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Abstract: The general inverse problem formulation for a heat conductance equation is adopted for
the types of measurement routinely carried out in the soil active layer. The problem solution delivers
a constant thermal diffusivity coefficient a0 (in general, different from true value a) and respective
heat conductivity λ0 for the layer, located between two temperature sensors and equipped with a
temperature or heat flux sensor in the middle. We estimated the error of solution corresponding to
systematic shifts in sensor readings and mislocation of sensors in the soil column. This estimation
was carried out by a series of numerical experiments using boundary conditions from observations
on Mukhrino wetland (Western Siberia, Russia), performed in summer, 2019. Numerical results
were corroborated by analytical estimates of inverse problem solution sensitivity derived from
classical Fourier law. The main finding states that heat conductivity error due to systematic shifts
in temperature measurements become negligible when using long temperature series, whereas the
relative error of a is approximately twice the relative error of sensor depth. The error a0 − a induced
by heat flux plate displacement from expected depth is 3–5 times less than the same displacement
of thermometers, which makes the requirements for heat flux installation less rigid. However, the
relative errors of heat flux observation typical for modern sensors (±15%) cause the uncertainty of a
above 15% in absolute value. Comparison of the inverse problem solution to a estimated from in
situ moss sampling on Mukhrino wetland proves the feasibility of the method and corroborates the
conclusions of the error sensitivity study.

Keywords: moss layer; heat conduction; inverse problems; measurement errors

1. Introduction

The coefficient of heat conductivity is a thermal property of soils that is important
for correct representation of soil–atmosphere interactions in numerical weather prediction
and Earth system models. A variety of parameterizations have been proposed for heat
conductivity [1], which have different accuracies for different types of soil and soil states.
Thus, robust measurement techniques are needed for further improvement of such models.

The coefficient of heat conductivity λ for any material is defined in the phenomeno-
logical Fourier law for heat flux:

q = −λ
∂T
∂z

, (1)

where q is the heat flux, T is temperature, and z is spatial coordinate parallel to temperature
gradient.

For multicomponent environments, Equation (1) is also used, but λ is now the ef-
fective thermal conductivity of the medium, which depends on its structure and thermal
conductivity of its components [2–4]. Since the arrangement of the medium components is
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usually chaotic, and the surfaces separating them are extremely complex, the method of
two-sided estimates is used for calculating the thermal conductivity [5]. In this method,
the medium is considered as a set of flat, regularly alternating isotropic layers that fill its
entire volume. Thermal conductivity may be calculated for heat flux along the layers (Voigt
model), which provides the upper estimate for λ, and across the layers (Reuss model),
which is the lower estimate. For the real structure of the medium, a combination of these
models is applied. This approach has been used to calculate the thermal conductivity of
snow [6,7] and moss [8]. A similar approach, but taking into account the larger number
of medium components (solid particles, water and air), is typically used to compute the
thermal conductivity of soil [1,9]. This technique, in particular, facilitates the study of
porosity and liquid water saturation effect on the thermal conductivity of various media.

Direct measurement of the thermal conductivity coefficient of natural objects (soils,
rocks, vegetation, snow, etc.) can be carried out both in the field and in laboratory condi-
tions [10–15]. In field conditions, the thermal conductivity coefficient may be determined
from the measured heat flux and temperature gradient in the material [16]. Laboratory
methods use special equipment and are divided into stationary and non-stationary meth-
ods. Stationary methods are based directly on Fourier’s law, and the heat flux through the
sample over time reaches a steady state; in non-stationary methods, the heat flux does not
reach a constant value.

Stationary methods may use either an absolute (direct) or relative approach. In direct
measurements, thermal conductivity is calculated directly from the experimentally found
values. Relative methods require a reference material with a known thermal conductivity.
Of the absolute methods, the controlled hot plate method [17] and the cylinder method [18]
are the most applicable. Relative methods include the heat-flux meter method [19], the
direct heating method (Kohlrausch method) [20] and hot wire method [21].

