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Abstract: Climate and socioeconomic and policy factors are found to stimulate land use changes along
with changes in greenhouse gas emissions and adaption behaviors. Most of the studies investigating
land use changes in the U.S. have not considered potential spatial effects explicitly. We used a
two-step linearized multinomial logit to examine the impacts of various factors on conterminous
U.S. land use changes including spatial lag coefficients. The estimation results show that the spatial
dependences have existed for cropland, pastureland, and grasslands with a negative dependence on
forests but weakened in most of the land uses except for croplands. Temperature and precipitation
were found to have nonlinear impacts on the land use shares in the succeeding years by exerting
opposite effects on crop versus pasture/grass shares. We also predicted land use changes under
different climate change scenarios. The simulation results imply that the southern regions of the
U.S. would lose cropland shares with further severity under the business-as-usual climate scenarios,
while the land use shares for pasture/grass and forest would increase in those regions. As land use
plays an important role in the climate system and vice versa, the results from this study may help
policymakers tackle climate-driven land use changes and farmers adapt to climate change.

Keywords: land use changes; spatial econometrics; multinomial logit; climate scenarios

1. Introduction

The relationship between climate and land use has been the subject of a number of
studies. These studies indicate that climate and policy factors stimulate human and natural
system land use alterations along with changes in net greenhouse gas emissions [1–13].

Two approaches have been used to link climate change to land use in the literature.
The first approach links land use to climate mitigation considering land as both a source
and a sink of greenhouse gases. In that setting, land use changes such as deforestation and
afforestation can contribute to exacerbation or mitigation of climate change [14]. Studies
such as Attwood et al. [15], Lee et al. [16], and U.S. EPA [17] have examined the impact of
policies such as carbon sequestration incentives and conservation programs on land use
and land practices.

The second approach considers land use changes as a response to climate conditions.
Climate change can have impacts on yields of agricultural commodities, land value, water
availability, labor supply and health, infrastructure, and environmental quality as well as
loss of land due to rising sea levels [18]. Along with natural land cover changes, land use
changes can occur in that landowners exposed to such risks can have incentives to change
land allocations as an adaptation measure to climate change. Reilly et al. [19] examined
the way climate and policy factors influenced agricultural land use and projected changes
under future climate change scenarios. Mu et al. [20] and Mu et al. [12] examined land use
shifts between cropping and pasture as climate shifts.

We focused on the second approach: climate change impacts on land use changes.
Identifying how the climate and non-climate (socio-economic) factors are related to the
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changes of land uses can be critical for adaptation behaviors of farmers and policies for
agriculture and climate change mitigation as compliance with the emissions target of the
Paris climate agreement [21].

According to Homer et al. [22], between 2001 and 2016, the conterminous United
States experienced changes to about 8% of its land cover, including declines in forest
and pasture/hay and grass/shrub, a slight increase in agricultural land, and a persistent
increase in developed (urban) land, while pasture/hay mostly transitioned to cultivated
crops. Causes of such land changes were found to be varied, including harvests, fire, pests,
diseases, and precipitation [22]. The study shows us how US land changed but less how
climate and socioeconomic factors affected the changes.

Most studies on land use have not accounted for potential spatial effects, and this
in turn may mean that their estimates are biased, as they neglect the fact that there are
common factors across space that influence choices [23,24]. Lubowski et al. [25] and
Rashford et al. [26] took spatial interrelationships into account, finding that they did
significantly alter the estimates, but they did not consider climate change as a driver.
Additionally, most previous studies have operated either over large geographic areas
relying on aggregate data or have examined small regions using detailed data, but as a
consequence, the small region focus precluded inference to broader settings.

This study extends the literature by examining determinants of land use changes in
recent years with detailed 10 km× 10 km gridded data while controlling for common forces
across proximate regions with spatial econometric methods. For land use, we considered
usage as cropland, pastureland, grassland, forest, urban, and other. We also used climate
model-based scenarios to project future US land use change.

2. Materials and Methods
2.1. Spatial Issues and Estimation Methods

Conditions and actions in proximate regions are influenced by common factors such
as multi-region droughts, major storms, large scale insect outbreaks, similar soil types,
and common production systems. Some recent land use studies have controlled for such
commonalities [24,27,28] by using spatial econometric methods, taking into consideration
correlations in the error terms or between the error terms and independent variables rather
than directly including data on the common factors.

