fit a historical
process [60], this study used classical logistic regression to estimate the probability of urban
sprawl together with a geographically weighted regression to calibrate cellular automata
(GWRCA) because of the urban agglomeration’s varied geographical characteristics [61].

As discussed previously, the SMC model predicts land-use change while taking into
account interactions between the cities in a network, while the GWRCA simulates large-
scale urban growth. However, no model has so far been developed that can integrate
the SMC and GWRCA methods to simulate dynamic urban agglomeration development
despite the fact that agglomerations are cited as an important spatial structure for promot-
ing China’s further urbanization. Therefore, this study presents a model framework that
couples the SMC and GWRCA techniques, thereby allowing researchers to simulate the
development of urban agglomerations more realistically. The remainder of this article is
organized according to the following structure. In Section 2, the study area and the dataset
for model implementation are introduced. In Section 3, the steps and methods employed in
building the model are discussed in detail. Section 4 presents the results and a discussion of
the model implementation to validate the proposed urban CA model in simulating urban
growth. Finally, the conclusions are presented in Section 5.

2. Materials and Methods
2.1. Study Area

Extending over a total area of 56,000 km2, the Guangdong–Hong Kong–Macao Greater
Bay Area (GBA) is composed of two Special Administrative Regions (Hong Kong (HK) and
Macao (MO)) and nine cities in Guangdong Province (Guangzhou (GZ), Shenzhen (SZ),
Zhuhai (ZH), Foshan (FS), Huizhou (HZ), Dongguan (DG), Zhongshan (ZS), Jiangmen
(JM) and Zhaoqing (ZQ)) (Figure 1). At the end of 2020, the GBA had a total population of
over 70 million and a GDP in excess of 10 trillion CNY. The GBA is located in south-central
China, on a delta in the Pearl River Estuary formed by the accumulation of sediment from
the Xijiang, Beijiang, and Dongjiang rivers and their tributaries. The western, northern,
and eastern parts of the GBA are surrounded by hills and mountains, which form a natural
barrier, and the southern boundary is a long coastline with many islands. The GBA is the
fourth largest bay area in the world after those in New York, San Francisco, and Tokyo. It



Land 2021, 10, 633 4 of 19

is also one of China’s most dynamic urban agglomerations [43]. The Chinese government
requires that by 2050, the modernization level and the capacity of the land and space
governance system be improved holistically to form a territory of “intensive and efficient
production”; “livable and comfortable living space”; “beautiful ecological space”; and
“safe, harmonious, competitive, and sustainable development” [62]. With that aim in mind,
this study took 2050 as the target year to reveal the spatial pattern of the GBA through an
SMC-GWRCA coupled simulation model, thereby specifying an urban spatial boundary to
optimize the GBA infrastructure network.
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Figure 1. Location of the study area: the Guangdong–Hong Kong–Macao Greater Bay Area.

