
land

Article

Prototyping a Methodology for Long-Term (1680–2100)
Historical-to-Future Landscape Modeling for the Conterminous
United States

Jordan Dornbierer 1,* , Steve Wika 1, Charles Robison 1, Gregory Rouze 1 and Terry Sohl 2

����������
�������

Citation: Dornbierer, J.; Wika, S.;

Robison, C.; Rouze, G.; Sohl, T.

Prototyping a Methodology for

Long-Term (1680–2100)

Historical-to-Future Landscape

Modeling for the Conterminous

United States. Land 2021, 10, 536.

https://doi.org/10.3390/

land10050536

Academic Editors: Robert

Gilmore Pontius Jr. and John Rogan

Received: 25 March 2021

Accepted: 14 May 2021

Published: 19 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 KBR, Contractor to the U.S. Geological Survey EROS Center, 47914 252nd, Street, Sioux Falls, SD 57198, USA;
swika@contractor.usgs.gov (S.W.); crobison@contractor.usgs.gov (C.R.); grouze@contractor.usgs.gov (G.R.)

2 U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd, Street,
Sioux Falls, SD 57198, USA; sohl@usgs.gov

* Correspondence: jdornbierer@contractor.usgs.gov

Abstract: Land system change has been identified as one of four major Earth system processes where
change has passed a destabilizing threshold. A historical record of landscape change is required to
understand the impacts change has had on human and natural systems, while scenarios of future
landscape change are required to facilitate planning and mitigation efforts. A methodology for
modeling long-term historical and future landscape change was applied in the Delaware River
Basin of the United States. A parcel-based modeling framework was used to reconstruct historical
landscapes back to 1680, parameterized with a variety of spatial and nonspatial historical datasets.
Similarly, scenarios of future landscape change were modeled for multiple scenarios out to 2100.
Results demonstrate the ability to represent historical land cover proportions and general patterns
at broad spatial scales and model multiple potential future landscape trajectories. The resulting
land cover collection provides consistent data from 1680 through 2100, at a 30-m spatial resolution,
10-year intervals, and high thematic resolution. The data are consistent with the spatial and thematic
characteristics of widely used national-scale land cover datasets, facilitating use within existing land
management and research workflows. The methodology demonstrated in the Delaware River Basin
is extensible and scalable, with potential applications at national scales for the United States.

Keywords: land use; land cover; model; climate; Delaware River Basin; historical; scenario; projection;
FORE-SCE

1. Introduction

A variety of interdependent natural and socioeconomic processes drive Earth system
change, with destabilization in these processes potentially having detrimental impacts
on society. Land system change, defined as the amount and pattern of change in ter-
restrial biomes, and biogeophysical processes in land systems that regulate climate, has
been identified as one of four major processes where change has passed a destabilizing
threshold (along with climate change, change in biosphere integrity, and biogeochemical
flows) [1]. Anthropogenic influences on the Earth’s land system have been occurring
for millennia, yet have been amplified in recent decades. Factors that have contributed
to anthropogenic-based land cover change include growth in human populations and
societal and technological advances that have increased our ability to rapidly influence
the landscape [2,3]. In order to understand landscape change and the impacts it has on
natural and anthropogenic systems, a unified Earth System Science (ESS) framework has
emerged around three interrelated foci: (1) observation and characterization of ESS, (2)
computer simulations of future system dynamics, and (3) assessments and synthesis of
interrelationships of ESS components [4].

One key element of a unified ESS framework is the characterization of the Earth’s
landscape via land cover. Land cover data capture anthropogenic activity on the physical
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landscape, thereby representing a unique connection point between physical systems
(e.g., hydrologic, biogeochemical, ecological) and human behavior. The effects of policy
decisions, land management, and energy usage are expressed in quantifiable ways on the
landscape. To understand landscape change and the impacts it has on human and natural
systems, a historical record of land cover is required, along with corresponding data on the
impacts of that change [5,6]. Similarly, scenarios of future landscape change are required to
facilitate landscape planning and potentially mitigate negative impacts [7,8].

Remote sensing provides an ideal platform for the mapping, monitoring, and charac-
terization of landscape change over broad geographic regions. The Landsat platform, for
example, provides the most consistent, continuous coverage across the globe from 1972
to the present, and offers the best means to map both current and historical change. For
the conterminous United States (US), Landsat data are the basis of multiple national-scale
mapping efforts. The National Land Cover Database (NLCD) is the most widely used
land cover dataset for the United States, with the 1992 NLCD being the first such product
for the Nation, and subsequent iterations (2001, 2006, 2011, 2016) continually improving
product accuracy and content [9,10]. The LANDFIRE project similarly uses Landsat data
to produce national-scale landscape information for the US, with a focus on the mapping
of landscape variables that inform pre- and post-fire management [11]. The Land Change
Monitoring, Assessment, and Projection (LCMAP) project is the latest national-scale effort,
using Landsat analysis-ready data to map land cover change on an annual basis from 1986
to 2016 [12,13].

However, there is a disconnect between the availability of remote sensing data upon
which landscape monitoring can be based (1972–present) and the stakeholder requirements
for long-term time series of land change data. Landsat data only provides consistent 30-m
coverage back to 1984. An adequate exploration of the historical impacts of landscape
change on human and natural systems often requires a longer time period and reconstruc-
tion of historical time periods [14,15], while anticipating and planning for the impacts
of future landscape change requires the development of robust future scenarios [16,17].
A growing array of landscape models offer the capability to both reconstruct historical
landscapes, as well as model scenarios of future landscape change. For example, landscape
modeling is part of the interdisciplinary, integrated assessment modeling (IAM) done in
support of Intergovernmental Panel on Climate Change (IPCC) global activities, and these
IAMs can provide long-term, consistent, historical-to-future data [18,19]. However, IAM
modeling applications are typically very coarse spatially (often 0.5-degree grid cells) and
are not directly comparable to US landscape monitoring projects such as NLCD, LCMAP,
or LANDFIRE. Radeloff et al. [20] produced a 30-m set of landscape projections for the US,
but they have a simplified classification scheme compared to NLCD and a limited temporal
span from 2001 to 2051.

To facilitate analyses of the long-term impacts of landscape change and support
planning and mitigation efforts related to future change in the US, a long-term time series
dataset is needed that provides:

• Long-term historical landscape reconstructions for the years prior to the availability
of remote sensing data;

• Similar spatial and thematic resolution to the most widely used land use and land
cover (LULC) datasets for the US such as NLCD;

• Parcel-based modeling approach, ensuring the representation of realistic landscape
patterns through the use of real land ownership and land management parcels;

• Multiscenario future projections, offering the capability to explore uncertainties related
to future landscape trajectories.

The Forecasting Scenarios of land use (FORE-SCE) model has been previously used to
model historical “backcasts” and future projections for the conterminous US from 1938 to
2100 [21,22], with a similar thematic resolution to national-scale NLCD products but at a
substantially coarser spatial resolution of 250-m. FORE-SCE uses historical datasets and a
spatial framework of real land ownership and land management parcels to reconstruct long-
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term historical landscape change, as well as long-term, scenario-based future projections.
The result is an unprecedented long-term time series of landscape data that matches
the high spatial and thematic resolution of widely used national-scale landscape data,
facilitating seamless integration into existing research and land management workflows.
Here, we describe a methodology to produce a long-term (1680 through 2100) LULC
dataset for the Delaware River Basin (DRB), with an assessment of the results and next
steps towards completing a similar product for the conterminous United States.

2. Materials and Methods

The FORE-SCE model can produce both historical and projected land cover simula-
tions. Study region, time period, and scenarios of a given application are typically dictated
by project resources and stakeholder interests. The most recent broad-scale application of
the FORE-SCE model provided parcel-based modeling for a number of future climate and
socioeconomic scenarios in the US Great Plains from 2014 to 2100 [13,23]. Our methodology
here builds from that work, with substantial adaptations to: (1) accommodate the challenge
of modeling long-term historical landscape reconstruction at a moderately high spatial and
thematic resolution, (2) revamp urban modeling including the first FORE-SCE application
with multiple urban density classes, and (3) provide additional improvements in model
function and efficiency. The overarching goal of this study was to:

• Provide a long-term 1680 to 2100 database of LULC with consistency throughout the
time period, at 10-year intervals;

• Provide spatial and thematic consistency with existing large-scale US LULC datasets
such as NLCD and the US Department of Agriculture (USDA) Cropland Data Layer
(CDL; [24]), facilitating seamless use of these data in existing land management and
research applications;

• Develop a methodology that is extensible and scalable, to support longer-term goals
of a national-scale historical-to-future high-resolution landscape database for the US.