Non-stationary methods allow for direct measurement of the thermal conductivity.
These include the frequency division method [22] and the laser flash method [23]. In work
[24], the advantage of non-stationary methods for laboratory studies of soils and grounds,
in particular, using thermal needle probes, is shown, since in addition to the shortening of
the study (no wait for a stationary thermal regime is required), the sample does not lose
moisture during the study.

Direct measurements of heat conductivity mentioned above require deployment
of additional sensors in soils or transport of samples to a lab, whereas efficient use of
conventional devices such as temperature sensors and heat-flux plates for estimation of λ,
would substantially increase the number of sites, where soil heat conductivity is assessed.

This paper formulates a generalized method for obtaining soil thermal conductivity as
a solution of the inverse problem. It extends the method which uses three-level temperature
measurements developed in [25–27] by considering a case, where heat-flux observations
are available. The sensitivity of the inverse problem solution to input data errors is studied,
and the accuracy of the method is compared to that of the traditional Fourier approach and
contemporary thermal conductivity sensors. Finally, an inverse problem method is verified
using data of measurements in a water-saturated moss layer in Western Siberia.

2. Materials and Methods

Consider a heat conductance problem in a medium which has homogeneous spatial
distribution of thermodynamic properties:

Tt = aTzz, z ∈ (z1, z2), t ∈ (0, t1), (2)

B1T|z=z1 = f1(t),

B2T|z=z2 = f2(t), (3)

T|t=0 = T0(z), (4)

where a = λ/(ρc) > 0 is a thermal diffusivity coefficient, ρ is density, c is specific heat
capacity (all are constants), B1,2 are differential operators of boundary conditions (hereafter,
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we assume B1,2 = I, with I standing for unity operator, implying Dirichlet boundary
conditions), bottom indices z and t denote derivatives on time and depth. If a is known,
then a problem of finding a function T(z, t) satisfying equation (2), boundary (3) and
initial (4) conditions is called a direct problem. However, very often a is unknown, whereas
additional information on solution T(z, t) is available, e.g., measurements of temperature
at an intermediate depth z3 ∈ (z1, z2) expressed by a function Tm(z3, t) = f3(t). In this
case, one may pose a problem of seeking a given this additional constraint; this classical
kind of problem is called an inverse problem. Specifically, the solution of inverse problem is

a0 = arg min
a′
||Ta′ − Tm||2, (5)

where Ta′ is a solution of (2)–(4) under given a = a′, || · || is an appropriately chosen
norm, and Tm(z, t) is an observed temperature field. In the following, we assume that the
volumetric heat capacity ρc is known, so that for each value of temperature diffusivity, a,
the heat conductivity λ = aρc is found automatically. The norm in (5) may be defined in
different ways, depending on which temperature data are available. In a more general case,
the objective function to be minimized on a′ may be defined as a sum of norms containing
different functions of Ta′ , which are measured, say, heat flux. For instance, a sensor of
temperature is deployed at depth z3, and a heat flux sensor is installed at depth z4 ∈ (z1, z2).
In this case, the objective (loss) function to be minimized is a sum of respective norms:

Φ(a′) =C1

∫ t1

0
[Ta′(z3, t)− Tm(z3, t)]2dt+

C2

∫ t1

0

[
a′(Ta′)z(z4, t)− Fm(z4, t)

]2dt. (6)

Here, constants C1 and C2 are non-negative weights which may be chosen as inversely
proportional to standard errors of respective measurements, and Fm is the measured heat
flux. In (6), the temperature difference norm is summed up with a norm of heat flux
difference. The two typical measurement settings used in soil active layer monitoring lead
to the following inverse problem specifications:

• C1 > 0, C2 = 0; the data of three temperature loggers at different depths are
used (Φ(a′) is RMSE of temperature squared) (this method coincides with that used
in [25–27]), hereafter referred to as TEMP method (hereafter, the depth of measure-
ments for this setting is denoted as z3 = zm);

• C1 = 0, C2 > 0; the data of two temperature sensors and a heat flux plate located in
between are used (Φ(a′) is the RMSE of heat flux squared), hereafter referred to as
the FLUX method (hereafter, the depth of measurements for this setting is denoted as
z4 = zm).