In our analysis, following previous studies [4,28], we assumed that a landowner
makes a decision to alter land use when the longer-term net returns from an alternative
use minus the conversion cost are larger than the net returns from the current land use.
We also implicitly built in the relationship between alterations in longer-term climate
and profitability and, in turn, land use. In doing that, we assumed that the net returns
depend not only on currently observed conditions but also on longer-term, more persistent
conditions through lagged values not only in a region but between regions. This assumes
that drivers of land usage in an area are longer-term in nature and that the drivers also
commonly influence choices in neighboring areas. For example, if farmers employ land
uses similar to those also used in nearby regions, they (a) might benefit from lower costs
to find labor with needed skills for that land use; (b) might react to increased incidence
of droughts that span across proximate regions; (c) may benefit from needed transport
or industrial infrastructure that serves multiple regions; or (d) may employ crop mixes
and production systems similar to those in proximate regions that jointly benefit from
technological advances and adoption.

Following Li et al. [28], we used an estimation approach that assumes that local land
allocation is affected by common factors that also influence land use in nearby regions but
do not require one to specify exactly what factors are causing that common influence. In
particular, we estimated the probability of each land use considering the allowed uses as
cropping, pasture, forest, grass, urban, and other. This was done using a multinomial logit
estimator.
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The fractional multinomial logit model we estimate that includes in region and spatial
lags can be expressed as:

E
(
sijt
∣∣x, w

)
= Kj

(
xit−1, wij;β, ρ

)
= K

(
∑

m 6=i
rρjtwimsmjt + xit−1βjt

)
(1)

where E(·) tells us the expected probability of land use j in region i during period t as it is
influenced by (conditional on) independent variables x and spatial interrelationships w.
K(·) is the multinomial logit function, ρjt is a spatial interrelationship parameter (

∣∣ρjt
∣∣ < 1),

implying the degree on which local land use j depends on the use of land use j in nearby
areas m as identified by wim times the land uses elsewhere (smjt). The explanatory variables
x include physical and socioeconomic factors plus the lagged land use share in the prior
time period t− 1 as a control for potential endogeneity [28]. In the above equation, wim
implies the spatial relationship between land areas i and m where, following Li et al. [28],
wim has an entry if region i and m are adjacent. By construction, the spatial relation term in
a non-adjacent region is 0 (wim = 0, i = m). The specification in K(·) is often referred to as
a spatial lag model [29].

In turn, the conditional mean function is expressed in a matrix form across areas as

E
(
Sjt
∣∣X, W

)
= K

(
ρjtWSjt + Xt−1βjt

)
(2)

where Sjt =
(
s1jt, . . . , sNjt

)′ gives land use j proportion across regions 1 through N and
Xt−1 = (x1t−1, . . . , xNt−1)

′ is the set of independent variables in time t − 1 in each of
N regions (i = 1, 2, . . . , N). The reduced form of the above equation is E

(
Sjt
∣∣X, W

)
=

K
((

IN − ρjtW
)−1Xt−1βjt

)
, where IN is an N-dimensional identity matrix.

To set up W, we follow [29] and use a row-normalized contiguity matrix of first-order

neighbors. W is an N × N matrix where
N
∑

m=1
wim = 1 and wim is nonzero if areas i and m

are adjacent and 0 otherwise.
An important aspect of the spatial lag model is the spatial multiplier, which is esti-

mated by expanding the inverse term in this reduced form: E
(
Sjt
∣∣X, W

)
= K(Xt−1βjt+

ρjtWXt−1βjt + ρ2
jtW

2Xt−1βjt + . . .). Thus, the value of sijt in area i relies not just on prior
land use in that area xit−1 but also on the uses x in adjacent areas (−i), with locations
further discounted by powers of ρjt. This represents the diminishing nature of the spatial
multiplier effects in the spatial lag model. Specifically, if a given explanatory variable xk

it−1

changed by one unit in every location, the effect on sijt would amount to
(
1− ρjt

)−1
βk

jt [30].
Because this nonlinear form of the spatial model can be computationally challenging,

especially with the large sample we used, we employed the linearized spatial multino-
mial logit approach [28,31]. That approach uses the two-step estimation discussed in
Appendix A. To perform the spatial estimation, we used a user-written toolbox spar-
seinv [32] implemented in MATLAB [33] and the matrix technique spmat [34] from
Stata [35] that exploits the structure of the contiguity weight matrix. In addition, be-
cause it is difficult to interpret the coefficients of such a model due to the nonlinear nature
of the logit model and spatial interactions, the partial effects were estimated via a method
that is presented in Appendix A.

2.2. Model Specification

Using the above model, we chose the explanatory variables Xt−1 as previous-year
5-year averages and standard deviations of regional annual mean temperature and pre-
cipitation; time-invariant values of elevation, land slope, and land capability class (soil
quality); and previous-period values of farm income, non-farm income, population density,
and irrigation rate. Climate and geographic variables were also considered as drivers of
land use alternative returns, and in turn, land use changes [13,28]. As done in previous
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studies, incomes, population density, and irrigation rates were used as proxies for factors
affecting land values or returns to control for the influence of socioeconomic factors as they
vary across counties [36]. The full set of explanatory variables is listed.