2.1. Study Area

The DRB is an active area of focus for US Geological Survey (USGS) research activities,
making it an ideal test bed for the development of a long-term landscape time series
(Figure 1). The spatial coverage of the study area was defined from the watersheds defined
in the Watershed Boundary Dataset component of the USGS National Hydrography Dataset
(Hydrologic Unit Codes 020401 and 020402, [25]). The DRB is small yet ecologically diverse
and provides drinking water to ~15 million people in the watershed and surrounding
areas. Based on the most recent NLCD product (NLCD 2016), ~20% of the region is
currently developed, with another ~15% used for agricultural purposes [10]. Societal
concerns in the region include the historic impacts of drought, including events such
as the 1960s “drought of the century” that resulted in low water flows and saltwater
intrusion in the estuary that threatened drinking water supplies for Philadelphia, Pa;
New York City, NY; Camden, NJ; and other urban centers [26,27]. The timing of this
drought precludes the use of direct Landsat observations for characterizing historical
LULC. Historical change in anthropogenic land use has had strong impacts on water
resources in the region, while anticipated future land use and climate change are likely to
further stress those resources [28]. The long-term landscape time series developed here
will be used to explore historical relationships between land use, water use, and drought,
as well as facilitate future water resource planning in the region.



Land 2021, 10, 536 4 of 31Land 2021, 10, x FOR PEER REVIEW 4 of 33 
 

 
Figure 1. Clockwise from top-left: Delaware River Basin (DRB) study area in the conterminous US; the study area intersects 
the states of New York, Delaware, New Jersey, Pennsylvania, and Maryland; subset region referenced below (Sections 
2.4.2 and 3.2). 
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Here, we lay the foundation for potential broader-scale application at the national 

scale by prototyping DRB-specific land cover backcasting datasets to the year 1680 (deter-
mined to be “pre-settlement” as described in Section 2.5 below) and forecasting datasets 
to the year 2100. All land cover modeling was completed at 10-year intervals, at a 30-m 
spatial resolution, and for 20 thematic land cover categories (Table 1). FORE-SCE can run 
at any temporal time step, but 10-year intervals were selected due to computational con-
straints imposed by higher temporal resolutions. The 10-year analysis interval is also con-
sistent with recent applications of the FORE-SCE model in the Great Plains [13,23]. A 30-
m spatial resolution is a substantial improvement over past national-scale applications of 
FORE-SCE which were modeled at 250-m [21,22]. The selected 30-m resolution also pro-
vides consistency with widely used, national-scale datasets such as NLCD and CDL. The-
matic classes represent most classes from the 2016 NLCD [10], with NLCD’s “cultivated 
cropland” class further differentiated into major crop types in the region from CDL data 
[24]. To maintain thematic consistency with land cover modeling work underway in ad-
jacent regions 2018-era CDL data were used and the crop category tobacco, though not 
present in DRB scenarios, remains in the classification schema. The four NLCD classes 
related to urban development density were collapsed into two classes, a “low-intensity” 
class and a “medium/high intensity” class. Forecasting was conducted under seven soci-
oeconomic scenarios and three climate projections, resulting in 21 total future landscape 
projections (Section 2.6.1). 

Figure 1. Clockwise from top-left: Delaware River Basin (DRB) study area in the conterminous US; the study area
intersects the states of New York, Delaware, New Jersey, Pennsylvania, and Maryland; subset region referenced below
(Sections 2.4.2 and 3.2).

2.2. Initial Conditions and Modeling Parameters

Here, we lay the foundation for potential broader-scale application at the national scale
by prototyping DRB-specific land cover backcasting datasets to the year 1680 (determined
to be “pre-settlement” as described in Section 2.5 below) and forecasting datasets to the
year 2100. All land cover modeling was completed at 10-year intervals, at a 30-m spatial
resolution, and for 20 thematic land cover categories (Table 1). FORE-SCE can run at any
temporal time step, but 10-year intervals were selected due to computational constraints
imposed by higher temporal resolutions. The 10-year analysis interval is also consistent
with recent applications of the FORE-SCE model in the Great Plains [13,23]. A 30-m spatial
resolution is a substantial improvement over past national-scale applications of FORE-
SCE which were modeled at 250-m [21,22]. The selected 30-m resolution also provides
consistency with widely used, national-scale datasets such as NLCD and CDL. Thematic
classes represent most classes from the 2016 NLCD [10], with NLCD’s “cultivated cropland”
class further differentiated into major crop types in the region from CDL data [24]. To
maintain thematic consistency with land cover modeling work underway in adjacent
regions 2018-era CDL data were used and the crop category tobacco, though not present
in DRB scenarios, remains in the classification schema. The four NLCD classes related to
urban development density were collapsed into two classes, a “low-intensity” class and a
“medium/high intensity” class. Forecasting was conducted under seven socioeconomic
scenarios and three climate projections, resulting in 21 total future landscape projections
(Section 2.6.1).
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Table 1. Thematic land cover classes modeled for the Delaware River Basin (DRB). Classes represent a majority of National
Land Cover Database (NLCD) 2016 classes, with major crop types from the US Department of Agriculture (USDA) Cropland
Data Layer (CDL). Change type refers to spatial allocation method enacting landscape change.

Thematic Class Description Change Type

Hay/Alfalfa 1
Areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or

the production of seed or hay crops, typically on a perennial cycle. Hay/alfalfa
vegetation accounts for greater than 20% of total vegetation.

Parcel

Corn 1 Cropland areas comprised primarily of corn. Parcel

Soybeans 1 Cropland areas comprised primarily of soybeans. Parcel

Fallow/Idle 1 Cropland areas comprised primarily of fallow and idle lands. Parcel

Wheat 1 Cropland areas comprised primarily of wheat. Parcel

Fruits/Vegetables 1 Cropland areas comprised primarily of fruit and vegetable crops. Represents an
aggregate of fruit and vegetable classes from the Cropland Data Layer. Parcel

Tobacco 1 Cropland areas comprised primarily of tobacco. Parcel

Other Crops 1 Cropland areas comprised of crop types not represented in classes 1–7 above. Parcel

Open Water 2 Areas of open water, generally with less than 25% cover of vegetation or soil. Pre-defined Patch

Developed Low
Intensity 2

Representing NLCD classes “Developed-Open Space” and “Developed-Low
Intensity”, areas where impervious surfaces account for 0 to 49% of total cover.
Includes single family housing units, parks, golf courses, and other recreational

urban settings.

Parcel and
Random Patch

Developed
Med-High Intensity 2

Representing NLCD classes “Developed-Medium Intensity” and “Developed-High
Intensity”, areas where impervious surfaces account for 50–100% of total cover.

Includes dense single-family housing units, apartment complexes, and
commercial/industrial areas.

Parcel and
Random Patch

Barren 2
Areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial
debris, sand dunes, strip mines, gravel pits, and other accumulations of earthen

material. Generally, vegetation accounts for less than 15% of total cover.
Pixel

Deciduous Forest 2
Areas dominated by trees generally greater than 5 m tall, and greater than 20% of

total vegetation cover. More than 75% of the tree species shed foliage
simultaneously in response to seasonal change.

Pixel

Evergreen Forest 2
Areas dominated by trees generally greater than 5 m tall, and greater than 20% of
total vegetation cover. More than 75% of the tree species maintain their leaves all

year. Canopy is never without green foliage.
Pixel

Mixed Forest 2
Areas dominated by trees generally greater than 5 m tall, and greater than 20% of

total vegetation cover. Neither deciduous nor evergreen species are greater than 75%
of total tree cover.

Pixel

Shrubland 2
Areas dominated by shrubs; less than 5 m tall with shrub canopy typically greater
than 20% of total vegetation. This class includes true shrubs, young trees in an early

successional stage, or trees stunted from environmental conditions.
Pixel

Grassland/Pasture 2
Areas dominated by graminoid or herbaceous vegetation, generally greater than

80% of total vegetation. These areas are not subject to intensive management such as
tilling but can be utilized for grazing.

Parcel

Woody Wetlands 2
Areas where forest or shrubland vegetation accounts for greater than 20% of

vegetative cover and the soil or substrate is periodically saturated with or covered
with water.

Pixel

Herbaceous
Wetlands 2

Areas where perennial herbaceous vegetation accounts for greater than 80% of
vegetative cover and the soil or substrate is periodically saturated with or covered

with water.
Pixel

Perennial Grasses 3 Areas where perennial grasses used for the production of cellulosic-based biofuel
represent greater than 80% of total vegetation. Parcel

1 Derived from the US Department of Agriculture Cropland Data Layer [24]. 2 Derived from the National Land Cover Database [10].
3 Represents a new land use class form only present in future biofuel scenarios.



Land 2021, 10, 536 6 of 31

2.3. FORE-SCE Structure

The structure of the FORE-SCE version used here mimics the overall “demand” and
“spatial allocation” paradigm from recent FORE-SCE applications [13,23], with substantial
model updates as we note below. The primary driver in the FORE-SCE workflow is a
temporal series of quantitative change prescriptions for each LULC category in a specific
geographic region, known as demand. Spatial allocation algorithms ingest demand at the
regional scale and place pixels and parcels of change on the landscape until demand for a
given scenario and timestep is met. The same model paradigm exists for both historical
landscape reconstruction, and for future projections, with a requirement for regional-
level demand (with a region consisting of any geographic framework, such as by state,
ecoregion, or watershed), and subsequent spatial allocation to create spatially explicit
LULC maps at requisite time intervals. However, given the unique nature of temporal
LULC change characteristics when reconstructing historical landscapes versus projecting
future landscapes, model function and parameterization differ depending upon temporal
trajectory, as noted in Sections 2.5 and 2.6 below, respectively. The primary objective of
FORE-SCE is to represent any scenario of prescribed landscape change with the highest
degrees of spatial and thematic resolutions and pattern fidelity as possible.