Calculation of Φ(a′) is performed after solving the direct numerical problem (2)–(4) at
a given a′, and minimization of Φ(a′) may be attained by a number of methods e.g.,
Monte-Carlo simulations [28] or gradient descent method. The latter is used in this study
in Barzilai–Borwein modification [29]. As both Tm and Fm are measured with error, the
sensitivity of a0 to those errors must be assessed. For reference, we compare a0 obtained by
the method described above to estimates from the classical Fourier solution:

a0 =
π(z2 − z1)

2

Td log2(Az1 /Az2)
, (7)

(Td = 24 h and Azi , i = 1, 2 are diurnal temperature magnitudes at the top and bottom
of the layer considered), and the accuracy of heat conductivity sensors available on the
market.

The measurements of soil temperature have been conducted on Mukhrino bog station
in Western Siberia in summer 6–20 June 2019, (Figure 1). The sensors were placed in the
Sphagnum moss layer 5–25 cm below surface, with the entire layer located beneath the water
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level. Davis Instruments stainless steel temperature probes with two-wire termination were
deployed at depths 5, 15, and 25 cm. The advantage of this experimental setup for testing
the method of thermal conductivity derivation (in TEMP configuration) is that the “true”
temperature conductivity of the moss layer is known to a high-accuracy: water constituted
about 97.5% of the layer by mass, whereas the almost permanently stable stratification
prevented convective motions [30], so that the thermal conductivity of the layer is close to
molecular conductivity of water, a ≈ aw (see a more exact estimate below in this section).

We performed two tests of the method proposed. In the first test, the measured
temperature series at 5 and 25 cm are used as boundary conditions to compute temperature
and heat flux series at 15 cm by solving (2)–(4) under a = aw (the PDE solver uses the
scheme, which is central-difference in space and implicit in time). Thus produced series at
15 cm are then used as true solution (or “measured” series) to solve the inverse problem for
a with the same top and bottom boundary conditions as in a direct problem. In specification
of Φ(a′), (6), temperature series in TEMP settings are used in a 1 min time step, and the heat
flux in the FLUX problem is given with a 30 min time step (i.e., averaged inside consecutive
30-min intervals of “true” solution); the latter is a typical averaging interval of observed
heat flux in soil monitoring practice. Thus, the accuracy of the method is estimated.

The sensitivity of the method accuracy to the error of temperature (at all three depths)
and heat flux (in the middle of layer) series was assessed in this first test. The error for
temperature is given by Gaussian noise that is uncorrelated in time with mean ±0.1 ◦C
(typical for conventional temperature sensors) and σ = 0.1 ◦C ; assuming mean error values
−0.1 ◦C, 0. ◦C, +0.1 ◦C at each of three levels provides 27 combinations, some of which are
equivalent. For heat flux, we assume a constant relative error ±15%, which can be seen as
an upper estimate for the modern heat-flux plates (see, e.g., [31]). In addition, the error of
sensors’ positions is introduced to sensitivity analysis, assuming they are ±1 cm for each
temperature sensor, again providing 27 combinations; the effect of the same error in the
level of heat flux sensor deployment is estimated as well.

In the second test, the measured temperature series at 5 cm, 15 cm and 25 cm of moss
layer of Mukhrino bog are used to solve the TEMP type of inverse problem (Figure 2). The
difference to the first test is that for a 15 cm depth, measured temperature series are used
(instead of series precomputed with “true” temperature diffusivity a = aw), and thus the
resulting a0 value is compared to a estimated for this water-saturated moss layer given the
measured water and organics mass fractions (see below). The similar test of the FLUX-type
inverse problem solution was not carried out, as we did not have reliable observed heat flux
data from the field campaign.