All the explanatory variables were lagged 5 years and themselves were 5-year averages,
which we felt reflected reactions to not just single-year weather but also longer- term climate
characteristics, with the time between observations sufficiently long to allow for land use
changes influenced by the explanatory factors.

2.3. Data for Estimation

For our fundamental land use data, we obtained 30×30 m level satellite-based land
cover data from the National Land Cover Database (NLCD) of Multi-Resolution Land
Characteristics (MRLC) Consortium [22] for the 2001, 2006, 2011, and 2016 periods. The
NLCD classifies land cover into many categories, which we aggregated into 6 major use
categories following USDA [37]. In particular, we aggregated the categories to cropland,
pastureland, grassland, forest, urban, and other [37]. The correspondence between these
classifications and the original categories is shown in Table 1. Moreover, we needed to
aggregate the size of the parcels we considered due to the overwhelming amount of data.
Namely, the number of 30 m × 30 m land parcel cells in the US totals nearly 16.8 trillion,
so we aggregated to 10 km × 10 km cells, yielding about 80,000 observations per year.
Although this prevented capturing the heterogeneity within the 10 km × 10 km cells, it
allowed us to capture the interaction between cells.

Table 1. Matched land use classifications.

Classifications in
This Study NLCD Classifications

Crop 82 (Cultivated Crops)
Pasture 81 (Pasture/Hay)
Forest 41 (Deciduous Forest), 42 (Evergreen Forest), 43 (Mixed Forest)
Grass 71 (Herbaceous), 52 (Shrub/Scrub)

Urban 21 (Developed, Open Space), 22 (Developed, Low Intensity),
23 (Developed, Medium Intensity), 24 (Developed, High Intensity)

Other 11 (Open Water), 12 (Perennial Ice/Snow), 31 (Barren Land), 90 (Woody
Wetlands), 95 (Emergent Herbaceous Wetlands)

National-level summaries of land use transitions between 2006 and 2016 are shown in
Table 2. In that period, crop and urban land increased while pasture, grass, and forest land
decreased, and land in the other categories remained basically unchanged. Unsurprisingly,
the data showed that land is most likely to remain in its current use (99.3% for cropland).
For cropland, the largest transition out was movement into urban lands, while there
were substantial transitions in from pasture and grass. Additionally, note that there were
substantial interchanges between grass and forest lands in that period, with the net forest
to grasslands conversion adding 20,100 km2 to grasslands. The movement into cropland
largely from grass and pasture likely was due to price increases under the biofuel boom,
while the net forest movement may have been replacing grasslands that moved out to crops.

The full set of explanatory variables is listed in Table 3. Elevation, slope, and capability
class data were obtained from the USDA Natural Resources Conservation Service soils
data base gSSURGO [38]. The land capability classes (LCC) span from class 1 to class 8,
with class 1 indicating the land most suitable for cultivation and class 8 the least. Figure 1
presents the capability class data for non-irrigated lands. For ease of interpretation, we
converted LCC to a weighted average by 10 km× 10 km grid cell, resulting in a continuous
measure between 1 and 8.
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Table 2. Land use transitions between 2006 and 2016 (thousand km2).

To

2016 Land Use

Crop Pasture Grass Forest Urban Other 2006 Total

From 2006
Land Use

Crop 1265.9 1.6 2.3 0.6 3.1 1.6 1275.1
Pasture 16.6 502.8 2.7 4.8 3.0 1.0 530.9
Grass 29.2 2.0 2761.4 87.6 4.8 3.7 2888.7
Forest 0.6 0.9 108.8 1880.3 2.9 0.9 1994.3
Urban 0.007 0.002 0.001 0.001 413.6 0.001 413.6
Other 0.9 0.2 3.3 0.5 1.2 970.5 976.7

2016 Total 1313.1 507.6 2878.5 1973.8 428.6 977.7 8079.3
Net Change 38.0 −23.3 −20.5 −10.2 15.0 1.0

Table 3. Descriptive statistics of explanatory variables (N = 79,657).

Variable Aggregation Mean Std. Dev. Min. Max.

Temperature (◦C), 2007–2011 10 km × 10 km 11.495 5.265 −2.569 25.631
Temperature (◦C), 2012–2016 10 km × 10 km 12.034 5.122 −1.674 26.085

Std. dev. of temperature, 2007–2011 10 km × 10 km 0.809 0.449 0.045 4.627
Std. dev. of temperature, 2012–2016 10 km × 10 km 0.821 0.476 0.042 5.232

Precipitation (m), 2007–2011 10 km × 10 km 0.559 0.176 0.043 1.292
Precipitation (m), 2012–2016 10 km × 10 km 0.910 0.365 0.170 1.981

Std. dev. of precipitation, 2007–2011 10 km × 10 km 0.161 0.105 0.003 0.964
Std. dev. of precipitation, 2012–2016 10 km × 10 km 0.157 0.109 0.004 1.564

