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Abstract: The main purpose of the two consecutive experimental studies presented here was to
compare the effect of salinity on nutrients in leaves of the halophytic plant species Portulaca oleracea L.
and in soil. The first experiment was conducted to study the effect of salinity on plant growth, biomass
accumulation, yield, root layer development, salt accumulation, and the dynamics of changes in
mineral substances in plants and soil. In the second experiment, P. oleracea seeds were sown directly
into salinized soil (treated immediately before plant growth) to determine the nutrient levels in leaves
and soil. Three salinity treatments (saline water solution with NaCl: T1, 5 dS m−1; T2, 9.8 dS m−1;
and T3, 20 dS m−1) and a control treatment (T0, 1 dS m−1) were used in the first experiment. The soil
in the second experiment was used in a previous study (performed immediately before P. oleracea
growth) (salinized soil: T1, 7.2 dS m−1; T2, 8.8 dS m−1; T3, 15.6 dS m−1; T0, 1.9 dS m−1). The plants
were irrigated with tap water at amounts in the range of 0.25–0.50 L/pot. Analysis of the experimental
results showed that P. oleracea is resistant to salinity, is able to remove ions (400–500 kg ha−1 NaCl),
and can be grown in saline soil. The results indicated that P. oleracea is able to grow in high-salinity
soil. This finding was confirmed by the dry matter obtained under high-salinity conditions. Salinity
stress affected nutrient uptake in leaves and soil.

Keywords: nutrients; halophytic; saline soil; biomass accumulation; salt accumulation

1. Introduction

Purslane has long been known to be a highly nutritious leafy vegetable particularly
with respect to high levels of omega-3 fatty acids. Thus, preventing the accumulation of
non-nutritional compounds will allow plants to be grown in saline conditions as crops [1].
Purslane (Portulaca oleracea L.) is the eighth most common plant distributed throughout the
world, because it is an important heat- and drought-tolerant vegetable crop [2]. Purslane
(Portulaca oleracea) is a drought- and salt-tolerant annual plant that contains high amounts
of beneficial antioxidant vitamins and minerals. The effect of salt stress on the growth and
mineral composition of purslane (Portulaca oleracea L.) was studied [3]. The ‘weed’ purslane
(Portulaca oleracea L.) is gaining special attention by agriculturists and nutritionists. It is a
common weed in turfgrass areas as well as field crop areas [4,5].
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The experiment was conducted to study the effect of salinity on plant growth, biomass
accumulation, yield, root development, salt accumulation, and the dynamics of changes in
mineral substances in plants and soil.

The other research was to determine by Franco [6] the effects of salinity, by means of
exposure to different concentrations of NaCl in the nutrient solution, on the germination,
growth, yield, and nitrate contents of purslane cultivated in a hydroponic system under two
different light intensities. Another scientific study was initiated to evaluate the interactive
effects of sulfate salinity and selenium on biomass production and mineral content of
purslane (Portulaca oleracea) [7].

Salinity stress causes an imbalance in the uptake of mineral nutrients and their distri-
bution within the plants [8]. Salinity prompts heavy metals’ accumulation and adversely
affects nutrient contents in soil and plants, thereby reducing crop yields [9]. The study
was undertaken by Alam [10] to determine the effects of varied salinity regimes on the
morphological traits (plant height, number of leaves, number of flowers, fresh and dry
weight) and major mineral composition of 13 selected purslane accessions. Furthermore,
many nutrient interactions in salt-stressed plants can occur, which may have important
consequences for growth [11]. Salinity stress affects seed germination, seedling growth, leaf
size, shoot growth, shoot and root length, shoot dry weight, shoot fresh weight, number
of tillers per plant, flowering stage, spikelet number, percentage of sterile florets, and
productivity [12–16]. Moreover, it decreases the yield of many crops, as salt inhibits plant
photosynthesis, protein synthesis, and lipid metabolism [17].

Salinity, an important abiotic stress factor limiting crop production, is increasing
worldwide at an estimated rate of 1.5 million ha per year [18] and is estimated to affect 23%
of cultivated lands [19]. Moreover, global annual losses in agricultural production from
salt-affected land are in excess of US$ 12 billion and are rising [20]. Salinity threatens the
production of abundant crops around the world [21]. Because low-quality water resources
are used for irrigation, high concentrations of water are needed for crop irrigation [22].

The fact that significant areas of farmland worldwide are affected by salt has poten-
tially serious implications for crop yield. Soil salinization is reducing the area that can be
used for agriculture by 1–2% every year, with the greatest impacts in arid and semi-arid
regions [23–25].

Salt tolerance is the ability of plants to grow and complete their life cycle on a sub-
strate that contains high concentrations of soluble salt [26]. High salinity affects plants in
two main ways: High concentrations of salts in the soil disrupt the capacity of roots to
extract water, and high concentrations of salts within plants can be toxic, resulting in the
inhibition of many physiological and biochemical processes, such as nutrient uptake and
assimilation [13,27–29]. Measurements of ion contents in plants under salt stress revealed
that halophytes accumulate salts, whereas glycophytes tend to exclude salts [30].

Halophytes are tolerant of high salinities (up to 200 mM NaCl). Therefore, there is
increased interest in the production of new cultivars that have the potential to produce
higher yields under saline conditions [31]. Halophytes, also called salt-loving plants, have
the ability to withstand salinity stress and possess salt-responsive genes and proteins to
counter the adverse effects of salinity [32,33].

As a result, the salinity effects the macro- and micronutrient in leaves’ and soil contents,
yields, and quality of a halophytic plant species (Portulaca oleracea L.). Therefore, we need
to be able to grow salt-tolerant plants in saline soils and obtain a good harvest from them
while simultaneously managing the salt contents in the soil.