A key element of the spatial allocation algorithms are suitability surfaces which quan-
tify, for a given pixel, the probability of each LULC class occurrence. Suitability surfaces
play a key role in driving where change occurs on the landscape. Suitability surfaces
can also be dynamic through time, with past applications updating suitability surfaces in
lockstep with projected changes in climate or water availability [13]. The spatial allocation
of prescribed change is implemented at either the pixel- or patch-level. Patch-level change
refers to land cover transitions that occur in discrete, contiguous groups of pixels, often
corresponding with anthropogenic activity. Pixel-level change typically corresponds with
natural vegetation land covers and does not employ discretely defined units.

Patch-level change is further divided into two styles: randomly generated patches and
predefined ownership-based parcels. Allocation style is defined for each LULC class and
may be modified dependent on region and scenario (Table 1). The use of ownership-based
parcels ensures realistic representation of landscape pattern changes at fine spatial scales,
but the parcel data themselves are unavailable to FORE-SCE data users due to privacy and
distribution restrictions. Parcels for the DRB are derived from three sources, as no one
parcel dataset provided adequate ownership and management information for all land
use sectors:

• USDA Common Land Unit (CLU) data were used as the primary dataset to represent
agricultural land management parcels [29];

• Agricultural parcels extracted from Landsat data by Yan and Roy [30] were used to
augment CLU data and fill in gaps where CLU data were unavailable;

• Parcels from the Homeland Infrastructure Foundational-Level Data provided owner-
ship parcels for urban and other non-agricultural lands [31].

FORE-SCE accounts for the complete suite of LULC classes found on the landscape.
The driver of change for “demand” is primarily assumed to be anthropogenic change,
with natural land types responding to changes in anthropogenic land use related to urban
development, agriculture, forestry, mining, and reservoir construction. These are also the
land use and land cover classes for which both historical data and future scenarios are much
more widely available, with information on trends and spatial distribution of natural land
covers much more difficult to acquire. FORE-SCE thus maintains a flexible status for land
cover classes without explicit prescriptions for change. For example, in a scenario calling
for agricultural expansion, natural vegetation categories (e.g., grassland, shrubland, forest)
in locations that satisfy suitability requirements for cropland will convert to agricultural
categories. For scenarios exploring a contraction of agriculture, natural vegetation classes
will increase and flexibly displace crop categories as needed. Flexibility is defined at
the class level and dependent on region and scenario. For instance, grassland/pasture
was supplied with explicitly prescribed change for historical backcasting but allowed to
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respond flexibly to other classes for future scenarios. Classes with explicitly prescribed
change are further addressed in Section 3.4.

Natural vegetation can also change over time even in the absence of anthropogenic
driving forces. Dynamic suitability surfaces drive shifts in the distributions and proportions
of natural vegetation classes including grassland, shrubland, and forest classes. Tied
to projected changes in climate input into FORE-SCE, pixels of these classes that are
characterized as “unsuitable” to support a given cover class under new climate conditions
may shift to more suitable classes, as described by Sohl et al. in 2019 [13].

Additional details about the overall FORE-SCE paradigm and structure can be found
in prior publications [13,22,23]. What follows are new FORE-SCE developments applied
to the DRB (Section 2.4), specific modeling methodologies for both historical landscape
reconstruction (Section 2.5) and future projections (Section 2.6) in the DRB.

2.4. FORE-SCE Improvements for Delaware Basin Application

The general FORE-SCE structure and paradigm above was suitable for both historical
landscape reconstruction and future scenario modeling in the DRB. However, a number
of enhancements and new modeling elements were developed to improve model perfor-
mance in the basin, while other modifications were made to improve model flexibility and
automation, as we aim to apply this framework across the conterminous US.

2.4.1. Urban Module Advances

The FORE-SCE urban module operates similarly to a cellular automata model, with
urban growth patterns empirically dependent upon the existing urban pattern and growth
elements that can mimic both edge and spontaneous urban center growth. A priority is
placed on edge growth from existing urban pixels (including road networks), with urban
growth prioritized for existing high-density urban areas, but model parameters also create
opportunities for smaller urban areas to coalesce or for development to leapfrog from larger
urban areas to smaller, more rural areas. Prior work has demonstrated that this approach
produced results more consistent with theoretical, long-term patterns of urban growth [13].

Additional advances in FORE-SCE’s urban module used in the DRB include the following:

• Development of capabilities for the urban change module to operate over descending
time steps, supporting historical backcasting;

• Flexibility in parameterization, permitting users to supply spatially explicit likelihood
datasets that influence urban change;

• Support of land cover category schemas containing multiple urban classes (past
FORE-SCE applications modeled a single urban class).

These modifications facilitate historical backcasting reconstruction and improve the
functionality and flexibility of modeling future scenarios. For example, the addition of
ancillary data that influence the spatial allocation of change allows for the use of historical
data to guide the removal of urban features as the model operates in reverse, replicating ac-
tual historical landscape patterns. Support for multiple classes enables transitions between
urban intensity levels over time.

2.4.2. Improving Automation and Stochasticity

Suitability surfaces are a key element in converting quantitative demand into spatially
explicit land cover realizations [13]. These surfaces are derived by mapping the likelihood-
of-presence resulting from stepwise logistic regression using biophysical and anthropogenic
covariates and initial land cover conditions (i.e., 2018-CDL), [22] and are utilized by the
model to establish “growth zones”, spatial zones where change in a given land cover class
is most likely to occur [13]. Prior to this application, the establishment of those class-by-
class zones was often an iterative process, requiring interpreter intervention and analysis,
potentially introducing subjectivity to the process. The need for a more objective process
necessitated the development of new, more automated methodologies for generating
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suitability surfaces and establishing spatial zones of potential change. This methodology is
expected to scale up towards the national scale.

A new methodology was developed that: (1) reduces interpreter intervention, (2)
automates establishment of spatial zones of change, and (3) enhances model stochasticity
by using initial landscape conditions and weighted random selection to automatically
calibrate and establish spatial-growth zones for each class. Figure 2 demonstrates this
new process for the land cover category “corn” (Table 1) in a 54 km × 54 km subregion
northeast of Pennsylvania (Figure 1, bottom left). Initial land cover class presence/absence
and corresponding suitability values (Figure 2a,b, respectively) are used to generate the
total operating characteristic (TOC) curve (Figure 2c) for each land cover category [32]. The
TOC curve explicitly reveals the quantities of correctly predicted presence (true positives)
(TP), correctly predicted absence (true negatives) (TN), incorrectly predicted presence (false
positives) (FP), and incorrectly predicted absence (false negatives) (FN) for all possible
suitability thresholds of a given category. The maximum and minimum boundaries of
the plot define the space of diagnostic potential. Sensitivity (Equation (1)) and specificity
(Equation (2)) are computed by dividing TP by the number of actual pixels in the initial
landscape with category present (P) and TN by the number of actual pixels with category
absent (N).

Sensitivity (True Positive rate) =
TP
P

(1)

Specificity (True Negative rate) =
TN
N

(2)
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The threshold maximizing the sum of sensitivity and specificity (MSPS) for the cat-
egory is then computed. In Figure 2d the category’s underlying suitability values for its
initial condition of presence is plotted as a histogram along with MSPS. For land covers
prescribed to increase on the landscape, an iterative process of random selection centered
on MSPS converges on a selection of pixels with a suitability-value distribution that is
similar in shape to the category’s starting condition. The selection is from pixels that do
not correspond with class presence and therefore represents the spatial extent of potential
expansion for the given class. In Figure 2e the histogram for all eligible expansion pixels
(those where the given class is absent) is displayed in green (note: pixel counts for very
low-suitability values exceed y-axis plotting limits). Pixels for expansion selected from all
eligible pixels under the (1) manual percentile-cutoff method and (2) the new automated
method are plotted (pink and brown, respectively). Note: suitability values are relative
to each land cover category and are not used as raw prediction values when establishing
growth zones.

2.5. Historical Reconstruction: 1680–2018

FORE-SCE was used in a “backcasting” mode to iteratively reconstruct landscape
change from our starting 2018 date backward to 1680, at 10-year intervals. We selected 1680
to represent “pre-settlement” vegetation in the region, as the first European settlement in
the DRB did not occur until 1631, and impact on pre-settlement vegetation was deemed to
be negligible prior to 1680 [33,34]. There is also a lack of useful population, agricultural
land use, or other historical data sources related to landscape change prior to 1680.

As with past FORE-SCE applications, long-term historical reconstruction is based on
quantifying regional demand for modeled timesteps with spatial allocation to produce
spatially explicit maps. Regional demand, in turn, is based on the acquisition and har-
monization of historical data sources quantifying regional LULC change. With a goal to
develop a methodology that was extensible and scalable to other regions of the US, we
relied on data sources for historical landscape reconstruction that were consistent and
nationally available.