Elevation (100 m) 10 km × 10 km 7.683 7.243 −0.741 37.569
Slope (decimal degrees) 10 km × 10 km 0.106 0.110 0.000 0.746

Average LCC for Grid Cell 10 km × 10 km 4.895 1.534 1.383 8.000
Farm income (1000 USD/ha), 2001–2006 County 0.061 0.103 −0.126 0.985
Farm income (1000 USD/ha), 2007–2011 County 0.064 0.123 −0.517 1.042

Nonfarm income (1000 USD/ha), 2001–2006 County 1.314 18.670 0.001 5041
Nonfarm income (1000 USD/ha), 2007–2011 County 1.274 14.132 −7.312 3649

Population density (persons/100 km2), 2001–2006 County 0.344 1.278 0.000 180.212
Population density (persons/100 km2), 2007–2011 County 0.361 1.307 0.000 182.734

Irrigation rate (proportion), 2001–2006 County 0.029 0.068 0.000 0.753
Irrigation rate (proportion), 2007–2011 County 0.029 0.069 0.000 0.711

Notes: Std. Dev. identifies standard deviations. Incomes are adjusted by the gross domestic product deflator to real 2015 USD.
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Figure 1. Weighted average of land capability classification (non-irrigated). The class values from gSSURGO [38] are
averaged at the cell level. Here, lower classes indicate those more suitable for cultivation. Numbers in brackets indicate the
range of each category, with the lands in each category having a class greater than the first number and less than or equal to
the second one.



Land 2021, 10, 546 6 of 16

The 10 km × 10 km map shown here is a TIGER map [39] portraying the data gridded
by using the fishnet function in the ArcGIS software [40].

Climate variables such as annual mean temperature and annual total precipitation
were obtained from PRISM [41]. The variables from finer 4 km grids were spatially
aggregated to the 10 km × 10 km grid. The mean and standard deviations for the majority
of the observations were obtained for a 5-year window.

County-level data for farm and non-farm proprietor income and population estimates
were obtained from the U.S. Bureau of Economic Analysis database on Personal Income
by County, Metro, and Other Areas [42]. County-level data for irrigated land area were
obtained from the USDA Quick Stats database [43]. County-level values for income,
population, and irrigation variables were divided by county area, yielding per-hectare
values, and were assigned to each grid cell based on the county. When the data for a
specific year were not available, the data from a succeeding or preceding year were used.

3. Results
3.1. Estimation Results

We estimated our model as both a linearized spatial multinomial logit and a non-
spatial version. The results of that model gave estimates of the probability of a hectare being
in a particular use by grid cell, taking into account spatial dependence of the land shares
across cells. We estimated land use changes in two different time intervals, one for 2006 to
2011 and the other for 2011 to 2016, then compared differences between those periods.

We found that the coefficient estimates were generally robust between the non-spatial
fractional multinomial logit and the spatial version. In terms of choice between the spatial
and non-spatial versions, we found that the spatial lag parameter estimates were all positive
and significant at the 1% level, except for urban lands (Table 4). This implied that the
estimates without spatial lag terms could lead to biased estimates [44], and thus, we focused
on the spatial estimates in the rest of this paper.

Table 4. Estimated spatial lag parameters.

Crop Pasture Forest Grass Urban

2006–2011 0.031 *** 0.083 *** −0.018 *** 0.147 *** 0.002 ***
2011–2016 0.050 *** 0.074 *** −0.020 *** 0.118 *** −0.001

Notes: *** indicates statistical significance at the 1% level, based on the heteroskedasticity-robust standard errors.

Comparing the results for the period 2001–2006 with those for the period 2006–2011,
we found that the cropland share was more influenced by land use patterns in nearby
areas in the latter time interval, with pastureland and grassland being less dependent. The
spatial dependence terms were mostly significant, excluding those for urban, which likely
reflects the fact that allocation to urban lands is largely irreversible. Moreover, the spatial
dependence in forestlands was found to be negative. This may be related to the forest
fragmentation problem, in which a large forest is segmented into small and sparse forests
mostly due to forest loss or distributional changes for other land uses [22,45]. In this case, a
large forest may compete with nearby forests and lead to negative spatial dependence on
contiguous forest shares. The results differed from those in a China setting [28,46] which
found increasing spatial dependence over time. Whether country-specific characteristics
affect spatial dependence, or whether other structural changes have occurred should be
further investigated.

Tables 5 and 6 contain estimates of the average effects of the independent variables on
land use change for the intervals 2006–2011 and 2011–2016, respectively. We found that the
partial effects of the explanatory variables were mostly consistent across these intervals.
Table 7 also shows calculated inflection points for each measure and the signs of the partial
effects before and after the inflection points.
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Table 5. Average partial effects on land use allocations in spatial multinomial logit, 2006–2011.