2. Materials and Methods
2.1. Experimental Procedure

To conduct the experiments, a specialized greenhouse was selected at the University
of Lille 1, France. The first experimental study was conducted from January–March 2016,
and the second was conducted from April–June in the same year. The experiments were
carried out on the halophytic plant species Portulaca oleracea L.
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The climatic conditions of the greenhouse were monitored with an automated system
at hourly intervals (every 12 min). The climatic conditions during the first experimental
period were as follows: The daily air temperatures ranged from 20.1 to 24.2 ◦C (average,
22.2 ◦C), the nighttime temperatures ranged from 16.8 to 19 ◦C (average, 17.9 ◦C), the
maximum relative humidity was 88.3%, and the minimum relative humidity was 12.9%.
During the second experimental period (April–June 2016), the climatic conditions were
as follows: The daily air temperatures ranged from 20.7 to 29.1 ◦C (average, 24.9 ◦C),
the nighttime temperatures ranged from 19.3 to 22.6 ◦C (average, 20.9 ◦C), the maximum
relative humidity was 90.1%, and the minimum relative humidity was 14.3%.

2.1.1. The First Experiment

Seeds of P. oleracea were sown in the soil on 10 January 2016. The seeds germinated on
14 January, four days after sowing, and four-leaf plants were transplanted into 3-L random-
ized pots (each contained 1300 g of soil) on 27 January 2016. The plants were irrigated with
tap water until the beginning of the salinity treatments. The salinity treatments were as
follows: T0 (1–4) (control), T1 (5–8) 50 mM NaCl, T2 (9–12) 100 mM NaCl, and T3 (13–16)
200 mM NaCl. Four plants were used per treatment. Saline treatments were performed
every six days. The plants were irrigated with a minimal amount of saline water (just
enough for plant survival (0.25 L/pot at the beginning of the experiment)). The salinity
treatments received 0.50 L/pot of saline water until 16 February. From 21 February to
14 March, salinity treatments received 0.75 L/pot of saline water. Measurement of plant
germination started one day after transplantation to the randomized pots. The stem length
and the number of nodes of the plants were analyzed every five days during the vegetative
period. Plants were harvested on day 50 (15 March).

2.1.2. The Second Experiment

Seeds of P. oleracea were directly sown into saline soil (treated just before Portulaca
oleracea growth) on 7 April. The seeds germinated seven days after sowing (14 April 2016).
Four seeds were used per treatment (T0 (1–4), T1 (5–8), T2 (9–12), and T3 (13–16)). At the
beginning of the experiment, the plants were irrigated with a minimal amount of tap water
(just enough for plant survival (0.25 L/pot)). As the plants developed, the water demand
increased to 0.50 L/pot. Analysis of plant germination began 12 days after sowing in the
randomized pots. The stem length and number of nodes were analyzed every seven days
during the vegetative period. Plants were harvested on day 50 (15 June).

2.1.3. Chemical Analyses

After the end of the experimental studies, four plants from each treatment were
collected, washed with distilled water for a few minutes, and wiped with paper. Then, the
fresh weight (FW) of these plants was measured. The fresh samples were dried in a forced
draught oven at 65 ◦C for 72 h before measuring their dry weight (DW), after which the
plant materials were collected for chemical analyses.

Dried leaf samples were used to analyze the ion concentrations of the plants. The
dry materials were ground and digested via the dry digestion method [34]. Dried leaf
samples were homogenized by manual grinding in an agate mortar. The samples were
precisely weighed (about 500 mg) into PTFE closed digestion cups and predigested at
room temperature for 24 h using 5 mL nitric acid (65% nitric acid, Merck, Suprapur,
Darmstadt, Germany) and 1 mL hydrogen peroxide (30% Merck, Suprapur) then digested
on a heating block (HotBlock® SC100 Digestion System) at a temperature of 120 ◦C until
total decomposition (~3 h). After cooling down, the solutions were then diluted to a final
volume of 50 mL using ultrapure Milli-Q water (18.2 MΩ cm). The concentrations of
copper (Cu2+), iron (Fe2+), zinc (Zn2+), calcium (Ca2+), magnesium (Mg2+), potassium (K+),
phosphorus (P), and sodium (Na+) were determined by inductively coupled plasma-atomic
emission spectrometry ICP-AES (Agilent 5110, dual view) [35]. After determination of the
ion concentrations, the K+/Na+ and Ca2+/Na+ ratios were calculated.
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Chloride ion (Cl–) levels were determined in an aqueous extract by titration with
silver nitrate (0.01 M), according to Piper [36]. Using potassium chromate as an indicator,
the volume of the sample was adapted to Cl− concentration (from 10 mL to 100 mL). The
plant nitrogen (N) content was determined by the Kjeldahl method [37] after conversion of
organic-N to NH3-N by digestion of 5 g of dried leaf with sulphuric acid in presence of Se
catalyst, ammonia, then distilled and collected in boric acid. Analysis was completed by
acid titration. All the mineral analyses were performed using soil and leaves.

3. Results
3.1. The pH and Electrical Conductivity (ECw)
3.1.1. The pH and the ECw of the Drainage Water

The pH and electrical conductivity (ECw) of the drainage water were analyzed at the
beginning and end of both experimental studies (from 27 January 2016 to 12 March 2016
and 27 April 2016 to 16 June 2016), after the plants were irrigated with different saline
water solutions (the first exp.) or tap water (the second exp.) (Table 1). The obtained results
(from the beginning and end of both experiments) showed that the pH of the drainage
water slightly increased in all the treatments and that the difference in the ECw between
the first experiment and the second experiment was significant.

Table 1. The pH and electrical conductivity (ECw) of the drainage water. Different letters within a column represent
significant differences (p ≤ 0.05).