On the Mukhrino field station, we sampled the top of the moss layer to obtain the
values of water and organics mass fractions, Mw and Morg, respectively (Mw + Morg = 1).
Given these parameters, the moss layer porosity p, the volumetric heat capacity cvol , heat
conductivity coefficient λs, and thermal conductivity coefficient a, are:

p =
γ

1 + γ
, γ

.
=

ρorg Mw

ρw Morg
, (8)

λs = λ
p
wλ

1−p
org , (9)

ρs = pρw0M−1
w , (10)

cvol = ρs
(

Mwcw + Morgcorg
)
, (11)

a =
λs

cvol
. (12)

Given the measured value Mw = 0.975, and the values of other parameters corg =
2250 J/(kg*K) [32–34], cw = 3990 J/(kg*K), ρorg = 1300 kg/m3, ρw = 1000 kg/m3,
λorg = 0.3 W/(m*K) [33], λw = 0.561 W/(m*K), we obtain acvol = 0.554 W/(m*K).
Here, the widely accepted geometrical mean is used to estimate the heat conductivity λs of
water-saturated soil.
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Figure 1. The landscape view and setup of measurements on Mukhrino bog (Khanty–Mansiysk
region, Russia) in summer, 2019. The red rectangle shows the vertical string of temperature and heat
flux sensors in the moss layer.

Figure 2. Moss temperature series measured at top (5 cm), bottom (25 cm) and middle (15 cm), of
the test moss layer, and simulated in the middle of the layer at the optimal value of the temperature
diffusivity coefficient a0.

3. Results and Discussion

We start with the first (synthetic) test of the inverse problem method. The error of
the heat conduction coefficient found by solving the inverse problem formulated in the
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previous section significantly depends on the type and magnitude of the input data error
(Table 1). In the table, of all the combinations of input data systematic errors, only those
with the largest impact on inverse problem solution are shown. In addition, for each series
of experiments, the a0 values using zero mean errors are given. The loss function in this
case attains the level of stochastic error magnitude of temperature or heat flux, respectively;
the solution a0 is 0.2–0.5% different from the reference value aw. The latter deviations are
partly due to inaccuracy of the numerical minimization procedure.

According to Table 1, the smallest uncertainty of a0 is caused by systematic shifts in
measured temperature in the TEMP method, not exceeding 3% by absolute value. The sign
of error here coincides with that of δTm − δT1, implying that the temperature error at the
bottom boundary is less important compared to uncertainties at two other levels. In the
FLUX method, the uncertainty of ±15% in heat flux measurements causes the deviation
of a0 from “true” value aw up to ±20%, where a0 − aw has the same sign as the heat
flux relative error δFm; at a given δFm choosing different combinations of top and bottom
temperature errors does not considerably change the deviation a0 − aw. Thus, the FLUX
method is much less precise, than the TEMP method, if considering only the accuracy of
sensor readings. However, the sensitivity of solution a0 to sensor deployment errors of
±1 cm is much larger for the TEMP method, reaching more than 40% compared to less than
15% in the FLUX method. In both methods, the error sign is the same as that of δzm − δz1,
again suggesting that observation uncertainties at the middle and top levels have more
impact on solution a0 compared to those at the bottom.

Table 1. Inverse problem solution as a function of input data errors. δ(·) is a mean error of variable
(·). True solution is aρc = awρc = 0.561 Wm−1K−1. The solutions with zero input data errors and
with maximal |a0 − aw| are shown.