Crop Pasture Forest Grass Urban

Temperature 0.0082 *** −0.0034 *** 0.0114 *** −0.0099 *** 0.0037 ***
Temperature squared −0.0004 *** 0.0001 *** −0.0004 *** 0.0005 *** −0.0001 ***

Precipitation 0.0177 *** 0.0186 *** 0.0279 *** −0.0416 *** −0.0150 ***
Precipitation squared −0.0180 *** −0.0098 *** −0.0041 *** 0.0186 *** 0.0058 ***

Temperature SD 0.0016 0.0028 ** 0.0562 *** −0.0376 *** 0.0028 **
Precipitation SD −0.0380 *** 0.0032 * 0.0014 0.0180 *** −0.0039 **

Elevation −0.0027 *** −0.0013 *** 0.0058 *** 0.0005 *** −0.0006 ***
Slope −0.0721 *** 0.0386 *** 0.0690 *** 0.0182 *** 0.0395 ***

Land capability class −0.0057 *** −0.0013 *** −0.0044 *** 0.0032 *** 0.0017 ***
Farm income (t − 5) −0.0057 ** 0.0042 ** 0.0200 *** −0.0205 *** −0.0032 **

Non-farm income (t − 5) −0.0006 *** −0.0002 ** 0.0003 *** 0.0003 *** 0.0001 ***
log (Pop. density) (t − 5) −0.0002 0.0014 *** −0.0001 −0.0041 *** 0.0035 ***

Irrigation rate (t − 5) 0.0547 *** −0.0415 *** −0.2171 *** 0.1255 *** 0.0254 ***
Share of crop (t − 5) 0.3001 *** 0.0405 *** −0.1479 *** 0.0717 *** 0.0240 ***

Share of pasture (t − 5) 0.0879 *** 0.2789 *** 0.0299 *** −0.1152 *** 0.0165 ***
Share of forest (t − 5) −0.1113 *** 0.0183 *** 0.3694 *** 0.0649 *** −0.0158 ***
Share of grass (t − 5) 0.0017 0.0034 −0.1290 *** 0.4397 *** −0.0180 ***
Share of urban (t − 5) −0.0049 0.0441 *** −0.0063 −0.0137 * 0.2284 ***

Observations 79657

Notes: ***, **, and * imply statistical significance at the 1%, 5%, and 10% levels, respectively, based on the standard errors using the
delta method.

Table 6. Average partial effects on land use allocations in spatial multinomial logit, 2011–2016.

Crop Pasture Forest Grass Urban

Temperature 0.0073 *** −0.0028 *** 0.0079 *** −0.0080 *** 0.0027 ***
Temperature squared −0.0004 *** 0.0001 *** −0.0003 *** 0.0004 *** −0.0001 ***

Precipitation 0.0149 ** 0.0111 ** 0.0428 *** −0.0590 *** −0.0083 ***
Precipitation squared −0.0086 ** −0.0062 *** −0.0084 *** 0.0148 *** 0.0022 ***

Temperature SD −0.0149 *** 0.0120 *** 0.0157 *** −0.0109 *** −0.0021 ***
Precipitation SD −0.0750 *** −0.0121 *** 0.0098 *** 0.1044 *** 0.0031 **

Elevation −0.0032 *** −0.0008 *** 0.0048 *** 0.0010 *** −0.0008 ***
Slope −0.0794 *** 0.0597 *** 0.0395 *** 0.0148 *** 0.0420 ***

Land capability class −0.0068 *** −0.0027 *** −0.0009 ** 0.0030 *** 0.0019 ***
Farm income (t − 5) −0.0166 *** 0.0036 ** 0.0274 *** −0.0127 *** −0.0021 **

Non-farm income (t − 5) −0.0008 *** −0.0002 *** 0.0003 *** 0.0004 *** 0.0001 ***
log (Pop. density) (t − 5) −0.0001 0.0015 *** 0.0005 ** −0.0049 *** 0.0034 ***

Irrigation rate (t − 5) 0.0560 *** −0.0440 *** −0.1992 *** 0.0990 *** 0.0211 ***
Share of crop (t − 5) 0.3036 *** 0.0337 *** −0.1378 *** 0.0600 *** 0.0273 ***

Share of pasture (t − 5) 0.0957 *** 0.2725 *** 0.0595 *** −0.1468 *** 0.0167 ***
Share of forest (t − 5) −0.1185 *** 0.0174 *** 0.3864 *** 0.0532 *** −0.0154 ***
Share of grass (t − 5) 0.0086 ** −0.0066 ** −0.0999 *** 0.4167 *** −0.0173 ***
Share of urban (t − 5) −0.0047 0.0383 *** 0.0146 ** −0.0251 *** 0.2280 ***

Observations 79657

Notes: *** and ** imply statistical significance at the 1% and 5% levels, respectively, based on the standard errors using the delta method.
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Table 7. Signs and inflection points of nonlinear partial effects of temperature and precipitation on
land use allocations, 2011–2016.

