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Abstract: The Revised Universal Soil Loss Equation (RUSLE) was used to predict the potential
soil erosion; it simply multiplies rainfall erosivity and land cover management factors; it does not
consider the dynamics of these two factors during a given year or the effect of vegetation growth cycle
on soil erosion estimates. This study developed a new method that considers the vegetation growth
cycle in different periods of the year by matching monthly rainfall erosivity and a management factor
using the entire surface of China as the study area. The data were input into the original equation,
and the two methods to estimate soil erosion were compared. Finally, patterns and mechanisms of
the influence of vegetation growth cycle on RUSLE estimations under different climatic conditions
were obtained. The results show that vegetation coverage inhibits the effect of rainfall on soil erosion
potential, which is related to the average and coefficient of variation of cover-management factor
and the average of rainfall erosivity due to the significant variations in weather patterns in winter
and summer in China. This article discusses the influence of the vegetation growth cycle on the
estimation of large-scale soil erosion, which is a key to having a better estimation.

Keywords: soil erosion; soil erodibility; rainfall erosivity; vegetation growth cycle; RUSLE

1. Introduction

Soil resources play an important role in maintaining the ecological system of the Earth
surface. However, nearly 2 billion hectares of land, approximately 15% of the Earth’s
surface, suffer from soil degradation, with over half of soil erosion caused by water-related
disasters [1]. Erosion directly affects food and water security, compromises agricultural
productivity, and contaminates sources of water [2,3]. China is one of the countries that
experiences the most severe soil erosion in the world, where 50.78% of the surface area,
over 4.8253 million km2, has undergone moderate soil erosion [4]. The primary and most
profound problem with soil erosion is the loss of soil, which can lead to land degradation,
loss of arable land, and in some cases even desertification [5,6]. Consequently, an accurate
estimation of soil erosion at large scales is highly important for land use planning and
sustainable development policies.

In the 1950s, the demand for a simple method to estimate annual average soil loss
induced by rainfall in the United States led to the development of soil erosion models
such as the Universal Soil Loss Equation (USLE) [7] and the revised version of the USLE
(RUSLE) [8]. The RUSLE has since become one of the most widely used soil erosion
prediction models in the world [9], with most studies conducted in the sub-Saharan
region [10,11] or watersheds and seldom applied on a large scale [12]. As a complex
geographical phenomenon [13], the mechanisms of soil erosion change with the spatial
scale [14,15]. Xu [16] studied the spatial-temporal effects of soil erosion on a large scale and
showed that the geographical environment becomes more complex with the increase in
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the scale. Moreover, the random combination of different geographical factors determines
soil erosion as a typical nonlinear distribution parameter system, and on a larger spatial
scale, the characteristics become stronger. Therefore, when it comes to estimating soil
erosion on a large scale, the methods that do not consider the processes of soil erosion
or the important variables with high annual variations such as rainfall are no longer
applicable [17]. Therefore, new methods considering the spatiotemporal variability of each
element in the RUSLE equation are required [18,19].

Annual soil loss is estimated from the combination of five factors contained in the
RUSLE: rainfall-runoff erosivity (R-factor), soil erodibility (K-factor), slope length and slope
steepness (LS-factor), cover and management (C-factor), and support practice (P-factor).
Among these, the K-factor always displays an intermediate state in a year because it
changes in the multiyear scale [20]. The LS-factor and P-factor are always in a relatively
static state when there are no natural changes such as landslides or man-made changes and
new protective measures [21]. The R-factor is calculated using the multi-annual average
of the total storm erosivity index [22], while annual rainfall erosivity is characterised by
seasonal variations, similar to the C-factor [23]. Changes in the C-factor are correlated with
precipitation, which is the leading cause of the R-factor, while the wave of the R-factor can
carry weight with the natural changes in plant growth, which is the main component of the
C-factor [8]. As a result, one possible way to improve soil erosion prediction is to establish
a relationship between the R-factor and C-factor.