Solution under different temperature mean errors (TEMP setup)

δT1, K δTm, K δT2, K a0ρc,
Wm−1K−1

(relative error)

RMSE,
◦C

0 0 0 0.559 (−0.4%) 0.10
−0.1 0.1 −0.1 0.570 (+1.6%) 0.23
−0.1 0.1 0 0.567 (+1.1%) 0.18
0 −0.1 0.1 0.553 (−1.4%) 0.18
0 0.1 −0.1 0.571 (+1.8%) 0.18
0.1 −0.1 −0.1 0.558 (−0.5%) 0.15
0.1 −0.1 0 0.546 (−2.7%) 0.18
0.1 −0.1 0.1 0.546 (−2.7%) 0.22

Solution under different temperature sensor depth errors (TEMP setup)
δz1, cm δzm, cm δz2, cm a0ρc,

Wm−1K−1

(relative error)

RMSE,
◦C

0 0 0 0.564 (+0.5%) 0.10
−1 +1 −1 0.787 (+40.3%) 0.31
−1 +1 0 0.801 (+42.8%) 0.23
0 −1 +1 0.441

(−21.4%)
0.23
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Table 1. Cont.

0 +1 −1 0.655 (+16.8%) 0.24
+1 −1 0 0.366

(−34.8%)
0.23

+1 −1 +1 0.357
(−36.3%)

0.30

Solution under different temperature and heat flux mean errors (FLUX setup)

δT1, K δFm, % δT2, K a0ρc,
Wm−1K−1

(relative error)

RMSE,
W m−2

0 0 0 0.563 (+0.4%) 0.99

−0.1 +15 0 0.654 (+16.6%) 1.11

−0.1 +15 +0.1 0.671 (+19.6%) 1.16

0 −15 −0.1 0.467
(−16.8%)

1.06

0 +15 +0.1 0.654 (+16.6%) 1.11

+0.1 −15 −0.1 0.456
(−18.7%)

1.13

+0.1 +15 +0.1 0.638 (+13.7%) 1.08

Solution under different heat flux plate depth errors (FLUX setup)

δz1, cm δzm cm δz2, cm a0ρc,
Wm−1K−1

(relative error)

RMSE,
W m−2

0 0 0 0.560 (−0.2%) 1.01
−1 0 −1 0.574 (+2.3%) 1.16
−1 +1 −1 0.586 (+4.5%) 1.38
−1 +1 0 0.616 (+9.8%) 1.34
−1 +1 +1 0.641 (+14.3%) 1.22
0 −1 +1 0.560 (−0.2%) 1.26
+1 −1 −1 0.481

(−14.3%)
1.31

+1 −1 0 0.499
(−11.1%)

1.41

+1 −1 +1 0.513 (−8.6%) 1.55

For interpretation of errors a0 − aw obtained in numerical simulations, the standard
Fourier solution (“Fourier law”) for the heat conduction problem provides a convenient
framework, because it is tractable analytically. The errors of inverse problem solution due
to sensor inaccuracies and vertical displacement are (see Appendix A) as follows:

δa ≈ 0, δTm 6= 0, δzm = 0, (13)
δa
a

= 2
δzm

zm
, δTm = 0, δzm 6= 0, (14)

for TEMP setting and

δa
a
≈ δFm

100
2(1 + ∆zm/z∗)

(1 + ∆zm/z∗)2 + (∆zm/z∗)2 , δFm 6= 0, δzm = 0, (15)

δa
a
≈ δzm

z∗
2(1 + ∆zm/z∗)

(1 + ∆zm/z∗)2 + (∆zm/z∗)2 , δFm = 0, δzm 6= 0. (16)
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for FLUX setting, where δa = a0 − a, ∆zm = zm − z1, and z∗ =
√

aT
π (T—period of

temperature oscillations). Note that the change of sign has been made before δzm to
conform with different displacement definitions used in numerical experiments of Table 1
compared to derivation in Appendix A.

Strictly speaking, estimates of uncertainty from Fourier law are not directly compara-
ble to uncertainties of numerical solution of the inverse problem as the Fourier solution
assumes a different lower boundary condition and single-harmonic oscillation at the upper
boundary; still these estimates well conform with the numerical results in Table 1. Indeed,
the small values of uncertainty due to systematic temperature measurement errors in the
TEMP problem setup agree with δa ≈ 0 from Fourier theory and are anticipated to reduce
with extension of the time period studied1. Then, from Fourier theory, for the sensor depth
error δzm− δz1 = 0.1, 0.2 m, we obtain the relative error of 20% and 40% in aw, respectively,
which is again in accordance with Table 1.