2.2. Data for Urban Growth Simulation
2.2.1. Land Use Cover/Change, Subzones, and Ecological Sensitive Areas

To use the spatial Markov chain model for quantitative urban land-use predictions,
it was necessary to ascertain the transfer probability at equivalent time steps. For this
purpose, historical Landsat satellite images of the GBA in 1995 and 2015 were collected,
and land use was obtained using the human–computer interaction interpretation method
for both years (Figure 2a,b). From the land-use change between 1995 and 2015, it was clear
that the urban area had grown rapidly over the previous 20 years, and there was little
available land left in eastern Bay Area cities such as Shenzhen and Dongguan. Given these
characteristics, we understood that using the Markov process to predict change over the
next 20 years would lead to obvious inaccuracies caused by the incompatibility of spatial
units. In response, this study took as a reference the “nomenclature of territorial units for
statistics” classification used for spatial planning within the European Union (EU) [63]. It
allowed us to merge county-level units in the central areas of large cities without destroying
the urban boundary and having to construct a new unit for the spatial Markov analysis.
For example, Guangzhou originally had 11 county-level units—Yuexiu, Liwan, Haizhu,
Tianhe, Baiyun, Huangpu, Panyu, Huadu, Nansha, Zengcheng, and Conghua—but these
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were reduced to 7 after the spatial reorganization of Yuexiu, Liwan, and Baiyun into
a new subzone, “GZ-1.” The GBA’s 49 county-level units and 2 special administrative
regions became 36 standard subzones after the spatial merger (Figure 2c). To simulate the
future growth of an urban agglomeration, it was necessary to not only monitor historical
development to discover trends but also establish ecological constraints. The geography of
the GBA is characterized by relative height differences of more than 60 m due to mountains,
a large river, a reservoir, coastal areas, and high-density forest land. If the maximum urban
growth were not to exceed the upper limit of ecologically sensitive areas, all these areas
had to be excluded (Figure 2c).
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2.2.2. Spatial Variables for Evaluating Suitable Urban Growth

In addition to analyzing historical land-use change using the SMC approach, this study
also evaluated urban growth suitability using the GWR model. Generally, many spatial
factors need to be considered in evaluating urban growth suitability [35,52]. However,
given that the present study performed such an evaluation on the scale of an urban
agglomeration—especially since we used the Markov chain to reconstruct the spatial
structure of the GBA—we felt that it was better to choose relatively few but highly stable
spatial factors. As such, only four variables were used to investigate urban agglomeration
growth: terrain flatness, distance to existing cities and towns, land-use conversion cost,
and urban landscape density. “Terrain flatness”, which reflects the spatial conditions for
construction, can be calculated as the relative height difference through a digital elevation
model (DEM) with a dynamic, 1 km2 window (Figure 3a). “Distance from existing built-up
land” was measured in 1995 mainly using Euclidean distance (Figure 3b). The “cost of
land-use conversion” reflects the cost of converting different types of land into “built-up
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land”, and for this measure, we were able to refer to the government’s formulation of
compensation standards for land acquisition (Figure 3c). “Urban landscape density” reflects
the spatial pattern of an agglomeration on a large (regional) scale and can be estimated
using a large, 10 km2 window (Figure 3d). In addition to these four independent variables,
urban growth between 1995 and 2015 constituted a dependent variable, and urban growth
was a logical variable, which needed to be changed into a probability value before being
used in a geographically weighted regression analysis. In this study, we used the Moore
neighborhood resampling technique to change the discrete value of 0.1 to a continuous
value range from 0 to 1.
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2.3. Methodology

The growth of urban agglomeration includes two main aspects: the urban built-up
land scale growth for each city, and the spatial form evolution under the corresponding
space scale. In this paper, the SMC and GWRCA were used to simulate urban agglomera-
tion growth, and the model flow chart is shown in Figure 4. The coupling model includes
two submodules: quantity prediction and spatial form evolution. Quantity prediction is
based on the classical Markov model, but interaction with an urban agglomeration should
be considered a transition probability. The spatial form evolution module used a GWR
model to estimate the initial growth probability and then used neighborhood interactions
of CA to simulate the change in spatial morphology. The relevant model principles are
discussed in Sections 2.3.1 and 2.3.2.
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2.3.1. Spatial Markov Chain

The Markov chain (MC) is a stochastic process that is often used to predict changes in
land-use structure [21,35,64] and a Markov model can be expressed by Equation (1):