Treatment

The First Experiment The Second Experiment

27 January 2016 12 March 2016 27 April 2016 16 June 2016

pH ECw
1 pH ECw pH ECw pH ECw

T0 5.0 ± 0.4 a 3.9 ± 0.2 a 5.6 ± 0.5 a 2.4 ± 0.1 a 6.7 ± 0.5 a 1.9 ± 0.1 a 7.0 ± 0.6 a 1.4 ± 0.0 a
T1 5.1 ± 0.4 a 4.6 ± 0.3 b 5.4 ± 0.4 a 8.5 ± 0.8 b 6.6 ± 0.5 a 7.2 ± 0.7 b 6.9 ± 0.6 a 4.5 ± 0.3 b
T2 4.9 ± 0.3 a 3.9 ± 0.2 a 5.7 ± 0.5 a 12 ± 1.3 c 6.8 ± 0.6 a 8.8 ± 0.9 b 6.8 ± 0.6 a 6.2 ± 0.6 c
T3 4.8 ± 0.2 a 5.4 ± 0.4 c 5.2 ± 0.4 ab 16 ± 2.7 d 6.1 ± 0.5 b 15.6 ± 2.5 c 6.5 ± 0.5 ab 7.8 ± 0.6 d

1 ECw: Electrical conductivity of the drainage water (dS m−1).

First, the table shows that the electrical conductivity of the drainage water changed
significantly after the salt treatment in both experiments and, by the end of the first
experiment, it had tripled in the T2 and T3 treatments, doubled in the T1 treatment, and
decreased 1.5 fold in the control. In the second experiment, the EC values were halved. For
instance, in the T2 and T3 treatments, at the beginning of the experiment, the measures
were 8.8 ± 0.9 b and 15.6 ± 2.5 c, respectively. However, at the end of the experiment, they
were halved, with values of 6.2 ± 0.6 c and 7.8 ± 0.6 d, respectively.

Another noticeable trend was that the pH of the drainage water slightly increased in
all the treatments. For example, the pH values in the T1 and T3 treatments were 5.1 ± 0.4 a
and 4.8 ± 0.2 a, respectively. At the end of the experiment, the values in these treatments
were 5.4 ± 0.4 a and 5.2 ± 0.4 ab. However, the pH values changed more in the first
experiment than in the second experiment. For instance, at the beginning of the first
experiment, in the T0 treatment, the pH was 5.0 ± 0.4 a, while at the end, it was 5.6 ± 0.5 a.
At the beginning of the second experiment, in the T0 treatment, the pH was 6.7 ± 0.5 a,
while at the end of the experiment it was 7.0 ± 0.6 a.

3.1.2. The pH and ECs of the Soil

The results showed that the pH of the drainage water slightly increased in all the
treatments, and the difference between the ECs in the first experiment and the ECs in the
second experiment was not significant (Table 2).
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Table 2. The pH and electrical conductivity (ECs) of the soil. Different letters within a column represent significant
differences (p ≤ 0.05).

Treatment

The First Experiment The Second Experiment

27 January 2016 12 March 2016 27 April 2016 16 June 2016

pH ECs
1 pH ECs pH ECs pH ECs

T0 6.6 ± 0.5 a 1.2 ± 0.1 a 6.1 ± 0.5 a 1.1 ± 0.0 a 6.2 ± 0.5 a 0.9 ± 0.0 a 6.4 ± 0.5 a 0.5 ± 0.0 a
T1 5.6 ± 0.5 a 3.0 ± 0.2 b 5.8 ± 0.5 a 3.7 ± 0.2 b 5.9 ± 0.5 a 3.3 ± 0.1 b 6.3 ± 0.5 a 1.2 ± 0.0 a
T2 4.5 ± 0.3 ab 4.6 ± 0.3 c 5.2 ± 0.4 ab 5.6 ± 0.5 c 5.8 ± 0.5 a 4.4 ± 0.3 ab 6.3 ± 0.5 a 2.0 ± 0.1 ab
T3 4.3 ± 0.3 ab 6.2 ± 0.5 d 5.0 ± 0.4 ab 9.0 ± 0.8 d 5.6 ± 0.5 ab 8.1 ± 2.8 c 6.0 ± 0.4 a 3.2 ± 0.2 ab

1 ECs: Electrical conductivity of the extract of a saturated soil paste (dS m−1).

Specifically, the table shows that the electrical conductivity (ECs) of the soil did
not change significantly after the soil treatment in either experiment. For instance, in
the first experiment, in the T0 and T1 treatments, the ECs values were 1.2 ± 0.1 a and
3.0 ± 0.2 b, respectively. At the end of the experiment, the values were 1.1 ± 0.0 a and
3.7 ± 0.2 b. Furthermore, in the T3 treatment, there were significant changes in the electrical
conductivity (ECs) between the beginning and the end of the first experiment. At the
beginning of the experiment, the ECs was 6.2 ± 0.5 d, but at the end, it was 9.0 ± 0.8 d.

Another noticeable trend is that the pH of the soil slightly increased in all the treat-
ments. For example, the pH values in the T1 and T3 treatments were 5.6 ± 0.5 a and
4.3 ± 0.3 ab, respectively, at the beginning of the experiment, while at the end of the first
experiment, the values were 5.8 ± 0.5 a and 5.0 ± 0.4 ab.

3.2. Fresh and Dry Weights of the Plants

The changes in fresh weight (FW) related to the roots and shoots of P. oleracea under
salinity stress are presented in Figure 1a. The lowest values of stem, leaf, and seed FW
were found in the T3 treatment; the other salinity treatments (T1 and T2) had no effect
on the leaf and seed FW of the plants. However, with NaCl concentrations greater than
200 mM, the crop FW decreased by approximately 33.6% compared to the control treatment.
The increases in the ratio of stem and leaf FWs in the salinity treatments (T1 and T2)
were significant compared to those in the control treatment. The plants produced low
amounts of dry matter, which ranged from 1.5 to 0.53 g plant−1 (Figure 1b). There was an
increase in the percentage of dry matter from the stems and leaves of the plants grown
under saline conditions and a decrease in seed dry matter with the increase in salinity
(100–200 mM NaCl).

The plants were grown under the same conditions as those used in a previous ex-
periment (i.e., the treatments were applied just before P. oleracea was grown in saline soil)
(Figure 1c). The leaf FW in the control treatment (T0; 5.4 g plant−1) decreased more than
the leaf FW in the T1 (12.5 g plant−1), T2 (15.9 g plant−1), and T3 (19.7 g plant−1) treat-
ments, and the fresh weight of the stem in the T0 (10.8 g plant−1) treatment was lower
than the fresh weight of the stem in the T1 (18.5 g plant−1), T2 (21.7 g plant−1), and T3
(19.7 g plant−1) treatments with saline soil.