2.5.1. Establishing Pre-Settlement Vegetation

The LANDFIRE Biophysical Settings (BPS) dataset [11] represents vegetation most
likely to have been prevalent prior to Euro-American settlement (i.e., 1680) and provides
consistent data at our 30-m spatial resolution. We recoded the LANDFIRE BPS dataset
for the DRB to match our categorical schema (Table 1) and used the resulting dataset as a
pre-settlement target for historical landscape reconstruction. As FORE-SCE models back-
ward in time towards a historical end year before Euro-American influence, anthropogenic
landscape features (i.e., cropland, urban, reservoirs) eventually transition to pre-settlement
vegetation types. The rate, pattern, and spatial distribution of change, as “current” (2018)
landscape conditions revert to pre-settlement conditions, are driven by a variety of histori-
cal data sources for the region, as explained in Section 2.5.2 below.

2.5.2. Establishing Historical Demand

Agricultural and urban land uses generally have the most information available
historically and serve as the backbone of the historical reconstruction process. These and
select other anthropogenic land uses are actively modeled within FORE-SCE, while non-
anthropogenic, “natural” vegetative covers such as grassland, shrubland, and forest are
passively modeled as described in Section 2.3. Below, historical demands for FORE-SCE
applications are described in terms of agricultural and urban demand.

Agricultural Demand

The demand for historical change for agricultural classes was derived using Agricul-
tural Census records [35] and historical population and labor force information [36–38].
The Agricultural Census provides county-level estimates for crop production beginning in
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1840. Crop acreage estimates, however, were not introduced until 1880. From 1840–1870
Agricultural Census estimates consisted of crop yields. County-level acreages provided by
the census were aggregated to match modeled thematic classes and converted to pixel-level
prescriptions of change. Interpolation was used to estimate acreage for years in which
crops of interest were absent from the census. Extrapolation was used to estimate acreage
for census years from 1840–1870. Population and labor force data corresponding with Agri-
cultural Census acreages were used to compute acres-per-crop-laborer. This relationship
could then be used to derive acreage using estimated labor population for the years prior
to the Agricultural Census (1680–1830).

Urban Demand

Developing the historical demand for urbanization required harmonization of multiple
historical data sources, with substantial disagreement on rates of historical urban change.
The Historical Settlement Data Compilation for the United States (HISDAC-US) is derived
from historical property records and provides temporal (five-year increments) gridded
(250-m resolution) settlement data between 1810 and 2015 for the conterminous United
States [39]. The HISDAC-US First Built-up Year layer provides the first recorded year a
structure was built within a given cell extent. Another dataset on historical urban change is
the US Census American Community Survey (ACS) with five-year estimates that include
census block group-level median year-built estimates for building structures [40]. While
neither of these two historical datasets directly indicate when a given spatial unit would
have been classified as “urban”, they can both be used to generate independent estimates
for historical urbanization trends, as follows.

Year-built pixel counts were based on all urban land cover pixels present in the model’s
initial (2018) land cover and then converted to cumulative urban land cover pixel counts
where each year’s cumulative value is the sum of all urban pixels with a year-built less
than or equal to the given year. Plotting cumulative urban pixel counts against historical
source year-built values (median for ACS and first year for HISDAC-US) reveals curves
that are well fit by logistic growth functions and estimate urbanization trends for the region
(Figure 3a). ACS cumulative urban pixel counts suggest a more abrupt historical growth
rate for the region than do the HISDAC-US counts. This observed trend is likely due
to the influence of urban redevelopment within some ACS block groups. Block groups
experiencing large amounts of redevelopment of existing urban cover are represented with
a temporal shift forward of median year-built and original structure-built dates are lost
as redevelopment occurs. Conversely, the HISDAC-US may underestimate the timing
of urbanization as “first built-up year” may precede the year at which a pixel would be
considered “urban” in our thematic classification system.
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Cumulative population [36,37] plotted on the same time interval (using the left vertical
axis) reveals a logistic growth curve more similar in shape to HISDAC-US than to ACS
according to the comparison of their logistic growth steepness factors (Figure 3a). To further
assess both historical data sources, urban areas from the USGS Historical Topographic Map
Collection were manually digitized to estimate urban cover for the year 1900 [41]. The
estimation of total urban cover for 1900 from historical topographic maps lies between
the cumulative growth curve fits for HISDAC-US and ACS (Figure 3b, red square). We
also compared HISDAC-US and ACS data with urban land cover quantities as mapped by
contemporary remote-sensing-based land cover classifications. Remotely-sensed urban
pixel counts were derived from the Land Change Monitoring, Assessment, and Projection
(LCMAP) time series for years 1985 and 2000 [12] and from the NLCD for 2016 [10]
(Figure 3b).

Ultimately, we selected a harmonization approach to incorporate both HISDAC-US
and ACS in the derivation of urban land cover estimates for backcast land cover modeling.
A third logistic growth model of cumulative urban land cover quantity was fit using both
sets of historical time series data (Figure 3b, green curve). The fit is weighted more heavily
to HISDAC-US as that dataset provides a curve more consistent to overall population
trends and provides a broader temporal range of data points. The final, harmonized logistic
growth curve was used to estimate the total urban land cover area for each backcasting
10-year interval. To separate historical urban change into the low- and high-intensity
categories, we assumed a simple, constant rate of change between categories. The rate of
conversion between urban types was then solved to arrive at known proportions in the
model’s initial land cover conditions, assuming pre-settlement conditions of no urban land
cover. The conversion rate was then applied to calculate the amount one urban category is
expected to transition to another for any modeled time interval. Demand used by the model
to spatially allocate prescribed change for a given category is then simply the difference in
category quantity estimates between subsequent backcasting time steps.

Other Demand

Agricultural and urban demand are the two largest anthropogenic land use impacts
in the DRB, but demand for other land cover classes was also included. Temporal and
spatially explicit information on wetlands is lacking in the DRB, but coarser-scale infor-
mation provided guidance for aggregate demand across the watershed. We used drained
land information from the US Census of Agriculture (1920–1960) [42–45] and a US Fish
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and Wildlife Service report to Congress on wetland loss (1780–1980) [46] to characterize
historical change. With LANDFIRE BPS serving as the pre-settlement historical endpoint,
wetland quantities for historical reconstruction years without reported estimates could
be interpolated.

The establishment of reservoirs over the historical 1680 to 2018 period also served as
a form of “demand”, with the need to remove reservoirs as the model iterated backward
in time. A separate methodology for reservoir removal (and subsequent replacement
with other land covers) was established in the spatial allocation element of FORE-SCE, as
described in Section 2.5.3 below. Natural land cover classes (e.g., forest, shrubland, and
grassland classes) are not provided an explicitly prescribed demand within FORE-SCE and
instead are treated as “passively” modeled land covers that respond to prescribed changes
in anthropogenic land use activity, as described in Section 2.5.3 below.

Table A1 of Appendix A provides a summary of the historical datasets used in the
application, including time period, resolution, and internal accuracy assessment.

2.5.3. Historical Spatial Allocation

Data to support historical backcasting are often not abundant and are generally
spatially coarse, but our spatial allocation process is able to incorporate that information
to produce spatially explicit land cover maps consistent with the starting 2018 land cover
data. For historical backcasting, the landscape is altered for 10-year intervals from 2018
backward to 1680, with a target endpoint of “pre-settlement” vegetation as defined by the
LANDFIRE BPS data. Demand for anthropogenic land covers was developed based on
multiple historical data sources, with land covers such as the two urban classes and eight
agricultural classes eventually disappearing from the landscape as we meet pre-settlement
conditions (Section 2.5.2). Natural land cover classes are “passively” modeled, replacing
“lost” anthropogenic land cover classes as the model iterates backward in time, eventually
converging on pre-settlement vegetation (Section 2.3).

Suitability surfaces used to guide the spatial allocation of change can be dynamic over
time (Section 2.3). While suitability surfaces for future scenario-based projections have
typically been parameterized to respond to corresponding projected changes in climate
or water availability, suitability surfaces for historical backcasting were parameterized
to effectively calibrate to existing historical data. For example, the finest-scale long-term
historical data available for agricultural classes were county-level Agricultural Census
data. Those data were used to not only construct “demand” (Section 2.5.2) but also to
modify our starting point, contemporary suitability surfaces to create historically dynamic
suitability surfaces for agricultural classes. The modified, 1850–1997 Agricultural Census
data developed by Waisanen and Bliss [47] were used to modify historical suitability
surfaces for agricultural classes, improving the ability of the model to match historical
distributions of individual crop types. The time series of agricultural development provides
county-level proportions of harmonized total “improved farmland”. A contemporary
land-in-agriculture ratio was computed and included among covariates in the initial
regression model. Following the same process used to derive dynamic suitability surfaces
for forecasting scenarios described by Sohl et al. [48], dynamic backcasting suitability
surfaces were derived by substituting the historical ratios for the contemporary ratios
before mapping the regression parameters over the covariates to produce spatially explicit
suitability values.