Annual Mean Temperature (◦C) Annual Precipitation (1000 mm)

Below Inflection Point Above Below Inflection Point Above

Crop + 10.05 − + 0.86 −
Pasture − 10.07 + + 0.89 −
Forest + 12.16 − + 2.56 −
Grass − 10.03 + − 2.00 +
Urban + 16.37 − − 1.89 +

Notes: Entries in the Below and Above columns indicate how the probability of land transfer changes below and
above the inflection point. A positive sign (+) in the Below column means the probability of this use increases as
temperatures rise toward the inflection point, while a negative in the Above column means the probability falls
as temperatures increase above the inflection point. A positive below and a negative above indicates that the
probability relation has an inverse U shape, while a negative below and a positive above means the relationship
has a U shape.

The results indicate that higher annual average temperatures above 10 ◦C led to a
decrease in crop and forest lands and an increase in pasture and grasslands. We also
found that forest land increased up to an annual average temperature of 12.2 ◦C and fell
above that, while urban land increased up to 16.4 ◦C and fell thereafter. Collectively, these
results for grass and pasture lands reflected a move into crop or forest or urban lands as
temperatures increased in areas cooler than the inflection point and movement into grass
and pasture lands above that point. The increasing and decreasing effects on crop and forest
land-use changes were stronger (with larger magnitudes in quadratic terms) than the effects
on urban land-use changes, while the effects from the propensity of grassland to move
into other uses were stronger than those for pasture land. Increases in precipitation led to
movements into crop, pasture, and forest lands up to the inflection point but decreased
thereafter. The opposite effect was seen for grass and urban lands. Larger levels of variation
in temperature generally decreased crop, grass, and urban land use but increased that for
pasture and forest. For precipitation, greater variation decreased crop and pasture usage
but increased that for forest, grass, and urban.

Higher elevations decreased both the crop and pasture shares. This indicated that crop
and pasture lands tend to be in lower altitude areas. Land slopes had negative impacts on
cropland shares and positive impacts on pasture, forest, and grass. Thus, croplands were
more common on flat lands while grazing and forest were favored as slope increased.

Soil quality (in the form of land capability class as it improves moving downward
toward 1) positively affected crop, pasture, and forest shares, with the effect greater in the
latter time interval for crops and pasture but less for forest. This may indicate that crop and
pasture lands were more dependent on land or soil quality between the periods, whereas
forests were less dependent.

Increases in the proportion of irrigated land led to greater crop and urban land shares
but had negative impacts on pasture, forest, and grasslands. Clearly, more irrigation
water supports more land use for crops and also likely indicates available water for
urban expansion.

Increases in farm net income decreased crop land use but increased pasture. This may
imply that croplands respond more to longer-run asset values but less to short-run annual
income, while pasturelands do the opposite.

Non-farm income decreased land use for crops and pasture but increased that for
grasslands, forest, and urban lands. This likely reflects greater off-farm commitments and
consequent adoption of less labor-intensive forms of land use.

Areas with higher population density increased the incidence of pasture and urban
lands but exerted negative impacts on grasslands. This implies that as population grows,
grasslands may be converted to pasture or urban lands. It also indicates the pasture
lands may be near to urban lands to maintain tax reductions for agricultural land uses
involving livestock.
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Land use in the previous period positively affected land use in the current period,
as we saw in Table 1. Clearly, land allocated for a particular use tends to remain in that
use in the next period. However, there are more complex relationships between land uses.
Increases in previous forest shares had negative impacts on current cropland shares and
vice versa. This may imply that as the region becomes more forested, croplands tend to
move into forest lands, but as cropland shares increase, forests are likely to be converted to
cropland perhaps due to the incidence of supporting infrastructure. We also found that
pastureland and grasslands compete, as pasture decreased when grassland increased or
vice versa. This may be because they are competitive as land uses for grazing. We also
found that large shares of forests and grasslands in the previous period decreased the
probability that land would change to urban use in the current period. This indicates that
urban lands are most likely to be developed from crop and pasture lands and less likely to
be developed from forest and grasslands.

3.2. Simulation under Climate Scenarios

Using temperature and precipitation estimates from the Representative Concentration
Pathways (RCP) of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we
applied the model to project land use allocations in 2030, 2050, and 2070. We obtained
downscaled projected temperature and precipitation outputs from six climate models:
CanESM2, CCSM4, CESM1-CAM5, GFDL-CM3, HadGEM2-ES, and MPI-ESM-MR from
the CONUS 1/8 degree BCSD (bias-corrected and spatially downscaled) files available
from the Technical Service Center, US Bureau of Reclamation [47]. We use the RCP 2.6
scenario implying optimistic conditions with the lowest level of greenhouse gas emissions,
RCP 4.5 scenario deemed as an intermediate scenario, and RCP 8.5 scenario as the hottest
scenario. Because we focused on the climate effects on land use changes, we predicted
land shares while holding all other variables at current levels. We evaluated the change in
shares from the 2016 level.