The dry weight of P. oleracea decreased significantly in the control group compared to
that in the salinity treatments (T1, T2, and T3) (Figure 1d). Indeed, the dry weight of the
control group was 2.27 fold lower than that of all the salinity treatments.
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Figure 1. Fresh and dry weight of crops (a,b first experiment; c,d second experiment).

3.3. Root Length of P. oleracea

The root length of the plants in the first experimental study showed low variation
among the treatments (Table 3). There was a decrease in the root length of the plants in the
high-salinity treatment (T3). Compared to that in the T1, T2, and control (T0) treatments, an
approximately 1.4-fold decrease in the ratio of the root length of the plants was observed
in the T3 treatment compared to the T1, T2, and control (T0) treatment.

Table 3. Root length of P. oleracea species. Different letters within a column represent significant
differences (p ≤ 0.05).

Treatment
Root Length, cm

The First Exp. The Second Exp.

T0 25.0 ± 4.88 a 25.7 ± 1.26 a
T1 25.5 ± 3.18 a 19.7 ± 2.47 ab
T2 25.0 ± 1.73 a 20.3 ± 1.82 ab
T3 18.5 ± 1.32 ab 18.5 ± 2.04 ab

Salinity (NaCl) had a significant effect on the root length of the plants in treatments T1
(19.7 cm), T2 (20.3 cm), and T3 (18.5 cm) in the second experiment. There was low variation
among the salinity treatments and a significant difference the control treatment (T0). The
root length results showed that the saline soils may have had a major impact in the early
stages of plant seed germination.

3.4. Macro- and Micronutrient Content in Leaves

In this study, salinity stress affected micronutrient and macronutrient uptake by
leaves (Figure 2a,b). The analysis revealed a significant difference between salinity levels
in terms of macronutrient accumulation in the plants. The salinity levels significantly
affected all the macronutrients in the leaves. The salinity levels caused significant changes
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in the performance of the plants in all the treatments. The plants in all the treatments
showed increased potassium (K+) content in their leaves. A slightly significant result was
observed for the calcium content (Ca2+). Moreover, calcium (Ca2+) accumulation increased
in the salinity treatments. Interestingly, the levels of the macronutrients phosphorus (P),
magnesium (Mg2+), and sulphur (S) in the leaves were constant among all the treatments.
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Figure 2. Macronutriment and micronutrient levels in leaves (a,b first experiment; c,d second experiment).

The salinity levels significantly affected the Na+ and Cl− contents in all the treatments,
but there were significant differences among the treatments. There was an increase in the
sodium content in the leaves of P. oleracea at high-salt concentrations. Among the treatments,
the highest Na+ accumulation (2.76%) occurred in the treatment with the highest salinity
level (T3). At this high-salinity level, the leaf chloride (Cl−) content was significantly lower
than the Na+ content. The contents of the micronutrients Fe, Al, Ba, Sr, Zn, and Cu in the
leaves were very low in all the treatments (Figure 2b).

P. oleracea was found to be a crop with high potential for salt (ion) removal. High
levels of Na+ and Cl− in the soil increased the levels of the macronutrient potassium (K+)
in the leaves in all the treatments (Figure 2c). The results indicated that the levels of the
macronutrients phosphorus (P), calcium (Ca2+), magnesium (Mg2+), and sulphur (S) in the
leaves decreased in all the saline soil treatments compared to the control group.

The levels of the micronutrients Fe, Al, Ba, Sr, Zn, and Cu were very low in all
treatments. The sodium (Na+) content in the leaves increased significantly with increasing
salinity levels in the saline soils. There was an increase in the chloride (Cl−) content in the
leaves of the plants in the treatments with high-salt concentrations (T1, T2, T3) compared
to that in the control group (Figure 2d).
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3.5. Macro- and Micronutrients in the Soil

The high-salinity treatments significantly affected the macro- and micronutrients in
the soil. The low concentrations of the macronutrients N, P, and K showed no variation
between the soil treatments (Figure 3a).
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Figure 3. Macronutriment and micronutrient levels in soil (a,b first experiment; c,d second experiment).

The levels of the macronutrients iron (Fe) and aluminum (Al) in the soil increased
slightly in a salinity treatment (T2) compared to the T0 treatment (Figure 3b). There was
low variation in the soil aluminum (Al) content among the treatments. The soil Ba, Sr, Zn,
Cu, and Pb levels were very low in all the treatments. The salinity levels in the irrigation
water had a significant effect on the soil sodium (Na+) content. There was an increase in
the sodium (Na+) content in the soil when the salinity concentration was high. There was
variation in all the treatments. The soil chloride (Cl−) content showed low variation among
the salinity treatments.

The levels of essential elements (P and K) in the soil were very low, and there was
no variation among the treatments. Soil salinity had a significant effect on the level of
macronutrients (e.g., Ca2+), although the soil Mg2+ and S levels were not significantly
affected (Figure 3c).

The concentrations of the micronutrients Fe and Al were low in the soil in all the
salinity treatments. Salinity stress had no effect on the micronutrients Ba, Sr, Zn, Cu, and
Cu2+ in the soil. The soil sodium (Na) content was significantly increased in the high-
salinity treatments compared to the control group. There was a large increase in the soil
chloride (Cl) content in all the salinity treatments, namely, T1 (1.13%), T2 (4.9%), and T3
(9.2%) (Figure 3d).
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3.6. Macro- and Micronutrient Levels in Drainage Water

Plants that are irrigated with a large amount of water may suffer from the loss of
mineral contents (macro- and micronutrients) in the soil. On the other hand, they may
benefit from the removal of salts from the soil.

The drainage water from each irrigation event was analyzed during the experiment
study. Macro- and micronutrient analysis of the drainage water was performed with ICP-
AES in a laboratory. The obtained results show that the concentrations of the macronutrients
calcium (Ca2+) and sulphur (S) in the drainage water increased from 150 mg/L to 260 mg/L.
The phosphorus (P), potassium (K+), and magnesium (Mg2+) levels in the drainage water
decreased in all the treatments (Figure 4a).
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Figure 4. Macronutriment (a) and micronutrient (b) levels in the drainage water.