Similarly, coarse-scale historical data can be used to help guide the spatial allocation
of urban lands as the model iterates backward in time. The HISDAC-US Built-up Intensity
(BUI) product provides indoor-building gross-area sums (square meters) per grid cell
(250 m) at five-year increments from 1810 to 2015 [39]. For backcasting the years in which
HISDAC-US data were available, normalized moving-window sums of historical BUI were
used to weigh the selection of pixels most likely to experience transition. This increases
the likelihood that modeled urban decline is most likely to occur where historical BUI
was lowest.
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Another anthropogenic land use accounted for in the historical modeling is reservoir
construction. We developed a semiautomated process that utilizes the National Inventory
of Dams [49] and extracts reservoirs from the initial land cover, labeling them with the
construction year of the associated dam. We added to the FORE-SCE model the capability
to use labeled reservoir datasets as change patches to transition reservoirs to dominant
local natural vegetation. We employed the new capability to remove reservoirs from the
landscape during historical backcasting, replacing “water” land cover associated with a
reservoir with suitable upland land cover classes at the first 10-year interval prior to the
recorded dam construction date. The reservoir replacement class is determined by the
majority natural cover within a variable buffer around the feature (we used 90 m for the
DRB). The methodology described here was used for historical landscape reconstruction
but could also support forecasting scenarios that include reservoir removal.

2.6. Future Projections: 2018–2100

Future projections are more straightforward than historical reconstruction, with the
basic FORE-SCE structure (Section 2.3) and the recent model improvements (Section 2.4)
capable of addressing modeling needs in the region. To facilitate long-term analyses related
to the impacts of landscape change, model runs were done from current (2018) to 2100,
with nominal 10-year intervals that match the historical backcasting intervals. A scenario-
based approach was used to develop and visualize a variety of future landscape futures,
facilitating the exploration of uncertainties related to future landscape change.

2.6.1. Scenario-Based Demand

As with historical backcasting, FORE-SCE requires quantitative demand for each
modeled land cover class for each future modeled time interval. Several different ap-
proaches were used to construct demand for past FORE-SCE applications including: (1)
straightforward “business-as-usual” (BAU) scenarios extrapolated recent trends (typically
derived from remote-sensing-based LULC databases such as NLCD), and (2) downscaling
of existing, coarse resolution scenarios, or custom econometric scenarios. Demand may also
be constructed in partnership with regional stakeholders by exploring “what-if” scenarios
that facilitate visualization of landscape outcomes for various policies.

DRB scenario development followed a similar process to that employed for recent
model applications of FORE-SCE in the Great Plains [13,23]. Table 2 describes the seven
individual scenarios that were modeled, based on three different sources. The BAU
scenario extends recent trends from two different sources, with trends in individual crop
categories based on recent trends between the 2008 and 2018 dates of the USDA CDL
data, with all other land cover classes based on extrapolated trends between the 2001
and 2016 NLCD dates. Three scenarios were based on the US Department of Energy
Billion Ton Update (BTU) [50], which provides a county-level exploration of the impacts of
various economic scenarios on the agricultural landscape. The BTU scenarios are based on
variations in modeled farmgate prices for biomass for biofuel production. The final three
scenarios were derived from the Global Change Assessment Model (GCAM), with GCAM
annual land cover percentages at 0.5-degree resolution downscaled to finer resolutions to
support regional and national applications in the United States [51]. West et al. provide
three GCAM scenarios to explore a range of human effort to mitigate climate change—
a reference scenario provides landscape conditions with the assumption of no targeted
climate-change mitigation efforts, while two additional scenarios assume mitigation efforts
necessary to achieve total radiative forcing levels of 2.6 and 4.5 W/m2 by the year 2100,
respectively. Sohl et al. [13] provide additional information on development of BAU, BTU,
and GCAM scenarios.
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Table 2. Forecasting scenarios developed for the DRB.

Forecasting Scenario Acronym Description

Business-as-Usual BAU Extrapolation of existing trends in 2001–2016 NLCD and
2008–2018 CDL.

Billion Ton Update, $40 Farmgate BTU $40
US Department of Energy (DOE) scenario for national biomass
production >= 1 billion tons assuming farmgate price of USD

40/ton for dry biomass.

Billion Ton Update, $60 Farmgate BTU $60 US DOE scenario for national biomass production >= 1 billion
tons assuming farmgate price of USD 60/ton for dry biomass.

Billion Ton Update, $80 Farmgate BTU $80 US DOE scenario for national biomass production >= 1 billion
tons assuming farmgate price of USD 80/ton for dry biomass.

Global Change Assessment,
no mitigation GCAM Ref Global Change and Assessment Model land cover projections

assuming no climate change mitigation.

Global Change Assessment,
mitigation pathway 2.6 GCAM 2.6

Global Change and Assessment Model land cover projections
assuming mitigation in line with Representative Concentration

Pathway (RCP) 2.6 framework.

Global Change Assessment,
mitigation pathway 4.5 GCAM 4.5 Global Change and Assessment Model land cover projections

assuming mitigation in line with RCP 4.5 framework.

2.6.2. Projected Spatial Allocation

Spatial allocation of the scenarios described above largely follows the paradigm used
for the recent Great Plains application [13] and is described in Section 2.3, with the addition
of new modeling elements described in Section 2.4. The new urban model was applied for
the two urban density classes described in Table 1. As with past applications [13,23,48], pro-
jected climate information was incorporated into future projection modeling. Downscaled
temperature and precipitation projections [52] averaged from multiple Coupled Model
Intercomparison Project Phase 5 (CMIP5) models (Table A2) were used to generate dynamic
suitability surfaces sensitive to multiple projected climate change pathways. Pixel-level
suitability for a given LULC class thus evolves over time, with LULC classes expanding,
contracting, or shifting in space in response to projected changes in climate.

2.7. Model Assessment

FORE-SCE model performance was evaluated at multiple levels:

1. Inter-scenario model comparison—We examine differences between modeled land
cover over the same time intervals under different scenarios.

2. Intra-scenario model performance—We assess FORE-SCE’s internal abilities to rep-
resent prescribed change (demand) in a modeled land cover realization for a given
future scenario and to spatially match observed change between two reference LULC
datasets, NLCD 2001 and NLCD 2016.

3. Historical reference—We compare modeled land cover with spatially-explicit histori-
cal references.

4. Cross-model scenario comparison—We compare FORE-SCE’s simulation of land
cover change to the simulations produced by a suite of global IAMs.

As with past applications, the concepts of quantity and allocation disagreement were
used to evaluate model results [53]. Quantity disagreement is the amount of difference
between model results and a reference dataset arising from variances in overall proportions
of landscape categories. Allocation disagreement results from an imperfect match in
the spatial arrangement of landscape elements. Allocation disagreement can be further
divided into the categories exchange and shift. Exchange spatial disagreement is the
difference between two categories in which one location corresponds with the reverse in
another location. Shift disagreement entails spatial differences between more than two
categories [54].
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To track the model’s ability to represent prescribed change (demand) on the landscape,
we computed the absolute deviation (both positive and negative) of modeled change from
the prescribed change at every timestep, for every land cover category that has explicitly
supplied demand. This procedure was conducted for all scenarios and summarized across
modeled time intervals.

Applying the FORE-SCE model to historical land cover reconstruction requires addi-
tional parameterization and the flexibility to use what is available from limited historical
reference data. As described above, we made use of historical datasets [39,47] to guide the
spatial allocation of agricultural and urban land cover categories. To assess the impact of
incorporating these historical datasets on resulting patterns we employed tandem model
runs. These runs are identically parameterized other than the historical parameter of
interest and serve to isolate the effect of the varying parameter. We quantify and examine
the effects below.

Hurtt et al. [19] have produced Land Use Harmonization (LUH2) datasets to smoothly
connect historical data from the History of the Global Environment database (850–2015)
and multiple alternative future scenarios represented by IAMs (2015–2100). We compare
the trends of aggregated categories modeled by FORE-SCE for historical reconstruction
and multiple future scenarios to their counterparts as represented by LUH2.

3. Results

The overarching goal was to produce consistent, long-term, historical, current, and
future representations of landscape change, with one historical landscape reconstruction
that strove to match reference data as closely as possible, and multiple future scenarios to
represent the considerable uncertainties.

3.1. Modeled Trends for Aggregated Categories

Figure 4 depicts temporal trends of modeled results for the DRB from 1680 through
2100, depicting trends in major, aggregated land cover classes, including the two biggest
anthropogenic driving forces of change in the region (agriculture and urban), and the
largest “passively modeled” natural vegetation class (forest). Agricultural land covers
increased steadily for the first two centuries from the starting 1680 pre-settlement land
cover, plateauing in the latter half of the 19th century and peaking near the turn of the
century, before declining in extent from about 1920 onwards. As agriculture started
to decline, the rate of urbanization dramatically rose, rising steadily until the present
day. Forested lands decreased sharply in the 19th century in response to agricultural
expansion, with reforestation occurring until about 1970 as marginal agricultural lands
were then abandoned. However, forests again began to lose area after 1970, as agricultural
abandonment abated and urbanization continued a strong increase. The U-shaped pattern
of forest decline and subsequent rebound from 1680 to 1970 is consistent with forest
transition theory [55]. The renewed declines in forest area after the 1970s fit the pattern
of a “contemporary regressive stage” of forest transition found for the Eastern US as
a whole during this time period, driven by land use intensification, urban expansion,
and diminution in processes of agricultural abandonment and reforestation [56]. The
aggregated categories simplify the visualization of trends and together comprise the
majority of the DRB’s initial landscape (83%).