Many researchers have reported the spatiotemporal variability of rainfall erosivity and
the time-series C factor, which are closely related to the R-factor and C-factor in this paper,
with the first one meaning multiyear rainfall erosivity index and the latter representing
soil use and management. Xihua Yang [24] discussed the variations in the C-factor over
13 years using a correlation model with a resolution of 500 m to study soil erosion in New
South Wales, Australia. Angulo-Martínez and Beguería [25] used daily rainfall records to
calculate the R-factor at a high time resolution of at least 15 min, with other similar studies
on seasonal [17] or monthly scale [26]. However, most of these studies optimised a single
factor instead of considering the association of the R-factor with the C-factor. Studies that
considered the seasonal variations in the R-factor and C-factor simultaneously also have
some drawbacks. For example, Wang, et al. [27] found that changing the rainfall amount
directly affects the value of the normalised difference vegetation index (NDVI), but they
did not connect this discovery to the calculation of the RUSLE equation. Durigon, et al. [28]
merely compared satellite images to seek out the effect of seasonal rainfall on the C-factor
the following year, without considering the interaction between rainfall erosivity and
vegetation cover.

The same R can result in different effects on soil erosion according to the time of the
year, and depending on different factors, such as crop cover which changes seasonally.
High R can occur under excellent crop conditions or residue cover that does not affect soil
erosion processes. On the contrary, if a bare soil period matches a sporadic high rainfall
erosivity event, extreme soil erosion will occur [29,30]. With this in mind, this study aims
to evaluate the seasonal variations of R and C to discuss the uncertainties in soil erosion
estimation results. The calculation was carried out by matching C and R on a monthly scale
based on the RUSLE using data from China such as rainfall, NDVI, and land use from 2018.
Finally, the new results were compared with those calculated using the original RUSLE to
cast new light on the spatial distribution of soil loss in China.

2. Data and Methods
2.1. Data and Study Area

The entire surface of China was used as the study areas, from 3◦51′ to 53◦33′ N, and
from 73◦33′ to 135◦05′ E. The altitude change in China is as high as 8999.43 m (highest
elevation at Qomolangma, is 8844.43 m above the sea level; lowest elevation in Turpan
Basin is 155 m below the sea level). The climate types in China are diverse with significant
spatial differences. The R-factor and C-factor in RUSLE are sensitive to climate variations;
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therefore, in this, the study area was divided into regions according to climate types. The
Köppen climate classification uses the monthly average temperature and precipitation
as the classification index [31], which is consistent with the objective of this study and
has strict standards, clear boundaries, and convenient applications. Therefore, this study
uses this classification for dividing the study area into different regions to investigate the
uncertainties in soil erosion estimates calculated by RUSLE.

The data used in this study are listed in Table 1.

Table 1. Data source and resolution of each factor.

Data Source Time Resolution Calculation
Purpose

Rainfall Hourly data for rain
gauges at 2168 stations 2018 T: hour

S: 10 km R-factor

Vegetation
coverage

Terra satellite MODIS
sensor data

MODIS_DATA
2018 T: month

S: 1 km C-factor

Elevation China DEM Data T: annual average
S: 10 km LS-factor

Soil Global Soil Database T: annual average
S: 10 km K-factor

Land use
Land cover based on ESA

Envisa satellite MERIS
sensor data

T: annual average
S: 10 km P-factor

Note: T and S represent the time and spatial resolution, respectively.

2.2. Soil Erosion Estimation Model Considering Vegetation Growth Cycle

Soil erosion is calculated by using the following multiplicative equation [8,32]:

Aa = Ra·Ca·LS·K·P (1)

where Aa (Mg ha−1 yr−1) is the soil erosion in a year per unit area, Ra (MJ mm h−1 ha−1 yr−1)
is the annual cumulative rainfall erosivity, Ca is an annual variable representing land cover
and management condition, L is the slope length factor, S is the slope steepness factor, K
(Mg h MJ−1 mm−1) is the soil erodibility factor, P is the soil conservation or prevention
practices factor, and L, S, Ca, and P are all dimensionless values.

Ra is the main dynamic factor in the model, reflecting the potential soil erosion caused
by rainfall. After screening the rainfall events from the original data, we can obtain the
erosive rainfall events, and Ra is calculated using the method proposed by [33]:

Ra =
m

∑
j=1

mj

∑
k=1

(EI30)k (2)

where EI30 is the rainfall runoff erosivity of a single k event, m is the number of observed
years, and mj is the erosive event of a given year j. The EI30 algorithm is expressed
as follows:

EI30 = E·I30 (3)

where E is the total rainfall energy in a rainfall event, and I30 indicates the maximum
30-min rainfall intensity of the rainfall event. After screening the rainfall events, the energy
E was calculated using the following formula:

E =
n

∑
r=1

(er·Pr) (4)
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where er and Pr are the unit rainfall kinetic energy (MJ hm−2 mm−1) and rainfall amount
(mm) of the rainfall event r, and the formula for er is as follows:

er = 0.29[1− 0.72exp(−0.082ir)] (5)

where ir is the rainfall intensity at the time of r (mm h−1).
The maximum 30-min intensity of the rainfall event was calculated using the follow-

ing formula:
I30 = P60/1.0hr (6)

where P60 is the 60-min rainfall data at equal intervals.
In a rainfall erosion event, we use 60-min precipitation data at equal intervals to obtain

EI30. By using the following formula, the 60-min rainfall data can be successfully used to
estimate rainfall erosivity where no finer time resolution data are available [34].

(EI30)bp= 1.730(EI30)60 (7)

Thus, the monthly rainfall erosivity Rm (MJ mm ha−1 h−1 mo−1) can be calculated
as the summation of EI30 of the energy of all rainfall-induced erosion events in a month
and the maximum rainfall intensity of the corresponding event for 30 min, and the annual
erosivity factor Ra is the sum of the Rm values.

Rm = ∑N
n=1 EI30 (8)

Ra = ∑M
m=1 Rm (9)

where N is the total number of rainfall events in a month, and M the number of months in
a year.

In this study, hourly rainfall data from 2168 rain gauges distributed across China for
the year 2018 were used (Figure 1). Using MATLAB, Ra was calculated for each erosive
rainfall event. The dispersion results were obtained by summing the monthly rainfall
erosivity values. The ordinary kriging method was used for spatial interpolation, where
the Box–Cox transformation method, which is a generalised power transformation method
proposed by Box and Cox (1964), was employed for the normal transformation of the
calculated Ra. The parameter of the kriging interpolation was set to 0.33, and the spatial
resolution was set to 10 km.

Ca is the ratio of soil loss under actual vegetation and management conditions to
the soil loss in bare continuous recreational land [35]. After obtaining the corresponding
vegetation coverage data, NDVI is converted to vegetation coverage using the algorithm of
Qi, et al. [36], and the results are calculated by referring to the method of [37].

f c =
NDVI − NDVImin

NDVImax − NDVImin
(10)

where fc is the vegetation coverage, NDVImax and NDVImin are the maximum and minimum
NDVI of the research area, respectively. Then, the fc reference method is converted to Cm
as follows:

Cm =


1, f c = 0

0.6508− 0.3436lg( f c), 0 < f c ≤ 78.3%
0, f c > 78.3%

(11)

Finally, the annual value of Ca, is obtained using the Cm values.
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Figure 1. Study area and position of rain gauges.

LS reflects the impact of topography. In this study, the calculation method of the slope
length factor proposed by McCool, et al. [38] and Liu, et al. [39] was used. K refers to
the sensitivity of the soil to denudation and transport of erosive media. This study uses
the method proposed by Williams, et al. [40] which calculates Wd (sand%), Wi (silt%),
Wt (clay%), and Wc (organic carbon %) to estimate the value of K. P is the ratio of soil loss
to slope land cultivation after special management measures are taken. It is the inhibiting
factor of erosion dynamics and plays the role of soil and water conservation. The calculation
of P in this study was based on the use of previous research results, and the land types are
divided into 11 categories, among which the p value of woodland, wetland, and bare land
is 1, and the value of urban land and water bodies is 0 [41,42].

The RUSLE was used to calculate the average annual soil erosion. All factors reflect
the annual average values but cannot reflect the changes within the year. Therefore, the
traditional RUSLE fails to estimate the influence of seasonal variations on soil erosion.
Since the monsoon climate affects most parts of China and the uneven distribution of
precipitation in these regions leads to increased vegetation growth, the rainfall erosivity
and land cover and management conditions in monsoon regions are greatly affected by
seasonal changes. While the changes in topography, soil type, and land use type are
negligible during the year, this study focuses on the calculation of R and C. Because of the
fact that rainfall erosion is based on monthly accumulation, annual average soil erosion
can be calculated by multiplying the corresponding value of land cover and management
by monthly rainfall erosion and then by LS, K, and P. The formula for this calculation
(RUSLE-dynaRC) is expressed as follows:

AdynaRC =
N

∑
i=1

(Ri·Ci)·LS·K·P (12)

where N = 12 representing the months of the year, Ri is the rainfall erosivity of the ith month,
and Ci is the land cover and management in the ith month.
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2.3. Uncertainty Analysis of Soil Erosion

To quantitatively demonstrate the annual and monthly values of R and C, and to
consider the differences between the traditional RUSLE model and the method used in
this study, it is necessary to calculate the dispersion of R and C within the year. The higher
the dispersion, the greater the error in the original average. The degree of dispersion of
R and C can be calculated using the coefficient of variation (CV), which is the ratio of the
standard deviation of the original data to the average of the original data.