The drainage water removed large amounts of the micronutrients sodium (Na+)
and chloride (Cl−) from the soil during the final irrigation event. The Na+ content in
the drainage water was higher in treatments T1 (870 mg/L), T2 (1214 mg/L), and T3
(1586 mg/L) than in the control (T0; 189 mg/L). The Cl− content in the drainage water
increased more in treatments T1 (593 mg/L), T2 (1549 mg/L), and T3 (1984 mg/L) than in
the control (T0; 163 mg/L). These results confirmed that the irrigation water removed a
large amount of macro- and micronutrients from the soil (Figure 4b).

3.7. Yields of P. oleracea

Several salinity (NaCl) levels affected the yield of P. oleracea. The values of the total
fresh weight (FW) and dry weight (DW) of P. oleracea were significantly different among
treatments (Table 4). The highest yield (3.25 DW g plant−1) (53.25 FW g plant−1) was
observed in the control treatment (T0).

Table 4. Yield of P. oleracea (in the first experiment). Different letters within a column represent
significant differences (p ≤ 0.05).

Treatment
Portulaca oleracea

FW (g plant−1) DW (g plant−1) Yield (%)

T0 59.25 ± 6.1 a 3.25 ± 0.48 a 5.5 ± 0.28 ab
T1 49.0 ± 9.7 a 2.75 ± 0.75 ab 5.5 ± 0.28 ab
T2 40.75 ± 5.2 ab 3.25 ± 1.03 a 7.25 ± 1.60 a
T3 20.0 ± 2.7 b 1.5 ± 0.29 b 7.0 ± 0.41 a

Significant high variation in fresh weight was observed among the treatments (Table 5).
The highest fresh weight (40.1 g) was recorded in the high-salinity soil in treatment T3, and
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the lowest (16.5 g) was found in the control treatment. These results show that soil salinity
has an effect on the yield of Portulaca oleracea. The maximum grain yield was measured in
treatment T3, with an average of 40.25 FW g plant−1, and the minimum yield was obtained
in the T0 treatment (16.5 FW g plant−1). Despite the effect of soil salinity, the yield of P.
oleracea in treatments T1, T2, and T3 increased (1.9–2.4-fold increase in fresh weight and
2–2.2-fold increase in dry weight) in comparison to that in the control treatment. The
analysis of the plant yield confirmed that P. oleracea is halophytic.

Table 5. Yield of P. oleracea (in the second experiment). Different letters within a column represent
significant differences (p ≤ 0.05).

Treatment
Portulaca oleracea

FW (g plant−1) DW (g plant−1) Yield (%)

T0 16.5 ± 2.99 b 1.0 ± 0.41 ab 6.5 ± 0.65 ab
T1 31.75 ± 4.23 ab 2.3 ± 0.48 a 7.0 ± 1.08 a
T2 37.5 ± 11.55 ab 2.3 ± 0.75 a 6.5 ± 0.29 ab
T3 40.25 ± 4.99 a 2.5 ± 0.64 a 5.75 ± 0.85 b

4. Discussion

The values of all the variables decreased in the second experiment relative to the
values observed in the first experiment. In the second irrigation event, we observed that
the electrical conductivity of the drainage water (ECw) increased relative to that in the
first irrigation event, then decreased steadily with further irrigation events. This can be
attributed, first, to the assimilation of salts in the soil by salt-tolerant plants [38–42] and,
second, to the process of salt leaching from the soil by irrigation [43,44].

Growth retardation and the loss of fresh and dry weights from stems and leaves of
plants under salinity stress have been observed in previous studies [45–47]. In addition,
based on fresh and dry weights, it has been demonstrated in several studies that the shoot
ratios of many plants increase under salinity stress [44,48,49].

P. oleracea was demonstrated to be tolerant to salinity stress. This characteristic has
already been studied in several crops, where development was adversely affected, with a
significant decrease in production due to a shallow GWT [50,51].

The effects of salinity stress on microelement uptake have been investigated in various
studies [52,53]. However, the relationship between salinity and microelement uptake is
complex. An increase or decrease may be observed in microelement uptake, or salinity
may not have an effect on the microelement concentration of the plant. These differences
result from factors such as plant species, plant tissues, level of salinity stress and compo-
sition, microelement concentration in the growth medium, growth conditions, and stress
duration [54]. Eom et al. [55] suggested that salinity stress does not affect Fe2+ or Zn2+

uptake in six different types of ground cover plants but reduces the concentration of Cu2+.
There was an increase in the soil calcium (Ca2+) content in all the treatments. How-

ever, non-saline soil was found to have the same amount of Ca as the control group [56].
Magnesium (Mg2+) and sulphur (S) showed low variation between the treatments.

A similar result was obtained by Vural [57], with the yield of cultivated purslane
ranging between 30 t ha−1 and 50 t ha−1. In addition, the yield of cultivated purslane was
affected by seed quality, planting time, growing conditions, and plant care practices [57].
For example, Ehni et al. [58] reported that the yield of purslane varied by year and variety,
and the highest yields were obtained for Portulaca sativa (70,003 kg ha−1) and Egyptian
(37,130 kg ha−1). The lowest yield value (approximately 353.7 DM kg ha−1) was obtained in
the treatment with the highest salinity concentration in the irrigation water (treatment T3).
However, the total dry weight was significantly reduced in treatments with higher salinity
levels (5–20 dS m−1), suggesting that the effects of salt toxicity manifested as growth
repression. Plant growth started during the day on 17 December and 20 January, upon
applying saline water. The application of NaCl at a concentration of 20 dS m−1 led to
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a significant reduction in the dry weight of the plants (by 42.3%) compared to that in
the control group. These results were confirmed by previous research conducted by
Hamidov [59,60].