Projected land cover trends from 2018 to 2100 show substantial variability among
scenarios, yet none of the scenarios anticipate volatility approaching that of 20th-century
landscape change in the DRB. The BAU scenario is the most dynamic, with extrapolations
of recent trends resulting in offsetting trends of strong declines in agricultural land, and
continued expansion of urbanized lands, with relatively stable forested lands. Other
scenarios show similar trends in agriculture and urban but with lower rates of urban
growth, with the exception of the GCAM Reference scenario where agricultural lands
increase. Overall, as described in Sohl et al. [57], there tends to be more similarity within
a scenario family than between them. For example, changes in agriculture for the three
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GCAM scenarios are all clustered more closely to “no-change”, while the three BTU
scenarios all show higher agricultural loss than any GCAM scenario. Similarly, BTU
scenarios tend to show higher forest increases than most of the GCAM scenarios. However,
across all scenarios, substantial variability exists in modeled landscape trends (as described
in the next section), facilitating analyses of the uncertainties associated with landscape
change impacts on human and natural systems.
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3.2. Examining Scenarios in a Subregion

Figure 5 displays initial land cover conditions, all forecast scenarios at the year 2100,
and three backcasting dates for the same subregion in Figure 1. In each image, we ob-
serve the interplay of agricultural and urban anthropogenic classes with the dominant
natural vegetation, forest classes. Historical landscape reconstructions spatially depict the
patterns described in Section 3.1. The historical landscape at “pre-settlement” in 1680 is
dominated by deciduous and mixed forest, while a substantial proportion of forest was
cut by the time the region as a whole reached peak agricultural extent near the start of
the 20th century. From 1900 to 1970, marginal agricultural lands throughout much of the
region were abandoned and allowed to regenerate back into forests, leaving much smaller
pockets of higher-value cropland within the growing forest mosaic. Urban lands increased
dramatically during the 20th century as shown in the northern part of the image.
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Most forecasting scenarios generally agree on trends in urban expansion and agri-
cultural decline. The displacement of agriculture by forest is most prevalent in the BTU
$60 and $80 scenarios which, despite prescribing modest growth for perennial grass (as-
sociated with assumptions on cellulosic biofuel production in those scenarios), forecast
general agricultural decline. As noted above, the GCAM Ref scenario stands alone in its
prescription for agricultural gains, as it is a scenario without any assumptions on climate
mitigation and thus less likely to convert marginal agricultural lands to forests. The BAU
scenario maintains urban expansion at rates which the other forecasting scenarios taper.

3.3. Assessing Inter-Scenario Variability with Difference Metrics

Figure 6 shows the components of quantity difference and allocation difference (in-
cluding “exchange” and “shift” components) for every future scenario combination across
the forecast period. We expect to see quantity difference between scenarios as, by definition,
a scenario contains prescriptions of quantitative change that differentiate it from other
scenarios. We also expect to see allocation difference. Quantity difference without any
allocation difference between different scenarios would indicate that the modeled projec-
tions result from a completely deterministic, non-stochastic process of spatial allocation.
Whereas, high levels of allocation difference in relation to prescribed change may suggest
that the model is poorly calibrated or highly random.
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Not surprisingly, we observe consistent, increasing trends in difference for all pairs
of scenarios as they are modeled into the future. The difference present by the year
2100 is largely cumulative given that most changing land cover categories trend in one
direction under forecast scenarios. Figure 7a charts all components of difference for the
final year of projection (2100), when scenarios have fully diverged, and the difference is
at its highest. Figure 7b isolates the spatial components of difference described above
and Figure 7c separates allocation difference for the final forecast year into its land cover
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category components. Note: considering allocation difference separated by category results
in each pixel in the difference being counted twice—once for each different category in the
pair—the actual total allocation difference across the region is thereby half of the allocation
difference summed across categories. The bars in Figure 7c are thereby twice the height of
the actual allocation difference bars in Figure 7b.
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For the projected year 2100, the total allocation difference across all category combina-
tions ranges from 5.4% to 8.5% of all the region pixels (Figure 7b). On average, “exchange”
represents a majority of allocation difference when total allocation difference is lower, while
“shift” on average grows as a proportion of total allocation difference when total difference
itself increases. The land cover categories contributing most to allocation difference are
both low- and high-intensity developed classes and deciduous forest (Figure 7c, pink, red,
and green, respectively). This is consistent across all scenario comparisons and reflects the
high degree of potential spatial variability present in the urban-to-non-urban interface.

Figure 7d shows total absolute demand (both prescribed gain and loss) separated
by land cover category and plotted by scenario as a proportion of the region. BAU and
GCAM 4.5 prescribed the highest amounts of change, respectively. The contribution of
agriculture land cover categories to allocation differences is relatively minor in comparison
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to the contribution of urban categories when prescribed absolute change is considered.
As described above, both agriculture and urban change are parcel-based and guided by
suitability surfaces. However, the urban module enacts change (be it growth or decline)
at the urban-to-non-urban interface and here finds more opportunities for divergence
between scenarios than does agricultural change. This results in distinct urban patterns
between scenarios with a less overall agreement.

3.4. Modeled vs. Prescribed Change (Demand)
3.4.1. Backcasting Assessment

The absolute deviation of modeled quantities from prescribed demand summed over
all years of historical backcasting is approximately 0.94% (Table 3). In Figure 8, each land
cover category’s modeled outcomes are plotted against the corresponding demand for each
year of backcasting. The passive, flexible land cover categories have no explicit demand and
instead respond to prescribed demand in the anthropogenic land cover classes. Demand
for these classes is thus plotted as a horizontal line representing the initial quantity.

Table 3. Gross prescribed change (both positive and negative) and absolute deviation from prescribed
change aggregated over all backcast years, separated into categories with explicitly supplied demand.

Backcasting

Total Gross Demand (ha) 3,579,796
Total Gross Deviation (%) 0.94

Hay/Alfalfa 0.16
Corn 0.05

Soybeans 0.00
Fallow/Idle 0.04

Wheat 0.07
Fruits/Vegetables 0.08

Other Crops 0.13
Grassland/Pasture 0.39

Herbaceous Wetlands <0.01
Perennial Grass <0.01

The region’s historical trends in agriculture see a peak near the year 1900. Passive, nat-
ural vegetation classes experience a corresponding trough in quantity but grow to dominate
the landscape by pre-settlement. Urban categories are reduced to zero by pre-settlement.
Notably, prescribed demand for urban categories representing low- and high-intensity
development does not include urban land cover representing roads. The deviation between
prescribed demand and modeled change that is apparent in the plot for urban/developed
categories is due to the aforementioned removal of roads, which the model conducts under
prescriptions of urban decline but which is not explicitly represented in the prescribed de-
mand. For this reason, urban categories are omitted in the overall assessment of deviation
from demand (Table 4).

Woody Wetlands are present in the pre-settlement natural vegetation dataset based
on LANDFIRE BPS. However, Herbaceous Wetlands are not. Woody Wetlands were left
flexible and allowed to displace anthropogenic classes as necessary, whereas prescribed
change was supplied for Herbaceous Wetlands to reach pre-settlement levels.
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Table 4. Gross prescribed change (both positive and negative) and absolute deviation from prescribed change aggregated
over all forecast years, separated into categories with explicitly supplied demand.

BAU BTU $40 BTU $60 BTU $80 GCAM Ref GCAM 2.6 GCAM 4.5

Total Gross Demand (ha) 419,457 249,332 345,830 394,145 222,392 263,244 183,015
Total Gross Deviation (%) 0.16 0.56 0.36 0.26 1.12 0.55 0.61

Hay/Alfalfa 0.01 0.02 0.02 0.01 0.35 0.03 0.03
Corn 0.02 0.03 0.02 0.02 0.18 0.04 0.04

Soybeans 0.03 0.03 0.05 0.02 0.12 0.08 0.03
Fallow/Idle <0.01 0.11 0.02 0.01 0.06 <0.01 0.01

Wheat 0.01 0.08 0.02 0.01 0.04 0.04 0.04
Fruits/Vegetables 0.02 0.08 0.01 0.01 0.06 0.03 0.05

Other Crops 0.01 0.04 0.01 <0.01 0.04 0.01 0.07
Low Density Developed 0.01 0.03 0.01 0.01 0.01 0.01 0.01
High Density Developed <0.01 0.01 0.01 <0.01 0.01 0.02 0.03

Woody Wetlands 0.01 0.01 <0.01 0.02 0.01 <0.01 <0.01
Herbaceous Wetlands 0.05 0.01 <0.01 0.01 0.02 0.01 <0.01

Perennial Grass <0.01 0.11 0.20 0.15 0.24 0.28 0.32
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3.4.2. Forecasting Assessment

Table 5 displays deviation from demand for the seven forecasting scenarios under RCP-
average climate assumptions. Overall, for six of the scenarios, the total modeled change
deviates from prescribed demand by less than 1%. The GCAM Ref scenario stands out with
~1.12% deviation from the prescribed demand. Notably, this scenario is the only forecasting
scenario prescribing net gains for aggregated crop classes (Figure 4). Overall, FORE-SCE
excels at matching prescribed demand, and thus quantity difference for prescribed scenario
land cover.