Figure 2 shows the changes in land share for crops under the RCP scenarios. As
expected, the RCP 2.6 scenario yielded the least change while RCP 8.5 yielded the largest.
In the figure, we see cropland shares decreasing in southern areas and increasing in the
Northern, Mountain and Pacific areas.

Figures 3 and 4 portray the projected pasture and grassland shares for 2030, 2050, and
2070 compared to 2016. These figures illustrate decreasing shares in the Northern and
Midwestern areas, while Southern areas exhibit increasing shares. Again, we see greater
sensitivity under RCP 8.5 than under RCP 2.6 or RCP 4.5, particularly in the Midwest.
The results for pasture and grass shares are quite similar, reflecting their common use
for livestock and the possibility of a rather easy shift between those classifications. This
indicates that croplands move into pasture or grass as climate change proceeds.

Figures 5 and 6 show projected shares of forest and urban land. In general, they
show similar patterns. This may be because the areas with a large share of forest are near
more highly developed areas. While both forest and urban land shares decrease in the
lower latitudes and increase in the higher latitudes, the increasing forest land share in the
Midwestern areas but decreasing shares in the Rocky Mountains likely reflect moisture
conditions. The RCP 8.5-based estimates again show greater changes than those for RCP
2.6 or RCP 4.5.
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4. Conclusions and Discussion

In the global scheme, the interrelationship between climate change and land use
changes has important implications because land plays an important role in both food
productivity and land-based emissions. While cropping, livestock, forests, and other land
use changes generate about 23% of total greenhouse gas emissions, the Intergovernmental
Panel on Climate Change indicates changes in land use and land management can reduce
emissions [14]. The land use sector also plays an essential role in supporting multiple
Sustainable Development Goals [14]. Given that the US officially rejoined the Paris climate
agreement in 2021, changing uses of land, such as curbs on deforestation and the adoption
of sustainable land management (SLM), can help achieve emission reductions. However,
the climate is also causing changes in land use and may complicate or contribute to
mitigation actions.

Herein we reported on a study using US data that examined climate and other factors
of influence on land use allocations between five categories of land use. To do this we
employed a spatial econometric method—the linearized multinomial logit estimated over
fine-scale 10 km × 10 km gridded data. The study approach differed from previous studies
in three ways. First, we considered the spatial relationship between nearby areas, whereas
other US land use studies mainly ignored it. Second, this study dealt with not just physical
factors but also socioeconomic factors influencing land use changes. Third, we utilized
fine-scale data to deal with interactions at the grid level. To the best of our knowledge, one
or two of these features were shared with some studies but not all three.

Our estimation results implied that spatial dependences importantly influence the
shares allocated to most land uses, indicating that estimates omitting them may be biased.
This was true for all categories but urban land use, in that case possibly due to irreversibility
of that land type. We also found that forestlands showed negative spatial effects, likely
because of forest fragmentation. These results may imply that specific land uses likely
share common influences with nearby land uses.

The results also show that climate significantly affects land use shares, as do economic
and physical conditions. In particular, we found that temperature and precipitation exert
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opposite yet significant effects on crop versus pasture/grass shares, and that there are also
key climate thresholds above which temperature or precipitation causes crop land shares to
diminish and pasture/grass shares to increase. This implies that on a local basis, depending
on where local conditions fall relative to the threshold, we might see climate change cause
either increasing or decreasing cropland shares with countervailing movements in pasture
and grasslands. Accordingly, the US ability to mitigate climate change through land use
may also be influenced by the extent of climate change and where a region currently stands
relative to these thresholds.

Using the estimated model, we projected land use share responses to climate scenarios.
We found that climate change generally moves land out of cropping and into pasture or
grasslands in the south but increases croplands in the north. This also will requires the
attention of policymakers for effective mitigation policy designs. For example, regions
with higher shifts into pasture and grassland shares might naturally increase carbon
sequestration, whereas those with shifts out of forest land would likely reduce sequestration.
Policies could be tuned to regional trends, with those for livestock-supporting uses favoring
emissions strategies such as investments in manure management and livestock feeding
while those for croplands promote reduced tillage, improved nitrogen fertilizer efficiency,
and emission-conserving rice cultivation and other means. Similarly, regions where climate
shifts portend less forest may need innovations that improve forest production under
changed conditions and species shifts that better accommodate the changed climate. The
shifts will also draw attention to regions where crop-based food supplies may diminish
and underscore the need for adaptive actions to countervail such forces.