5. Conclusions

The results of the first experiment suggested that the cultivated species showed an
increase in growth characteristics, such as yield, with the application of different salinity
treatments. P. oleracea was relatively tolerant to saline conditions. The plant salt extraction
analysis showed that the tissues of P. oleracea accumulated the largest amounts of sodium in
the study. In the current study, salt concentrations higher than 100 mM NaCl significantly
increased the dry weights of the whole plant (total biomass), while high salt levels (200 mM
NaCl) significantly decreased the dry weight (DW) ratio. Therefore, salinity stress was
determined to have a significant impact on micronutrient and macronutrient uptake.
Despite the increasing salinity stress, an increase in the soil Ca2+ content led to an increase
in the tolerance of P. oleracea to stress. Under saline conditions, the uptake of Ca2+, K+, and
Na+ by P. oleracea was an important indicator of the effects of stress.

Soil salinity and water salinity are directly related to plant growth stress and decreas-
ing yield. Considering this global problem, in this study, we tested the biomass yield loss
and physiological characteristics of an agronomic species under soil salinity stress. The
results revealed that, although there was significant variation in the measured parameters
among all the treatments, P. oleracea is generally a highly salt-tolerant crop plant capable of
producing a satisfactory amount of dry matter content, which is a desirable characteristic
for any salt-tolerant plant species. In conclusion, our results indicated that P. oleracea is able
to grow in high-salinity soil. This finding was confirmed by the dry matter obtained under
high-salinity conditions.

Author Contributions: The paper is the result of the collaboration among all authors; however, G.B.
and J.B. contributed to all the sections. B.O. contributed to the sections on macro- and micronutrients
in leaves and soil contents, ion extraction of plants. Y.F. and A.S. contributed to the section of electrical
conductivity of drainage water, pH and ECs of the soil. Visualization, Y.F. and M.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially supported by Erasmus Mundus European Joint Doctorate Program.

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to the Erasmus Mundus Euro-Asian CEA project for supporting
the European Joint Doctorate Program and for the technical support provided for several analyses
conducted in the LASIRe laboratory at the University of Lille, France.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Camalle, M.; Standing, D.; Jitan, M.; Muhaisen, R.; Bader, N.; Bsoul, M.; Ventura, Y.; Soltabayeva, A.; Sagi, M. Effect of Salinity

and Nitrogen Sources on the Leaf Quality, Biomass, and Metabolic Responses of Two Ecotypes of Portulaca oleracea. Agronomy
2020, 10, 656. [CrossRef]

2. Anastacio, A.; Carvalho, I.S. Accumulation of fatty acids in purslane grown in hydroponic salt stress conditions. Int. J. Food Sci.
Nutr. 2013, 64, 235–242. [CrossRef]

3. Uddin, M.K.; Juraimi, A.S.; Anwar, F.; Hossain, M.A.; Alam, M.A. Effect of salinity on proximate mineral composition of purslane
(Portulca oleracea). Aust. J. Crop Sci. 2012, 6, 1732–1736.

4. Uddin, M.K.; Juraimi, A.S.; Ismail, M.R.; Brosnan, J.B. Characterizing weed populations in different turfgrass sites throughout the
Klang valley of western peninsular Malaysia. Weed Technol. 2010, 24, 173–181. [CrossRef]

5. Uddin, M.K.; Juraimi, A.S.; Ismail, M.R.; Rahim, M.A.; Radziah, O. Floristic composition of weed community in turfgrass area of
West Peninsular Malaysia. Int. J. Agric. Biol. 2009, 11, 13–20.

6. Franco, J.A.; Cros, V.; Vicente, J.; Martinez-Sanchez, J.J. Effects of salinity on the germination, growth, and nitrate contents of
purslane (Portulaca oleracea L.) cultivated under different climatic conditions. J. Hortic. Sci. Biotechnol. 2011, 86, 1–6. [CrossRef]

7. Grieve, C.M.; Suarez, D.L. Purslane (Portulaca oleracea L.): A halophytic crop for drainage water reuse systems. Plant Soil 1997,
192, 277–283. [CrossRef]

http://doi.org/10.3390/agronomy10050656
http://doi.org/10.3109/09637486.2012.713915
http://doi.org/10.1614/WT-09-046.1
http://doi.org/10.1080/14620316.2011.11512716
http://doi.org/10.1023/A:1004276804529


Land 2021, 10, 481 12 of 13

8. Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255.
[CrossRef]

9. Ankush; Prakash, R.; Singh, V.; Diwedi, A.; Popat, R.C.; Kumari, S.; Kumar, N.; Dhillon, A. Sewage Sludge Impacts on Yields,
Nutrients and Heavy Metals Contents in Pearl Millet–Wheat System Grown Under Saline Environment. Int. J. Plant Prod. 2020.
[CrossRef]

10. Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Hakim, M.A. Salinity-induced changes in the morphology and
major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions. Biol. Res. 2016, 49, 24. [CrossRef]

11. Ramoliya, P.J.; Patel, H.M.; Pandey, A.N. Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in
seedlings of Salvadora persica (Salvadoraceae). For. Ecol. Manag. 2004, 202, 181–193. [CrossRef]

12. Lauchli, A.; Grattan, S.R. Plant growth and development under salinity stress. In Advances in Molecular Breeding toward Drought
and Salt Tolerant Crops; Jenks, M.A., Hasegawa, P.M., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–32.

13. Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–681. [CrossRef]
14. Ashraf, M.; Akram, N.A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An

analytical comparison. Biotechnol. Adv. 2009, 27, 744–752. [CrossRef]
15. Hakim, M.A.; Juraimi, A.S.; Begum, M.; Hanafi, M.M.; Ismail, M.R.; Selamat, A. Effect of salt stress on germination and early

seedling growth of rice (Oryza sativa L.). Afr. J. Biotechnol. 2010, 9, 1911–1918.
16. Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J.

Genom. 2014, 2014, 701596. [CrossRef]
17. Paul, D.; Lade, H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A review. Agron. Sustain. Dev.