Table 5. Agreement and components of disagreement between reference NLCD 2016 and FORE-SCE
modeled output for the same year and land cover categories for the DRB.

Measure Percent of Region

Agreement 95.00
Quantity 0.03
Exchange 2.52

Shift 2.45

The FORE-SCE model can use pre-processed ownership parcels to represent anthro-
pogenic change on the landscape, which results in more realistic patterns at higher spatial
resolutions [13]. However, when a category expands into a new area, it may do so via
parcels that have not historically been of the expanding land cover type and struggle to
replicate historical patterns. We observe that the categories contributing most to deviation
from demand for the GCAM Ref scenario are agriculture categories that miss prescribed
growth (both overshooting and undershooting) due to reliance on coarse, overly-large
ownership parcels. This is specifically observable for the Perennial Grass category across
BTU and GCAM scenarios, which all call for growth and primarily see expansion among
large ownership parcels, as these are the only “suitable” parcels for the class to occupy.
FORE-SCE currently does not account for the potential land ownership parcels to evolve
over time (e.g., subdivision of a large agricultural lot as urban centers expand). Automating
the development of ownership boundaries that vary in size and shape under different
scenarios is an active area of research for the project.

3.5. Modeled vs. Contemporary Reference

Using NLCD 2001 as the starting point, we modeled land cover quantity changes from
2001 to 2016 in a single 15-year time interval for the DRB. Observed quantity changes for
all categories between 2001 and 2016 in the NLCD datasets served as FORE-SCE’s demand
input. The model’s simulated 2016 land cover dataset was then compared to the reference
NLCD 2016 land cover to assess FORE-SCE’s ability to maintain spatial allocation integrity
between reference points inside the remote sensing period of record.

FORE-SCE’s simulation of 2016 NLCD change finds total pixel-level agreement/disagreement
at 95.00%/5.00% against the 2016 NLCD reference dataset (Table 5). As observed in
Sections 3.4.1 and 3.4.2 the model closely matches prescribed changes at the category quan-
tity level. Here quantity represents 0.65% of all disagreement. Allocation disagreement
represents almost all the difference between the modeled and reference 2016 datasets and
is split approximately evenly between the spatial components exchange and shift. We
consider this result an appropriate reflection of the stochasticity inherent in the interface
between anthropogenic and natural land covers and validation of FORE-SCE’s ability to
model with high spatial fidelity in the region.

3.6. Modeled vs. Historical References
3.6.1. Modeled vs. Historical Agriculture

Sections 3.4.1 and 3.4.2 demonstrate FORE-SCE’s ability to meet overall demand for
a region, but options for assessing the model’s ability to accurately represent historical
landscape patterns at finer scales are limited, given the lack of spatially explicit, historical



Land 2021, 10, 536 23 of 31

land cover data (the reason this modeling work is necessary). We can do some comparisons
with our finest-scale available data, which for many historical datasets is county-based.
We modified suitability surfaces using historical county-level agricultural time series (de-
scribed above) with the goal of improving the spatial allocation of agricultural classes in
backcasting. Below we compare the resulting county-level modeled area-in-agriculture to
the historical time series dataset for two backcasting model runs: model run A without his-
torically dynamic suitability surfaces and model run B with historically dynamic surfaces.

For comparison purposes, the modeled crop categories were aggregated to match
the Agricultural Census data’s generalized class “improved farmland” [47]. The absolute
difference in area (103 hectares) between modeled and historical land in agriculture was
computed for the counties with the majority area inside the study region (Figure 9a) and
then summed across counties for each year of comparison (Figure 9b). Using the absolute
difference of modeled vs. historical avoids the effect of counties with positive differences
canceling those with negative differences when all county-level differences are summed
across the region.

We observe that the incorporation of historically dynamic suitability surfaces reduces
the amount of difference between the historical dataset and modeled results. Taking the
year 1880 as an example, we see that the absolute difference between modeled and historical
cropland when aggregated at the county level is approximately 507,000 ha—about 34%
of all historical cropland for that year—when the model does not incorporate historically
dynamic suitability surfaces (model A). When historically dynamic suitability surfaces are
incorporated to guide historical spatial change (model B) the absolute difference at the year
1880 across counties falls to approximately 320,000 ha (~22% of all historical cropland).

In Figure 9c, we separate disagreement with the historical reference by county. Most
counties show very modest differences between modeled and reference data, with an
expected but modest increase in disagreement as the model iterates backward in time. In
Figure 9d–f, we examine the three counties contributing the most to total disagreement
with the historical reference, where the overall trend in agriculture is modeled correctly,
but disparities exist in the quantity of change. The common feature of each of these three
counties is dramatic patterns of agricultural change throughout the historical period. In
the adjacent counties of Wayne County, Pennsylvania, and Delaware County, New York,
agriculture peaked around 1900, and then sharply declined as a majority of marginal
agricultural land in the region was abandoned and allowed to regenerate into forests. In
Montgomery County, Pennsylvania, agricultural extent peaked earlier in the 1800s, and
then continuously declined to very low levels today as urbanization supplanted most
agricultural land. Even with the dynamically altered suitability surfaces, the model can
have trouble reconstructing landscapes where conditions defining suitability for agriculture
are dramatically different than the present day.

In combination with the results shown in Sections 3.4.1 and 3.4.2, we thus show (1)
FORE-SCE can very precisely match prescribed total proportions of landscape change at
the aggregate (DRB) scale, (2) the use of dynamic suitability surfaces dramatically improves
the spatial allocation of change within the DRB, and (3) at the county level, representation
of agricultural patterns is very good.
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Figure 9. (a) Counties with majority area inside the study area; (b) time series for model runs both without (A) and with
(B) incorporation of historical dataset plotting the absolute difference in area (hectares) between modeled and historical
land-in-agriculture summed for counties with majority area inside the study region; (c) county-level disagreement with
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3.6.2. Modeled vs. Historical Urban

To assess the impact of historical HISDAC-US BUI [39] in the urban change module
(described in Section 2.5.3) we examined the relationship between BUI and modeled urban
over time for two backcasting model runs—model run C did not incorporate historical BUI
whereas model run D did. To simplify the assessment, we aggregated the two modeled
urban intensity categories.

Figure 9a–c demonstrates the pattern differences resulting from incorporation/non-
incorporation of available historic BUI in the urban module for a 6400 km2 area centered
on Philadelphia, Pennsylvania. To quantify the differences between models C and D the
percent of total historical BUI for the region that is coincident with the modeled urban
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footprint was calculated for each year of backcasting. Incorporating historical BUI in the
urban module results in modeled urban land cover that captures a consistently higher
percentage of historical BUI for the region (Figure 10d).
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Figure 10. Urban land cover footprint modeled for Philadelphia area for the year 1900 (a) without incorporation of BUI and
(b) with incorporation of BUI; (c) reference BUI for Philadelphia area, year 1900; (d) time series for model run (C), which
did not use BUI in the urban module, and model run (D), which did use BUI in the urban module; (e) time series of BUI
autocorrelation; (f) time series demonstrating rural population proportion change for the DRB.

The percent of total BUI on the landscape captured by the modeled urban footprint
drops notably for the years prior to 1925. Initially, this appears to indicate model shortcom-
ings. However, further analysis reveals this is an appropriate outcome, reflecting historical
population dynamics that increasingly resist discrete urban categorization as we move
back in time.

Figure 10e displays a time series of Global Moran’s I computed using all BUI values for
the region. Here we set spatial weights for non-zero BUI pixels to include the four nearest
neighbors using a variable-bandwidth Gaussian kernel function [11]. Global Moran’s I
ranges from −1 (negative autocorrelation) to +1 (positive autocorrelation) [58]. Though
the index remains positive (indicating clustering), it declines moving back in time with
a notable drop near 1925, corresponding with the drop in the modeled urban’s capture
of BUI.