Qn(t) = Qn(t− 1)× Pn Pn ≤ Pn
max (1)

where Qn(t) and Qn(t− 1) represents the quantity of at time t and t − 1, and Pn is the
transition probability matrix. In general, Pn can be extracted from the historical urban
growth process of subzone n, but it is necessary to ensure that there is no obvious mutation
in the rate of change. Because China expects to conclude rapid urbanization by 2050,
we assumed that the simulation of change from 2015 to 2050 could build on the transfer
probability obtained from changes from 1995 to 2015. We acknowledged that change is also
affected by government policies (for instance, ecological protection measures) and that the
transfer matrix Pn cannot be increased indefinitely—it must remain within the maximum
increase range of the region. In other words, Qn ≤ Qn

max. Qn
max is the maximum amount

that can be used for urban growth, excluding ecological or farmland protection.
Traditional Markov processes tend to construct one comprehensive land-use transfer

matrix, which is effective for a single city but not suitable for an urban agglomeration. Since
each city in an agglomeration maintains a relatively independent development authority, a
Markov process must be established for each one. However, if the whole agglomeration
were simply divided into multiple independent Markov processes, it would not be possible
to describe the essential character of the urban agglomeration as a system because each
city engages with, and exerts influence over, other cities. To fully consider the space-time
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interactions among the cities in the GBA, we proposed using a spatial Markov chain. The
SMC considered not only the transfer probability of each unit but also the driving effects
exerted by surrounding cities. As such, if a spatial Markov analysis showed the growth
rate of comprehensive radiation around a city to be higher than the speed of the city’s
growth, then the city is said to exhibit an accelerating growth trend; on the other hand, if
the growth rate of the surrounding cities is lower, then the city may be the growth pole.
Therefore, a city may change its own growth speed and potential speed in line with the
effects of surrounding cities. The modified P can be calculated by Equation (2):

Pn = Pn
0 + α×

(
∑n′ w

n′pn′ − Pn
)

, n′ 6= n (2)

where ∑n′ wn′pn′ represents the comprehensive interaction effect from the surround-
ing cities n’ (n’ 6= n); the coefficient wn′ can be set by the method of inverse distance.
∑n′ wn′pn′ − Pn is the difference between the transfer value from the surrounding cities
and its own value. If this value is positive, it indicates that the surrounding cities exert a
pulling effect; if it is negative, they exert a slowing effect or no effect. α is the adjustment
coefficient which ranges from 0 to 1, it is used to describe the radiation-driven intensity of
the effect of the surrounding subregions (or cities) on subregion n. If α = 1, it means that
subregion n is completely affected by its surrounding subregions; conversely, if α = 0, it
indicates that subregion n is completely unaffected. Otherwise, it is affected by a degree of
interaction effect from surrounding subregions.

2.3.2. Geographically Weighted Regression Based on Cellular Automata

Because the SMC model can only predict the quantity of built-up land in each sub-
region [60], we also employed a spatial evolution model to simulate the corresponding
spatial pattern. Cellular automata (CA), which are able to achieve dynamic results by
means of simple rules, have become important in urban growth simulations [65]. A typical
CA simulation framework can be expressed as in Equation (3):

Un
ij(t) = f

(
Qn(t), Sij, Ωij(t), Ψij

)
(3)

where Un
ij(t) represents the state of cell ij at time t in subzone n, (e.g., 0 means non-growth

and 1 means growth); function f is the iterative operation of CA, which produces a series
of spatial factors, including the suitability of urban growth, and neighborhood interaction;
Qn(t) represents the quantity of the demand for urban land in subzone n at time t; Sij is
the suitability of cell ij for urban growth, which is usually estimated by means of data
mining techniques such as regression analysis; Ωij(t) indicates that cell ij is affected by
the development of neighboring cells at time t, which can be characterized as develop-
ment density; Ψij denotes policy restrictions that prevent development (e.g., ecological
conservation measures).