2014, 34, 737–752. [CrossRef]
18. Eynard, A.; Lal, R.; Wiebe, K.D. Salt-affected Soils. Encycl. Soil Sci. 2006, 1538–1541. [CrossRef]
19. Tanji, K.K.; Wallender, W. Nature and extent of agricultural salinity and sodicity. In Agricultural Salinity and Management;

Wallender, K., Tanji, K.K., Eds.; American Society of Civil Engineers: New York, NY, USA, 2012; pp. 1–25.
20. Shabala, S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot.

2013, 112, 1209–1221. [CrossRef] [PubMed]
21. Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield

stability. Nat. Rev. Genet. 2015, 16, 237. [CrossRef]
22. Singh, A. Poor quality water utilization for agricultural production: An environmental perspective. Land Use Policy 2015,

43, 259–262. [CrossRef]
23. Food and Agriculture Organization of the United Nations (FAO). Crops and Drops: Making the Best Use of Water for Agriculture;

FAO: Rome, Italy, 2002.
24. Joshi, R.; Mangu, R.M.; Bedre, R.; Sanchez, L.; Pilcher, W.; Zandkarimi, H. Salt Adaptation Mechanisms of Halophytes:

Improvement of Salt Tolerance in Crop Plants. In Elucidation of Abiotic Stress Signaling in Plants; Pandey, G.K., Ed.; Springer
Science + Business Media: New York, NY, USA, 2015; pp. 243–279.

25. Alqahtani, M.; Roy, S.J.; Tester, M. Increasing Salinity Tolerance of Crops. In Encyclopedia of Sustainability Science and Technology;
Springer: New York, NY, USA, 2019.

26. Wang, X.C.; Chang, L.L.; Wang, B.C.; Wang, D.; Li, P.H. Comparative proteomics of Thellungiellahalophila leaves from plants
subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol. Cell
Proteom. 2013, 12, 2174–2195. [CrossRef]

27. Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant
Physiol. Plant Mol. Biol. 2000, 51, 463–499. [CrossRef]

28. Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [CrossRef] [PubMed]
29. Munns, R.; Schachtman, D.; Condon, A. The Significance of a Two-Phase Growth Response to Salinity in Wheat and Barley. Funct.

Plant. Biol. 1995, 22, 561–569. [CrossRef]
30. Zhu, J.K. Plant salt stress. In eLS; John Wiley & Sons Ltd.: Chichester, UK, 2007. [CrossRef]
31. Abobatta, W.F. Plant Responses and Tolerance to Extreme Salinity: Learning from Halophyte Tolerance to Extreme Salinity. Salt and

Drought Stress Tolerance in Plants; Springer Nature: Cham, Switzerland, 2020; pp. 177–210.
32. Askari, H.; Edqvist, J.; Hajheidari, M.; Kafi, M.; Salekdeh, G.H. Effects of salinity levels on proteome of Suaedaaegyptiaca leaves.

Proteomics 2006, 6, 2542–2554. [CrossRef] [PubMed]
33. Yu, J.; Chen, S.; Zhao, Q.; Wang, T.; Yang, C.; Diaz, C. Physiological and proteomic analysis of salinity tolerance in Puccinelliatenui-

flora. J. Proteom. Res. 2011, 10, 3852–3870. [CrossRef] [PubMed]
34. Radojevic, M.; Bashkin, V.N. Practical Environmental Analysis; The Royal Society of Chemistry: Cambridge, UK, 1999.
35. Mindak, W.R.; Dolan, S.P. Inductively Coupled Plasma-Atomic Emission Spectrometric Determination of Elements in Food Using

Microwave Assisted Digestion. In Elemental Analysis Manual for Food and Related Products; U.S. Food and Drug Administration:
Silver Spring, MD, USA, 2010; pp. 3–14.

36. Piper, C.S. Soil and Plant Analysis, 1st ed.; Interscience Publishers, Inc.: New York, NY, USA, 1947; pp. 272–274.
37. Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 1883, 22, 366–382. [CrossRef]
38. Bekmirzaev, G.T.; Beltrao, J.; Neves, M.A. Effects of salt removal species in lettuce rotation. In Proceedings of the 5th WSEAS

World Congress: Applied Computing Conference 2012 (ACC’12), Faro, Portugal, 2–4 May 2012.

http://doi.org/10.1080/07352689991309207
http://doi.org/10.1007/s42106-020-00122-4
http://doi.org/10.1186/s40659-016-0084-5
http://doi.org/10.1016/j.foreco.2004.07.020
http://doi.org/10.1146/annurev.arplant.59.032607.092911
http://doi.org/10.1016/j.biotechadv.2009.05.026
http://doi.org/10.1155/2014/701596
http://doi.org/10.1007/s13593-014-0233-6
http://doi.org/10.1201/noe0849338304.ch323
http://doi.org/10.1093/aob/mct205
http://www.ncbi.nlm.nih.gov/pubmed/24085482
http://doi.org/10.1038/nrg3901
http://doi.org/10.1016/j.landusepol.2014.11.015
http://doi.org/10.1074/mcp.M112.022475
http://doi.org/10.1146/annurev.arplant.51.1.463
http://doi.org/10.1046/j.0016-8025.2001.00808.x
http://www.ncbi.nlm.nih.gov/pubmed/11841667
http://doi.org/10.1071/PP9950561
http://doi.org/10.1002/9780470015902.a0001300.pub2
http://doi.org/10.1002/pmic.200500328
http://www.ncbi.nlm.nih.gov/pubmed/16612795
http://doi.org/10.1021/pr101102p
http://www.ncbi.nlm.nih.gov/pubmed/21732589
http://doi.org/10.1007/BF01338151


Land 2021, 10, 481 13 of 13

39. Bekmirzaev, G.; Beltrao, J.; Neves, M.A.; Costa, C. Climatical changes effects on the potential capacity of salt removing species.
Int. J. Geol. 2011, 5, 79–85.

40. Balla, D.; Omar, M.; Maassen, S.; Hamidov, A.; Khamidov, M. Efficiency of duckweed (Lemnaceae) for the desalination and
treatment of agricultural drainage water in detention reservoirs. In Novel Measurement and Assessment Tools for Monitoring and
Management of Land and Water Resources in Agricultural Landscapes of Central Asia. Environmental Science and Engineering (Subseries:
Environmental Science); Springer: Cham, Switzerland, 2014; pp. 423–440.