US Census data for the same time period and region fleshes out the narrative, revealing
a steady trend in shifting population proportions from rural to urban from 1840 onward
(Figure 10f) [36,37]. During this period, the region becomes increasingly urbanized with
much of the labor force transitioning from farming to industry [59,60]. Moving forward
in time, as populations shift from rural to urban areas, built-up intensities concentrate in
densities sufficient to be categorically represented in land cover classification. However,



Land 2021, 10, 536 26 of 31

moving backward in time, we see BUI become more evenly distributed as a variable
with a spatial expression that is increasingly rural and less likely to be captured by the
urban land cover footprint. For instance, in 1950, 80% of the total BUI for the region is
spatially concentrated in the top 14% of all non-zero BUI pixels, which correspond with
urban centers. In 1810, 62% of the highest-value BUI pixels are required to reach 80% of
cumulative BUI for the region, indicating a significant lowering in concentrations and a
more dispersed population. This historical trend results in lower densities and higher
fragmentation of built-up intensity and makes discrete urban cover increasingly unlikely in
the landscape as the model moves back in time. The drop-off in the modeled urban capture
of historical BUI demonstrated in Figure 10d is the result, as build-up intensities fall below
levels of discrete representation.

3.6.3. Modeled Pre-Settlement (1680) vs. LANDFIRE BPS

Anthropogenic landscape features with historical change prescriptions (cropland,
urban, reservoirs) revert to pre-settlement defined by LANDFIRE BPS during modeled
backcasting (Section 2.5.1). Table 6 compares land cover category histograms for the
modeled result at 1680 and the BPS dataset. Pontius difference metrics [54] for the two
datasets find total agreement at 94.68%. Disagreement is comprised of 3.27% quantity, 1.45%
exchange, and 0.59% shift. Overall, FORE-SCE’s end landscape reconstruction for 1680
very closely matches the LANDFIRE BPS data. Some of the differences can be attributed to
the BPS dataset containing no counterpart to the historically modeled category Herbaceous
Wetlands. BPS also represents Open Water reservoirs that would not have existed prior
to settlement. Finally, FORE-SCE does not currently attempt to convert contemporary
non-anthropogenic, natural vegetation categories to pre-settlement types (as represented
in the BPS data) given the dearth of historical information on such transitions.

Table 6. Modeled land cover at 1680 vs. LANDFIRE BPS pre-settlement dataset percent-of-region.

Category Name BPS Modeled 1680

Hay/Alfalfa 0.00% 0.00%
Corn 0.00% 0.00%

Soybeans 0.00% 0.00%
Fallow/Idle 0.00% 0.00%

Wheat 0.00% 0.00%
Fruits/Vegetables 0.00% 0.00%

Tobacco 0.00% 0.00%
Other Crops 0.00% 0.00%
Open Water 2.90% 1.96%

Developed Low Intensity 0.00% 0.00%
Developed High Intensity 0.00% 0.00%

Barren 0.78% 0.81%
Deciduous Forest 58.65% 65.65%
Evergreen Forest 3.77% 3.61%

Mixed Forest 22.31% 15.02%
Shrubland 0.06% 0.91%

Grassland/Pasture 0.61% 0.27%
Woody Wetlands 10.92% 8.22%

Herbaceous Wetlands 0.00% 3.54%
Perennial Grass 0.00% 0.00%

3.7. Cross-Model Scenario Comparison

In Figure 11 we compare trends for the region’s majority categories (described in
Section 3.1) between FORE-SCE and LUH2 over multiple scenarios. The y-axes represent
the percent of the DRB occupied by a given category. We observe considerable agreement
for historical trends, a validation of our historical demand methodology. Excepting the
LUH2 scenario RCP3.0 SSP3, variation among projected scenarios is modest. The future
scenarios selected for FORE-SCE generally trend upward in quantity for forest classes
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and downward for agriculture whereas the opposite generally occurs across the LUH2
scenarios with forest decreasing and agriculture increasing. We do not attempt to validate
one scenario against another or produce a “best” scenario given that the value of the
scenario approach lies in plausible diversity [61]. We do note that the level of cross-model
agreement we observe here is typically not the norm across models and scenarios [57].
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(a) (b) 
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4. Discussion

We have developed a methodology capable of generating long-term temporal time
series of LULC, with spatial and thematic consistency with the most widely used, national-
scale LULC databases for the US. The pilot application for the DRB demonstrated a capa-
bility to accurately reconstruct historical landscape conditions based on spatially coarse or
non-spatial historical data and quickly generate a wide range of future LULC scenarios
(Figure 4) that facilitate the exploration of uncertain future landscape conditions on a host
of socioeconomic and biophysical processes.

Data harmonization is a major challenge for both historical landscape reconstruction
and for future projections. For historical reconstruction, inconsistencies among multiple
historical datasets are frequent, leading to challenging decisions on how to harmonize
data differences. The differences between urban extent and trends from HISDAC-US,
ACS, population data, LCMAP, and NLCD noted in Section 2.5.2 are typical, while similar
challenges exist in attempting to harmonize data sources such as agricultural census data
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and LULC derived from remotely sensed imagery. For future projections, our use of existing
scenario frameworks such as the Billion Ton Report or IPCC scenarios is confounded by
initial starting conditions (i.e., starting LULC proportions) that are inconsistent with our
starting LULC (based on NLCD or CDL). Unless there is one, universally accepted “right”
dataset to represent landscape change, either historically or for future scenarios, data
harmonization will continue to be an issue for FORE-SCE applications.

We strove to develop a methodology that was extensible and scalable, with the ca-
pability to produce historical landscape reconstructions and future projections for any
geography or scale in the US, including potential national-scale application. We thus
relied on data sources that were consistently available for the conterminous US. Given
the reliance of FORE-SCE on land ownership and land management parcels, consistently
available parcel data remain the biggest data challenge. Privacy concerns and policy limit
the availability of data such as USDA’s Common Land Unit data, by far the best parcel
data for our agricultural modeling. Land ownership data are increasingly available even
at national scales through private groups that have assembled thousands of individually
acquired county and local data sources, but access costs are a challenge, particularly for a
potential national-scale application. Another long-term need is a module for the dynamic
evolution of parcels, with, for example, a capability to sub-divide large agricultural parcels
at the urban fringe as cities expand.

While FORE-SCE is fully capable of replicating remote-sensing-based LULC databases
such as NLCD or CDL, we are still improving the representation of some processes gov-
erning landscape change. For example, we are aiming to quantify interactions between
LULC and hydrology, including both water use and surface water/groundwater availabil-
ity. FORE-SCE/hydrologic model coupling efforts are underway at USGS. These efforts
involve loose coupling with input/output data from FORE-SCE and USGS water balance,
energy-balance, and hydrologic models. To address these challenges, open-source cloud
computing ecosystems are expected to facilitate processing and exploit these linkages
amongst land use, water use/availability, and climatology.

For extended timelines, estimating probabilities for different scenarios of change be-
comes increasingly difficult as well as irrelevant. Scenario planning frameworks benefiting
from an array of land cover projections, as we have produced for the DRB, assume a level of
irreducible future uncertainty and attempt to establish a range of plausible futures. Policy-
making and risk-mitigation strategies based on scenario planning that includes worst-case,
boundary projections will be more resilient than those aligned with projected averages or
focused on short-term scenario agreement [61]. We are continuing to improve scenario
linkages with FORE-SCE, including current efforts to better link with IAMs produced as
part of IPCC activities.
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Appendix A

Table A1. Datasets used in FORE-SCE’s historical reconstruction.

Dataset Description Time Period Resolution

Historical Settlement Data Compilation
for the United States (HISDAC-US) *

Historical gridded settlement data derived from
property records 1810–2015 250 m

American Community Survey (ACS) * Supplement to US Census; includes median
year-built estimates for structures 1939–present block group

Historical agricultural land use time
series *

Time series maps represent history of
agricultural development 1850–1997 county

LANDFIRE Biophysical Settings (BPS)
Gridded data represent the vegetation system

that may have been dominant on the landscape
prior to Euro-American settlement

variable 30-m

United States Census of Agriculture ** Historical census of agricultural land usage in
the US 1840–present county

United States Census of Agriculture:
Drained Lands

Survey of lands drained for agricultural use in
the US 1920–1969 county

United States Census: Population ** Historical census of population in the US 1790–present county

United States Census: Labor Force Historical survey of people employed in the
agricultural and non-agricultural sectors 1820–1940 national

Population Census prior to formation
of United States Census population estimates of colonial states 1600–1780 state

Wetlands Losses in the United States US Fish and Wildlife Service report to Congress
on the status of wetlands resources in the US 1780–1980 state

* Accuracy reported. ** Accuracy reported for some years.

Table A2. Coupled Model Intercomparison Project Phase 5 (CMIP5) models providing unrestricted data used to compute
projected climate variables from downscaled, gridded, monthly temperature, and precipitation projections.

Modeling Center Model Institution

CSIRO-BOM ACCESS1.0 Commonwealth Scientific and Industrial Research Organisation, Australia
and Bureau of Meteorology, Australia

CSIRO-QCCCE CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organisation, Australia
and Queensland Climate Change Centre of Excellence, Australia

INM INM-CM4 Institute for Numerical Mathematics

IPSL IPSL-CM5B-LR Institut Pierre-Simon Laplace

MIROC MIROC-ESM
Japan Agency for Marine-Earth Science and Technology, Atmosphere and
Ocean Research Institute (The University of Tokyo), and National Institute

for Environmental Studies
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