In a CA model, both Qn(t) and Ψij are external input parameters, and Ωij(t) is only
related to the window size calculation. As such, the most important parameter affecting
the spatial pattern is suitability, and the simulation scenarios that CA works with rely
mainly on the generation of a suitability map. In previous studies, it was commonly
estimated by means of sample data mining, which was also used in this paper. In this
study, pronounced geographical spatial differentiation was present due to the size of the
urban agglomeration we addressed. If the overall parameter estimation were used in such
a situation, the individual differences of the study area (the GBA urban agglomeration)
could easily be missed; conversely, if each city were analyzed separately, it would split
the overall relationship of the groups. Given these limitations, we also employed the
classical method of geographically weighted regression (GWR) to calculate the suitability
map [61]. The GWR, essentially an extension of the ordinary linear regression (OLR) model,
is predominantly used to analyze spatial heterogeneity by considering local autocorrelation.
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If the local space is extended to the global, then the GWR will be transformed into an OLR.
A standard GWR model is as follows:

yij = βij0 + ∑k
k=1 βijkxijk + εij (4)

where yij is a dependent variable describing the probability of land constituting built-
up land; ij is the position coordinate of cell ij, which can be expressed as longitude and
latitude or as a row-and-column index in raster data format; and βijk is the k-th regression
coefficient. We noted that, as opposed to the OLR, each spatial factor in the GWR had
different coefficients. In the above formula, εij is the model estimation error term, which
satisfied the normal distribution. Using a coefficient matrix and the spatial factors obtained
through the GWR, the suitability values of all positions were estimated. In practice, the
suitability evaluation cannot be based completely on the results of data mining; it can
be fine-tuned in accordance with the strategic aims for spatial development contained in
relevant plans for the area.

3. Results
3.1. Quantity Prediction With the SMC

Table 1 shows the results of our size estimate of the GBA urban area and its subregions
in 2050. According to the results from the SMC model, the total area will grow to 14,699.61
km2, and within that urban agglomeration, Guangzhou will be the largest city because the
amount of land available for development is relatively large and the strength of the city’s
social and economic development will stimulate adequate demand. However, quantity
analysis alone cannot provide an image of how the GBA will develop. In addition, from a
historical development perspective, our results showed that the GBA will enter the mature
development stage by 2050.

3.2. Growth Scenario of the SMC-GWRCA Model

Spatial pattern simulation is helpful for scholars to understand development trends
in urban agglomerations, and it provides support for decisions regarding infrastructure
construction. The growth scenario for China’s GBA simulated in this study using the
SMC-GWRCA model is shown in Figure 5a. To analyze the reliability of the results further,
the simulation pattern for 2050 was transformed into a series of urban growth boundaries
(UGBs), which are shown as red lines in Figure 5. Furthermore, the highest resolution
image provided by Google Earth in 2019 was used to further review the rationality of the
simulation results (Figure 5b,c). From Figure 5, some inconsistencies between the UGB and
the actual geographical features can be seen, but these can be attributed to restrictions in
data refinement. We acknowledge that, in any practical application, our findings for the
simulation results would need to be modified manually to meet these control boundary
conditions. However, for the purposes of the quantitative modeling discussed in this paper,
we chose to focus our analysis on the overall pattern and not address areas where boundary
details were inconsistent. We selected two typical areas from the GBA for discussion, and
these are marked as the rectangular zones A and B. Zone A is located in the northeastern
part of Zhaoqing, a city on the edge of the GBA. Judging from the remote sensing image,
the urban growth that occurred in this area between 2015 and 2019 was almost totally
within the UGB. Further analysis revealed the formation of a street network in region A1,
and a great deal of built-up land emerged in region B1. In general, our simulation results
for the GBA using the SMC-GWRCA model are considered feasible.
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Table 1. Quantity of built-up land in 2050 within the GBA (km2).