41. Khamidov, M.K.; Balla, D.; Hamidov, A.M.; Juraev, U.A. Using collector-drainage water in saline and arid irrigation areas for
adaptation to climate change. IOP Conference Series: Earth Environ. Sci. 2020, 422, 012121. [CrossRef]

42. Khamidov, M.K.; Khamraev, K.S.; Isabaev, K.T. Innovative soil leaching technology: A case study from Bukhara region of
Uzbekistan. IOP Conference Series: Earth Environ. Sci. 2020, 422, 012118. [CrossRef]

43. Bekmirzaev, G.; Ouddane, B.; Beltrao, J. Effect of irrigation water regimes on yield of Tetragonia tetragonioides. Agriculture 2019,
9, 22. [CrossRef]

44. Bekmirzaev, G.; Ouddane, B.; Beltrao, J.; Fujii, Y. The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia
tetragonioides. Agriculture 2020, 10, 238. [CrossRef]

45. Lolaei, A. Effect of calcium chloride on growth and yield of tomato under sodium chloride stress. J. Ornam. Hortic. Plants 2012,
2, 155–160.

46. Navarro, A.; Banon, S.; Conejero, W.; Sánchez-Blanco, M.J. Ornamental characters, ion concentration and water status in Arbutus
unedo seedlings irrigated with saline water and subsequent relief and transplanting. Environ. Exp. Bot. 2008, 62, 364–370.
[CrossRef]

47. Villarino, G.H.; Mattson, N.S. Assessing tolerance to sodium chloride salinity in fourteen floriculture species. Hort. Technol. 2011,
21, 539–545. [CrossRef]

48. Debouba, M.; Gouia, H.; Suzuki, A.; Ghorbel, M.H. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in
tomato “Lycopersicon esculentum” seedlings. J. Plant Physiol. 2006, 163, 1247–1258. [CrossRef]

49. Maggio, A.; Raimondi, G.; Martino, A.; De Pascale, S. Salt stress response in tomato beyond the salinity tolerance threshold.
Environ. Exp. Bot. 2007, 59, 276–282. [CrossRef]

50. Torres, J.S.; Hanks, R.J. Modelling water table contribution to the water supply of maize. Agric. Water Manag. 1989, 16, 35–42.
51. Beltrao, J.; Da Silva, A.A.; Ben Asher, J. Modelling the effect of capillary rise in corn yield in Portugal. Irrig. Drain. Syst. 1996,

10, 179–189. [CrossRef]
52. Villora, G.; Moreno, A.; Pulgar, G.; Romero, L. Yield improvement in zucchini under salt stress: Determining micronutrient

balance. Sci. Hort. 2000, 86, 175–183. [CrossRef]
53. Lao, M.T.; Plaza, B.M.; Jiménez, S. Impact of salt stress on micronutrients in Cordyline fruticosa var. ‘Red Edge’. J. Plant Nutr.

2013, 36, 990–1000. [CrossRef]
54. Grattan, S.R.; Grieve, C.M. Salinity mineral nutrient relations in horticultural crops: A review. Sci. Hortic. 1999. [CrossRef]
55. Eom, S.H.; Setter, T.L.; Di Tommaso, A.; Weston, L.A. Differential growth response to salt stress among selected ornamentals. J.

Plant Nutr. 2007, 30, 1109–1126. [CrossRef]
56. Kaymak, H.C. Effect of nitrogen forms on growth, yield and nitrate accumulation of cultivated purslane (Portulaca oleracea L.).

Bulg. J. Agric. Sci. 2013, 19, 444–449.
57. Vural, H.; Esiyok, D.; Duman, I. Vegetable Growing; Ege University Press: Izmir, Turkey, 2000.
58. Ehni, A.A.; Mebrahnu, T.; Omara-Alwala, T.; Ezekwe, M. Environmental effects on yield and agronomic traits of Purslane

(Portulaca spp.). Va. J. Sci. 1997, 48, 204–210.
59. Hamidov, A.; Beltrao, J.; Costa, C.; Khaydarova, V.; Sharipov, S. Environmentally Useful Technique—Portulaca oleracea Golden

Purslane as a Salt Removal Species. WSEAS Trans. Environ. Dev. 2007, 2, 117–122.
60. Ors, S.; Suarez, D.L. Spinach biomass yield and physiological response to interactive salinity and water stress. Agric. Water

Manag. 2017, 190, 31–41. [CrossRef]

http://doi.org/10.1088/1755-1315/422/1/012121
http://doi.org/10.1088/1755-1315/422/1/012118
http://doi.org/10.3390/agriculture9010022
http://doi.org/10.3390/agriculture10060238
http://doi.org/10.1016/j.envexpbot.2007.10.010
http://doi.org/10.21273/HORTTECH.21.5.539
http://doi.org/10.1016/j.jplph.2005.09.012
http://doi.org/10.1016/j.envexpbot.2006.02.002
http://doi.org/10.1007/BF01103700
http://doi.org/10.1016/S0304-4238(00)00149-7
http://doi.org/10.1080/01904167.2013.766207
http://doi.org/10.1016/S0304-4238(98)00192-7
http://doi.org/10.1080/01904160701394568
http://doi.org/10.1016/j.agwat.2017.05.003

	Introduction 
	Materials and Methods 
	Experimental Procedure 
	The First Experiment 
	The Second Experiment 
	Chemical Analyses 


	Results 
	The pH and Electrical Conductivity (ECw) 
	The pH and the ECw of the Drainage Water 
	The pH and ECs of the Soil 

	Fresh and Dry Weights of the Plants 
	Root Length of P. oleracea 
	Macro- and Micronutrient Content in Leaves 
	Macro- and Micronutrients in the Soil 
	Macro- and Micronutrient Levels in Drainage Water 
	Yields of P. oleracea 

	Discussion 
	Conclusions 
	References