CVR =

√√√√ 1
N

N

∑
i=1

(
Ri

R
− 1
)2

(13)

CVC =

√√√√ 1
N

N

∑
i=1

(
Ci

C
− 1
)2

(14)

where R is the average annual rainfall-runoff erosivity factor, and C is the average annual
land cover and management factor.

To describe the differences between the amount of soil erosion calculated by using
the traditional RUSLE model and that calculated in this study, we define the uncertainty
by using the following two indices: (1) The uncertainty event difference index (UEDI),
which reveals the distribution and degree of uncertainty but it is influenced by the original
value and extreme values, and (2) UNLI, which is a dimensionless factor used to change
the absolute value of a numerical value to a relative value and reduce the influence of
extreme values. Although the distribution of uncertainty cannot be displayed intuitively
after mapping, this index is more reliable and easier to manage the outliers. The two
methods can be expressed as follows:

UEDI_ij =
n

∑
i=1

m

∑
j=1

[
AR_ij(t)− AdynaRC_ij(t)

]
(15)

UNLI_ij =
n

∑
i=1

m

∑
j=1

AR_ij(t)− AdynaRC_ij(t)
AR_ij(t) + AdynaRC_ij(t)

(16)

where AR_ij (Mg ha−1 yr−1) represents the amount of soil erosion calculated by using the
traditional method on the grid of row i and column j at time t. AdynaRC_ij (Mg ha−1 yr−1)
represents the amount of soil erosion calculated using R and C matched monthly on the
grid of row i and column j at time t.

3. Results
3.1. Calculation of Ra and Ca

Figure 2a shows the annual accumulation of Ra, with the minimum value of
10.79 MJ mm h−1 ha−1 yr−1, the maximum of 27,456.19 MJ mm h−1 ha−1 yr−1, and
the average of 2058.34 MJ mm h−1 ha−1 yr−1. Note that higher values of the rainfall
erosion factor represent greater impacts on local soil erosion. Overall, the conditions vary
between regions. Rainfall erosivity decreases from southeast to northwest, which almost
coincides with the equal precipitation gradient in China. Rainfall erosion values are higher
in coastal areas than in inland regions, and higher in the south than in the north. The
highest value is observed in the southern tip of China, while the lowest value appears in
the west. In the inclined banded area, the rainfall erosivity values are similar, while those
in Harbin, Beijing, Tianjin, Chengdu, and other areas are low.
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Figure 2. Calculation of the annual cumulative rainfall erosivity (Ra) and annual land cover and
management (Ca). (a) Calculation of Ra, (b) Calculation of Ca.

The Ca value was obtained using the NDVI data with a resolution of 10 km and one
month, in China, in 2018, by mask extraction. The Ca value ranges between 0 and 1 and is
dimensionless. Figure 2b shows that average Ca is 0.69. The lower the Ca value, the better
the local vegetation conditions, and denser vegetation. In general, the vegetation cover
increases from southeast to northwest in China, which almost coincides with the equal
precipitation line. In southern China, the values in Wuhan, Nanjing, and Guangzhou are
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large. Nationwide, the lowest value appears in the south-eastern coastal region, and the
highest value appears in the northwest. The effects of Ra and Ca on the UNLI are discussed
in Section 4.

3.2. Nationwide Soil Erosion

After Ra and Ca were obtained, we matched the monthly R and C values to the amount
of soil erosion in China through the traditional RUSLE and RUSLE-dynaRC. China was
divided into 11 regions by climate type based on the Köppen climate classification, and the
changes in R and C were obtained in each region on a monthly basis. Through the analysis
of the absolute difference of R and C, the influence of two variables on the uncertainties in
the soil erosion estimations was explored.