Index Cities Total Quantity Subregion Quantity

1 GZ 3152.88

GZ-1 589.23
GZ-2 488.7
GZ-3 500.85
GZ-4 399.96
GZ-5 413.37
GZ-6 565.2
GZ-7 195.57

2 SZ 1434.96 / /

3 ZH 712.17
ZH-1 278.28
ZH-2 433.89

4 FS 2057.22

FS-1 910.08
FS-2 593.82
FS-3 303.12
FS-4 250.2

5 HZ 1419.39

HZ-1 356.94
HZ-2 386.19
HZ-3 244.53
HZ-4 302.85
HZ-5 128.88

6 DG 1864.71 / /

7 ZS 844.29 / /

8 JM 1660.68

JM-1 297.63
JM-2 312.12
JM-3 240.3
JM-4 366.39
JM-5 233.37
JM-6 210.87

9 ZQ 1084.41

ZQ-1 226.35
ZQ-2 256.68
ZQ-3 187.38
ZQ-4 82.35
ZQ-5 98.1
ZQ-6 145.08
ZQ-7 88.47

10 HK 442.8 / /

11 MO 26.1 / /

12 GBA 14,699.61 / /
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4. Discussion
4.1. Spatiotemporal Interaction of Urban Agglomeration

To evaluate whether the SMC method is more suitable than the MC method for
predicting the development of urban agglomerations, we analyzed historical changes in the
whole GBA urban agglomeration and compared them with the results of a traditional MC
prediction. Table 2 shows the quantity of built-up land in the GBA with respect to historical
changes and our forecast. In 1995, an area of about 4683.15 km2 was dedicated for urban
development, but by 2015 this area had grown to 9282.69 km2, an increase of 4599.54 km2

over 20 years. Excluding ecological reserves, the maximum area available for urbanization
was 34,563.60 km2, which shows that the GBA retained a significant degree of overall
development potential. However, the process of urbanization differed among subregions.
For example, the current scale of development in Dongguan (DG), Shenzhen (SZ), Hong
Kong (HK), and Macao (MO) is very high but constrained by ecological conservation areas,
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which severely restrict expansion. In these cases, potential development demands can be
transmitted to surrounding cities through radiation effects.

Table 2. Historical change and model predictions for the GBA (km2).

Subregion Quantity in 1995 Quantity in 2015 Maximum for Growth

Quantity in 2050

Predicted with
MC

Predicted with
SMC

Difference
between MC

and SMC

GZ-1 216.63 355.32 655.83 494.01 589.23 95.22
GZ-2 156.78 271.26 488.7 385.74 488.70 102.96
GZ-3 161.73 317.61 500.85 473.49 500.85 27.36
GZ-4 55.35 144.81 542.34 234.27 399.96 165.69
GZ-5 82.17 238.77 738 395.37 413.37 18
GZ-6 118.71 236.7 1124.55 354.69 565.20 210.51
GZ-7 53.01 104.04 997.29 155.07 195.57 40.5

SZ 652.32 1084.23 1434.96 1434.96 1434.96 0
ZH-1 107.1 180.9 278.28 254.7 278.28 23.58
ZH-2 105.75 258.84 862.47 411.93 433.89 21.96
FS-1 316.35 666.09 1144.17 1015.83 910.08 −05.75
FS-2 148.95 375.03 751.59 601.11 593.82 −7.29
FS-3 42.21 145.98 698.67 249.75 303.12 53.37
FS-4 49.41 118.71 682.2 188.01 250.20 62.19
HZ-1 149.13 255.78 1104.03 362.43 356.94 −5.49
HZ-2 175.05 285.75 802.35 396.45 386.19 −10.26
HZ-3 110.79 163.71 1641.87 216.63 244.53 27.9
HZ-4 90.27 198.81 1740.96 307.35 302.85 −4.5
HZ-5 25.47 58.23 958.95 90.99 128.88 37.89
DG 593.64 1363.05 2031.93 2031.93 1864.71 −167.22
ZS 200.7 554.4 1473.66 908.1 844.29 −63.81