For the FLUX inverse problem, in analytical estimates, we have dependence of δa/a
on period T, which complicates the analysis. In Figure 2, one can see two pronounced
periods comprising temperature series used as boundary conditions: the diurnal period
and the synoptic period—the latter can be estimated as 12 days. For these two periods and
δF = 15%, the above analytical estimates provide δa/a = 8.3% and 18.6%, respectively;
the corresponding value in Table 1 (for δT1 = 0 K) is 16.6%, and it resides in the interval
between these two values. The uncertainties of δa/a due to flux sensor depth displacement
presented in the table are not well reproduced by Fourier theory, as they demonstrate a
strong influence of the lower boundary, which is not included in Fourier law. Nevertheless,
the sign of the error is correctly predicted by the formula (16), which also provides values
in a range from numerical simulations.

Now turn to the second test ot the method, where the computed optimal a0 was com-
pared to in-situ estimated thermal conductivity. The optimal value a0cvol = 0.514 W/(m*K),
is −7.2% from 0.554 W/(m*K), a reference value, estimated from moss sampling (see Sec-
tion 2). There are at least two possible reasons for this discrepancy. First, the wooden rod
used to deploy temperature sensors disturbed the natural moss medium and affected heat
transport; this effect is not straightforward to quantify; however, one may notice that the
heat conductivity of dry wood is about 2 times less than that of water, i.e., 0.2–0.3 W/(m*K)
[35], which means it could contribute to reduction of apparent a, obtained from data of
sensors attached to this rod. The second reason is the error in sensor depth. Setting the
middle thermistor depth error as δz2 = 3 and 4 mm provides an inverse problem solution
a0cvol = 0.539 W/(m*K) (−2.7%) and a0cvol = 0.567 W/(m*K) (+2.3%), suggesting that
the thermistor might have been placed 3–4 mm below the expected depth in the moss
layer. This estimate is realistic given the technical procedure of the sensors’ deployment in
our field experiment. The temperature series corresponding to these optimal values are
shifted from measured data by 0.1–0.2 K (Figure 2), which can be explained by the mean
thermistor error.

Using the Fourier formula (7), we obtain the daily values of a0cvol from Mukhrino bog
data, which have a mean over 14 days 1.03 W/(m*K) (+85.92%) with root mean square
deviation 0.58 W/(m*K). The reason for this large error is a proximity of the diurnal
magnitude of temperature variations at depth 25 cm to the measurement accuracy of 0.1 ◦C.
Moreover, at days 6–12, the diurnal cycle is not discernible at a background of synoptic
trend.

Given the measurement accuracy of modern thermal needle systems ±5% [36] for the
heat conductivity coefficient, we may note the following. Using the TEMP inverse problem
solution provides better accuracy for a if the sensors are located exactly at the expected
depths; this requires much care during the deployment procedure, because the TEMP
method is very sensitive to depth mislocation. For the FLUX method, errors of modern

1 According to Fourier solution, a is a function of a ratio of temperature magnitudes at two depths; systematic temperature shifts do not change
magnitudes and hence a.
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heat flux plates must be reduced by about 3 times to obtain the same accuracy as thermal
needle systems provide; the high accuracy in terms of the depth of the sensor is not as
important as in the TEMP method case.

This work proposes a generalized inverse problem formulation for heat transfer in
soils not undergoing phase changes. A special case of this problem statement, called TEMP
configuration in this paper, was applied in the previous works [25–27,37] to northern soils.
We propose to use heat flux plate measurements in between two temperature sensors as
an alternative setting for estimation of the optimal thermal diffusivity. In addition, for the
first time, we numerically and analytically estimate the inverse solution uncertainty due to
errors of input data, which are Gaussian noise and systematic errors in temperature and
heat flux observations as well as the shifts in deployment depths. The future derivations of
thermal conductivity using the same instrumental settings may be now accompanied by
similar uncertainty estimates.