Figure 3 displays the distribution of soil erosion across China in 2018. The Aa value
in Figure 3a was calculated using the RUSLE. The minimum value is 0, the maximum
is 10,279.39 Mg ha−1 yr−1, and the average is 81.75 Mg ha−1 yr−1. In the Aa calculation,
monthly matching was not considered. Instead, the annual cumulative values of Ra and
Ca were directly multiplied, with L, S, Ca, P-factors to obtain the results. Overall, soil
erosion extends from northeast to southwest. Note that soil erosion values are significantly
higher around Beijing, Tianjin, and Jinan in the north, whereas they are significantly lower
around Chengdu in the Sichuan Basin. There is also a considerable amount of erosion in
the middle and lower reaches of the Yangtze River, Dongting Lake, and Poyang Lake in
southern China. In addition, mild erosion is observed in most areas of the south–east coast,
and the amount of soil erosion in most areas is less than 604 Mg ha−1 yr−1.

The results obtained in this study (Figure 3b) differ from those obtained using the
traditional RUSLE (Figure 3a). Figure 3b shows the distribution of the AdynaRC values
across the country. The minimum value is 0, the maximum is 874.34 Mg ha−1 yr−1, and the
average is 64.88 Mg ha−1 yr−1. The difference between the calculation of AdynaRC and Aa is
that in Aa, R is obtained using the erosivity of monthly rainfall, and C is obtained monthly
using the vegetation coverage and management value. Overall, the areas with high soil
erosion rates are mainly distributed in the south of the Yangtze River and east of Jinan.

Figure 4 is obtained by subtracting Figure 3a from Figure 3b. The UEDI value, which
represents the deviation between the soil erosion estimated using the method of this study
and that estimated using the traditional RUSLE, is shown in Figure 4. There are clear
differences between the two methods; UEDI ranges from −8764.34 to 8948.64 Mg ha−1 yr−1,
with the average of 16.96 Mg ha−1 yr−1. Overall, Aa and AdynaRC are relatively similar in
Northwest China and in some areas around Xi’an, Chongqin, Wuhan, Hefei. While AdynaRC
of other areas is somewhat different from Aa. For example, in the vicinity of Haerbin,
Beijing, Jinan, and Guiyang, AdynaRC is greater than Aa; on the contrary, in the southeast
coast of China, AdynaRC is less than Aa. Moreover, from south to north, or from coastal to
inland areas, the negative value gradually decreases. The regions with a positive value
are distributed in the Northeast Plain and North China Plain. From east to west and from
coastal to inland regions, the high values gradually decrease. Note that the positive and
negative values around Chengdu are large and appear alternately.

3.3. Soil Erosion after Köppen Climate Classification

According to the Köppen climate classification, there are 11 climate types in China,
which are AM (tropical monsoon), AW (tropical savanna), BS (grassland), BW (desert), CF
(humid warm), CW (dry warm winter), DF (constant wet cold warm), DS (dry summer cold
and warm), DW (dry, cold and warm winter), EF (ice sheet), and ET (tundra). The climate
types in most parts of southern China are CF and CW; the climate type in north-eastern
China is DW and that in high-altitude areas such as Tibet is ET.
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Figure 3. Soil erosion in China (2018). (a) Soil erosion calculated using RUSLE, (b) Soil erosion
calculated using RUSLE-dynaRC.

Figure 5 shows the monthly changes in R and C in six climate regions. Three pairs
of climate zones were compared according to the similarity of the laws that display the
changes in R and C throughout the year. For the first part (Figure 5a,b), although the R
and C values differ considerably, the monthly fluctuation is similar. C reaches its lowest
value in May–October. R peaks at the same time as C but at lower levels than C at other
times. A similar pattern is also observed in AW and CW regions. For the second part
(Figure 5c,d), the values of R and C are similar; C is stable at high levels, whereas R is stable
at low level and throughout the year. A similar pattern is observed in DS, BW, and ET
regions. For the third part (Figure 5e,f), R and C of DW and DF have similar values; the
lowest value of C is observed in May–September; R is stable at low values, with higher
values in May–September.
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Figure 4. UEDI value of soil erosion as the deviation between the soil erosion estimated in this study
and the traditional RUSLE.