JM-1 72.09 155.52 369.54 238.95 297.63 58.68
JM-2 107.55 185.4 983.34 263.25 312.12 48.87
JM-3 47.43 110.79 773.82 174.15 240.30 66.15
JM-4 158.22 269.46 2067.66 380.7 366.39 −14.31
JM-5 98.64 157.77 1284.48 216.9 233.37 16.47
JM-6 73.35 134.91 1070.19 196.47 210.87 14.4
ZQ-1 41.85 68.49 339.39 95.13 226.35 131.22
ZQ-2 40.59 120.87 814.23 201.15 256.68 55.53
ZQ-3 55.71 122.85 1254.87 189.99 187.38 −2.61
ZQ-4 17.01 50.13 862.74 83.25 82.35 −0.9
ZQ-5 23.04 52.56 866.88 82.08 98.10 16.02
ZQ-6 45.09 101.88 1577.43 158.67 145.08 −13.59
ZQ-7 24.93 56.25 1176.48 87.57 88.47 0.9
HK 252.09 293.67 442.8 335.25 442.80 107.55
MO 14.04 24.12 26.1 26.1 26.10 0
GBA 4683.15 9282.69 34,563.6 13,692.42 14,699.61 1007.19

The prediction results of the SMC for each subregion showed that the growth rates
of some subregions will increase, while others will be expected to slow. For example,
in the DG subregion, the MC prediction result was 2031.93 km2, which indicated that
the subregion will reach its maximum growth limit in the next 20 years, but the SMC
prediction suggested only 1864.71 km2, a reduction of 167.22 km2 that can be expected
to be transmitted to surrounding cities. Among these subregions, MO is fully urbanized,
and without land reclamation, there is no space for growth. In addition, the density of
urban development in HK is already very high, and there is a great demand for growth.
However, the government’s compulsory control makes reserve land resources in HK
temporarily unavailable for development. This paper did not consider the problems caused
by this complex administrative system. Development intensity in the GBA (total built-up
land/total land area) was found to be 7% in 1995 and 14% in 2015, and the results of the
SMC modeling projected a rise to about 26% for 2050. Although the overall development
intensity was shown to be relatively low, it was different for each city. For example, the
development intensity of GZ-1, GZ-2, GZ-3, SZ, FS-1, FS-2, DG, and other regions all
exceeded 50%, and some of these subregions were identified as approaching the upper
limit of development. Compared with the MC prediction, the results obtained from the
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SMC increased by 1007.19 km2, with an average of fewer than 30 km2 for 36 units, which
can be read as denoting uncertainty or elastic space. Compared with the MC prediction,
the results of the SMC show future development trends within the GBA more accurately.

4.2. Geographical Spatial Differentiation in Urban Agglomerations

Urban development is very sensitive to spatial conditions like terrain and other
spatial factors, and for this reason, it is difficult to simulate real urban spatiotemporal
evolution if the urban CA is not corrected by the geospatial environment. In performing
a regression analysis, this study took urban spatial change between 1995 and 2015 as
the dependent variable, which we analyzed in relation to four spatial variables: terrain
conditions, distance to existing urban areas, land-use conversion cost, and urban landscape
pattern. In this study, 59,777 training samples were randomly sampled from one sample
point per square kilometer. We then used statistical analysis tools provided by ArcGIS
to model suitability evolution. Regression results first needed to be adjusted manually
before simulation through a procedure where we set to 0 the ecologically sensitive areas
where development is prohibited and then enhanced the spatial development probability
along the coast of the GBA (the elliptical region in Figure 6) by increasing it by 0.05 for each
cell. Due to the large area of the urban agglomeration, there was obvious geographical
spatial differentiation. If traditional overall estimation, rather than a local estimation,
is used with such preconditions, it may not be able to give an accurate analysis. The
spatial driving probability results of the GWR and OLR models are shown in Figure 6.
Compared with the OLR’s global average estimation, the GWR balanced the development
differences in relation to urban agglomerations better. The results of the OLR model
indicated that peripheral cities such as Jiangmen, Huizhou, Zhaoqing, are basically devoid
of high development probability results. If this kind of spatial probability is used to drive
the development of an urban agglomeration, these cities will have reduced development
opportunities, which is obviously not in line with the trend toward integrated development
within the GBA. Therefore, we believe that it is necessary to consider spatial autocorrelation
in urban agglomeration simulation. Moreover, the suitability of data estimation based on
historical change can only represent the law of historical processes, which does not mean
that future urbanization will be the same. Given this, it is necessary to revise the suitability
map manually for regions with obvious spatial development policy regulation; otherwise,
the CA model will have difficulty simulating the expected pattern.