4. Conclusions

In this study, the general inverse problem formulation for the heat conductance
equation is adopted for the types of measurement routinely carried out in the soil active
layer. The problem solution delivers a constant thermal diffusivity coefficient a0 (in general,
different from true value a) and respective heat conductivity λ0 for a layer, which was
located between two temperature sensors and equipped with a temperature or heat flux
sensor in the middle. Given that the inverse problem solution may be sensitive to the
uncertainty of input data, we estimated the error of a solution corresponding to systematic
shifts in sensor readings and mislocation of sensors in the soil column. This estimation
was carried out by a series of numerical experiments using boundary conditions from
observations on Mukhrino wetland (Western Siberia, Russia), performed in summer, 2019.
Numerical results were corroborated by analytical estimates of inverse problem solution
sensitivity derived from classical Fourier law. The main finding states that heat conductivity
errors due to systematic shifts in temperature measurements become negligible when using
long temperature series, whereas the relative error of a is approximately twice the relative
error of sensor depth (for example, 20% error in a takes place for sensor displacement
of 1 cm around 10 cm expected depth). The error a0 − a induced by heat flux plate
displacement from the expected depth is 3–5 times less than the same displacement of
thermometers, which makes the requirements for heat flux installation less rigid. However,
the relative errors of heat flux observation typical for modern sensors (±15%) cause the
uncertainty of a above 15% in absolute value. Comparison of the inverse problem solution
to a estimated from in situ moss sampling on Mukhrino wetland proves the feasibility of
the method and corroborates the conclusions of error sensitivity study.
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Appendix A. Errors of Inverse Solution According to Fourier Law

The Fourier solution for temperature vanishing Ta at infinite depth is

Ta(z, t) = A0 exp(−z/z∗) cos[ω(t− τ)], (A1)

τ =
z
2

√
T

πa
, (A2)

z∗ =

√
aT
π

, (A3)

ω =
2π

T
, (A4)

where T is the period, A0 is magnitude of temperature oscillations at the top of the soil
domain considered. Assume we use the TEMP setting of the inverse problem, the true
temperature obeys Fourier law; however, the temperature sensor has a constant error
δT and is deployed at the expected depth z with displacement δz. In this case, the loss
function (6) takes the form:∫ t1

0
[{Ta(z + δz, t) + δT} − Ta′(z, t)]2dt→ min

a′
Φ(a′). (A5)

This minimization problem is solvable analytically, with solution a′ = a0. In the following
development, we assume for simplicity that t1 � T. This yields for δa = a0 − a:

δa ≈ 0, δT 6= 0, δz = 0, (A6)
δa
a

= −2
δz
z

, δT = 0, δz 6= 0, (A7)

with δa standing for absolute error a0 − a. The first of these expressions is remarkably
simple and can be used as a “rule of thumb” for assessing the uncertainty of the TEMP
inverse problem solution.

In FLUX inverse problem formulation, the loss function including measurement errors
takes a form: ∫ t1

0

[
a(Ta)z(z + δz, t)(1 + δF)− a′(Ta′)z(z, t)

]2dt→ min
a′

Φ(a′), (A8)

with δF being a relative error of flux observations. Analytically evaluating a value a0
delivering the minimum to the above objective function provides

δa
a
≈ δF

2(1 + z/z∗)
(1 + z/z∗)2 + (z/z∗)2 , δF 6= 0, δz = 0, (A9)

δa
a
≈ − δz

z∗
2(1 + z/z∗)

(1 + z/z∗)2 + (z/z∗)2 , δF = 0, δz 6= 0. (A10)

Contrary to the TEMP problem, in FLUX, the relative solution error does not depend only
on the relative error of measurements, but also on true value a, period T and depth z.
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