This study also suffered from several limitations. Namely, it omitted factors such as
regional policy changes for land uses that merit study despite limited data. Additionally,
crop and livestock prices and enterprise-based incomes may be important factors that
could be included. Unfortunately, fine-grid scale levels for those types of data are not yet
available. For the simulations, our model did not account for feedback from the changed
allocations of land.

Future research could improve on this study by including market factors and data
across enough time intervals to use a panel spatial model. Additionally, policy factors
such as carbon sequestration incentives, carbon prices, and other climate change policies
could be explicitly included in the model to allow improved inferences about mitigation
policy. Moreover, a comprehensive and global model accounting for land use to climate
change feedback integrated with our results would lead to more effective projections and
policy recommendations.
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Appendix A

The use of the higher powers of the weight matrix W reveal higher order proximity and
render the spatial multiplier effect to be more global, capturing spatial reactions between
non-adjacent yet nearby locations through higher powers of W, which successively expand
the spatial influence. Let

(
IN − ρjtW

)
≡ Ψjt. Then the variance-covariance matrix of Sjt is

proportional to [
(
Ψjt)

′(Ψjt
)]−1. Let σ2

ijt be the diagonal elements of [
(
Ψjt)

′(Ψjt
)]−1 matrix,

and let x∗ijt−1 = xit−1σ−1
ijt and X∗∗jt−1 =

(
Ψjt
)−1X∗jt−1. Under the assumption analogous to

the maximum quasi-likelihood estimation, the share of area i can be derived as follows:

pijt = E
(

sijt

∣∣∣x∗∗ijt−1

)
=

exp
(

x∗∗ijt−1βjt

)
∑k exp

(
x∗∗ikt−1βkt

) (A1)

where changes in land use in area i between t− 1 and t are intrinsically captured by the left-
hand side variable pijt, j = 1, . . . , J and the right-hand side vector of the land proportions
at period t− 1. If the independent variables are original observed values in the above
equation, the model becomes a fractional multinomial logit without taking into account
spatial dependences.

The linearized spatial multinomial logit we employed in this study needs a two-
step approach. The first step is to estimate the model by standard multinomial logit in
setting ρ = 0 to obtain a reasonable starting point. Then the estimation results used as

initial estimates are formed for
^
β

0

(coefficients), u0
ijt = sijt − p̂ijt (residuals where s is the

observed land share and p is the predicted value), gβ
ikt =

∂pijt
∂βkt

= p̂ikt(1− p̂ikt)xit (gradient

terms for β), and gρ
ikt =

∂pijt
∂ρkt

= pikt(1− pikt) (WXt−1)iβkt (gradient terms for ρ). Based on

gijt = (gβ′

ijt, gρ
ijt)
′
, we calculate u1

ijt ≡ u0
ijt + gβ

ijtβ
0
t + gρ

ijt · 0 which is used for the following

two-stage least squares because u0
ijt + gβ

ijtβ
0
t + gρ

ijt · 0 ≈ uijt + gβ
ijtβt + gρ

ijt · ρt. In the second

step, regress Gjt = (g′1jt, . . . , g′Njt)
′ on instruments Z =

(
X, WX, W2X, . . . , W5X

)
and

then regress the calculated terms [u1
11t, . . . , u1

NJ−1t]
′ on (Ĝ′1t, . . . , Ĝ′J−1t)

′
by using two-

stage least squares. The estimated coefficients β̂j and ρ̂j are the spatial multinomial logit
estimates.

Unlike the previous studies using standard multinomial logit for the first step in which
0/1 indicators are used for s, we used fractional multinomial logit [49], which can include
share values for the dependent variables summing up to one as the following:

E
(
sijt
∣∣xijt−1

)
=

exp
(

xijt−1βjt

)
∑k exp(xikt−1βkt)

, j, k = 1, . . . , J − 1, ∑
j

sijt = 1 (A2)

where the variations of the land shares in the parcel level can be captured in our estimation
without loss of the features of standard multinomial logit.

Note that the coefficients from the spatial econometric models are not directly inter-
preted because the model is nonlinear. That is also due to the fact that the explanatory
variables are not independently determined by the equation but depend on the interactions
with the variables in other observations through the weight matrix. For interpretations,
we can estimate the partial effects of covariates with respect to the expected share of land
uses as:

∂pijt

∂xit−1
= pijt

(
βjt

σijt
�
(
IN − ρjtW

)−1 −∑
k

βkt pikt
σikt

� (IN − ρktW)−1

)
(A3)
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where� is an element-by-element product operator. The partial effects of each independent
factor on land use are direct marginal effects. We can estimate the indirect partial effects
that are formed from the total partial effects (the row sum or column sum of partial effects)
minus direct partial effects. These can be viewed as spillover effects or indirect effects [29].
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