4.3. Advantages of the SMC-GWRCA for Urban Agglomeration Simulation

To analyze the advantages of the SMC-GWRCA for simulating the GBA spatial pattern
in 2050, all parameters of the CA model employed in this paper were set conventionally
(e.g., Ω adopted the conventional Moore neighborhood, and neighborhood Ω and suitabil-
ity S were coupled with equal weight). The total number of iterations of the GWRCA was
200 (10 iterations per year), and each iteration was an equivalent conversion. The simula-
tion patterns for the GBA in 2050 obtained by coupling the SMC-GWRCA, MC-GWRCA,
SMC-OLRCA, and MC-OLRCA models are shown in Figure 7. From these results, the
spatial patterns simulated by the four models were quite different though they worked
under largely the same parameters (except Q and S). To analyze whether the MC or SMC
prediction results were more reasonable, the subregion marked as GZ-4 in Figure 7 was
used as an example for comparative analysis. GZ-4 is the Nansha New Area, which has
been planned as the Vice-Center of Guangzhou, and is bound to be subjected to strong
growth trends. Using only the MC method, projected increases up to 2050 are expected
to be small due to the low level of historical transformation between 1995 and 2015. On
the other hand, the SMC was able to take into account the radiation of high-speed growth
cities in the east such as SZ and DG. In the past, the eastern part of the GBA was largely
disconnected from the western, but this is no longer the case as the east–west connection
across is becoming increasingly convenient: the Hong Kong–Zhuhai–Macao, Humen, and
Nansha bridges have all been opened, and the Shenzhen–Zhongshan channel is under
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construction. From this evidence, we can see that the SMC constitutes a more reason-
able method than the MC. Comparing the GWR and OLR methods, the patterns derived
through OLR simulation are concentrated around big cities, while the peripheral areas
were too scattered, which conclusively demonstrates that the GWR is the more suitable for
urban agglomeration simulation.
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Figure 7. Urban agglomeration pattern simulated using CA.

From the view of spatial patterns, the development scenario simulation with the SMC-
GWRCA model was more consistent with actual requirements. To further evaluate the
differences among the four simulation models, the urban agglomeration pattern observed
by remote sensing in 2020 was compared with that simulated by each model in this
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study, and the accuracy was evaluated by the Figure of Merit (FOM) index, which was
significantly higher because the detection time was short) [66,67] (Table 3). We found that
the accuracy of the SMC-GWRCA model was better than the others for the FOM shape
index and prediction accuracy (PA). For example, the FOM index of the SMC-GWRCA was
0.6881, higher than that of classical MC-OLRCA, and the prediction accuracy improved
from 72.77 to 81.53%. This indicated that more than 80% of the new units predicted by
the SMC-GWRCA from 2015 to 2020 had occurred, and the improved model can better
simulate the development of new areas. Overall, the SMC-GWR coupling model was a
great improvement over the traditional model (the SMC for quantity prediction and the
GWR for spatial form evolution) and showed that the urban agglomeration scale must take
into account the interaction between cities and spatial differentiation. Urban agglomeration
simulation cannot simply copy the classical CA modeling process.

Table 3. Simulation precision testing of four models.

SMC-GWRCA SMC-OLRCA MC-GWRCA MC-OLRCA

FOM 0.6881 0.6336 0.6021 0.5830
PA 81.53% 79.10% 75.16% 72.77%

5. Conclusions

As urbanization reaches an advanced stage globally, agglomerations have emerged
as an increasingly prevalent form of spatial organization. Their development trends must
be analyzed to provide a more scientific basis for spatial planning decisions, such as
how to optimize infrastructure networks for optimal group connection. However, as the
research object shifts from single cities to groups of cities, the scale of the geographical
space being studied can become very large, and interactions among cities become more
and more obvious, so it is very important to establish an effective simulation method to
deal with these. To simulate the spatiotemporal evolution of urban agglomerations, this
study introduced a simulation model that integrated the spatial Markov chain and the
geographic-weighted regression-based cellular automata methods. The effect of the model
was analyzed in relation to the Guangdong–Hong Kong–Macao Greater Bay Area (GBA)
urban agglomeration.

This research shows that the spatial Markov chain was fully able to reflect radiation-
driven utility among the cities, and taking these intercity interactions into account, the
development of the urban agglomeration was reconstructed and projected. Taking the
Nansha New Area, the geometric center of the GBA as an example, we noted that little
obvious urban growth occurred in the period 1995–2015. However, this area is expected to
become the Vice-Center of Guangzhou and is bound to face large-scale growth demands.
This kind of demand cannot be predicted by means of a traditional MC process. The SMC
approach, however, can deal with the radiation of the development demand of surrounding
areas. The Nansha New Area, as the geometric center of GBA, is bound to receive the
most intense radiation from surrounding cities. Our comparison of the simulation results
obtained under these two methods fully supports this conclusion.

There is no doubt that using a spatial Markov chain model to simulate the quantity
structure of urban agglomerations is feasible, but the spatial Markov model also has
application limitations. First, it must assume that the transfer process is relatively stable,
which is deeply related to the urbanization stage of the agglomeration or its region. If the
region has reached the mature stage, even if there has been a past large-scale transformation,
this principle cannot be used to predict the next stage of transformation. To eliminate
this potential limitation, we drew inspiration from the European Union’s nomenclature
of territorial units for statistics and merged a number of urban core areas to ensure the
trend of analysis unit transfer. Second, the spatial Markov chain still needs to verify the
strength of the interactions among the cities in an urban agglomeration. In this paper,
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inverse-distance weighting was used directly, but we noted that the method for defining
the interaction between cities scientifically requires further exploration.

In the spatial pattern simulation performed in this paper, four driving factors were
selected for their stability to mine the urban growth probability. Factors such as the
street network and the location of development centers, which are used in traditional CA
simulation, were not used. Because their quantities vary over time, such factors cannot be
used to explain the drivers of the long-term development of urban agglomerations. For
example, a new highway or subway built by the government can completely change this
pattern of drivers. For this reason, we maintain that it is more appropriate to use spatially
stable factors to explain the long-term spatial patterns of the drivers of urban development
when research is conducted on the scale of the urban agglomeration.

In addition, the question of how to integrate quantitative data mining methods to
identify drivers and qualitative spatial policy regulation to form a more accurate fitness
map are both key points for simulating the long-term growth of urban agglomerations.
Our research showed that it is feasible to extract the driving force coefficients of various
spatial factors from historical urban growth. Compared with the global regression method,
we considered the geographic-weighted regression method to be more suitable for ana-
lyzing the urban agglomeration. However, studying historical change can only provide
insight into the past development of urban agglomerations, trends that will not necessarily
continue. A new development strategy from government spatial planners can completely
change the previous development model. As such, research must combine qualitative and
quantitative methods in simulations, and avoid overreliance on purely quantitative results.
The model is, after all, only a model.

Although there are many limitations to spatial planning scenario analyses, we believe
that as long as the simulation model is fed enough refined data, the SMC-GWRCA method
can competently simulate the spatiotemporal evolution process of urban agglomerations.
In general, simulation models can help us understand the development mechanisms at
work and provide a reference for decision-making within territorial spatial planning. The
simulation framework studied in this paper only needed a small amount of data and a
limited number of parameters to simulate the growth of urban agglomerations. Through
future research, we would like to try a larger-scale simulation, such as modeling urban
agglomerations over the whole of China.
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