Figure 5. Monthly changes of R and C values. (a) AM, (b) CF, (c) BS, (d) EF, (e) DW, (f) DF.
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The relationship between UNLI, Ca, Ra, and the coefficients of variation (CV) of monthly
R and C in each Köppen climate zone was determined based on the values presented in
Figure 6 for 2018. The blue bars represent negative uncertainty in UNLI, whereas the red
bars represent positive uncertainty. The UNLI values are large in the AM and AW regions
and smaller than 0.4 in other areas. Except for the BS and DW regions, the UNLI values of
all other regions are negative. In Figure 6a, the cyan circles represent the value of Ca in
different climatic zones. The Ca values in AM, AW, CF, and CW regions are significantly
lower than those in other regions (0.7 to 0.9), indicating poor annual vegetation coverage in
these areas. In Figure 6b, the cyan triangles represent CVC (degree of dispersion of monthly
C values) in different climatic zones. In AM, AW, CF, and CW, the CVC values are high.
Figure 6a,b shows that although the average vegetation coverage in some areas is poor
throughout the year, the annual variations are significant. In regions where soil erosivity
is less uncertain, such as BS, BW, DS, EF, and ET, CVC is low, but in DF, this trend is not
obvious. In Figure 6c, the blue circles represent the values of Ra in different climatic zones.
The values of Ra in the AM and AW regions are large, whereas in other regions, Ra is less
than 7500 mm. Ra and UNLI are similar in each region except in DW. In Figure 6d, the blue
triangles represent CVR (degree of dispersion of monthly R) in different climatic zones. In
regions where UNLI is positive, such as BS and DW, CVR is very high throughout the year,
indicating that rainfall intensity changes greatly. However, CVR in other regions is less
than 0.5.

Figure 6. UNLI in different climate zones. (a) Ca, (b) CVC, (c) Ra, (d) CVR.

4. Discussion

Rainfall erosivity is the main driving force of sediment and nutrient loss worldwide,
increasing the vulnerability of farmers to crop failures and leading to an unstable land-
scape [43,44]. Rainfall erosivity, which is a measure of the amount and intensity of rainfall,
is most often expressed as the R-factor in the USLE and RUSLE [45]. Land use and man-
agement affect the extent of soil erosion, and cover and management are represented by
the C-factor. Among different soil erosion risk factors, C-factors are the most influential
for decision makers and farmers to help reduce soil loss rates. [46] Compared to the other
factors of RUSLE, rainfall erosivity, and coverage management in different months have
strong temporal variability. R is cumulative Xie, Yin, Liu, Nearing and Zhao [33], that
is, if R remains unchanged, the soil erosion estimations in the same year would not be
affected regardless of how Rm changes during the year. Although other factors can be
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calculated considering their own annual variations, RUSLE simply multiplies the five
factors, which indicates that the equation has certain shortcomings. The influence of the
regional vegetation growth cycle on soil erosion is not well reflected in the equation, which
may increase the uncertainties in the estimates.

By matching the R and C values on a monthly scale, this study considers the vegetation
growth cycle in the soil erosion estimation process and determines how it affects the results
of the RUSLE. The difference in the vegetation growth cycle will directly affect the surface
vegetation coverage and thus the value of the C-factor. Furthermore, the relationship
between precipitation and the vegetation growth cycle in a region cannot be ignored. In
the RUSLE, the R-factor is the main driving force of soil erosion, and the C-factor plays
an important role in maintaining soil stability. In the method used in this study, the two
factors together affect soil erosion, and the differences of the two methods are significant. In
north-eastern and northern China, the results of the original RUSLE, Aa, are overestimated,
while in southern China, they are underestimated. In the north-western inland areas, the
UEDI was low. Therefore, the difference between the winter and summer climate in some
parts of China changes the vegetation growth cycle, which in turn affects the results of the
RUSLE based on the C-factor.

To explore the influence of different vegetation growth cycles on the uncertainties in
the results, we analysed R and C under different climatic conditions classified according to
the Köppen climate classification method. The Köppen climate classification is currently
one of the most widely used and most influential methods in the world. In addition to
temperature and precipitation, it also uses the vegetation distribution to determine the
boundary index values between climate types. It divides the world into five basic climate
zones and 12 major climates. It is suitable for tundra, forest, grassland, desert, and other
landscape belts [47]. The levels of R and C were significantly different from the annual
transformation trend under different temperature, precipitation, and natural vegetation.
Based on this difference in climate regions, this study further visualised the mean value,
coefficient of variation of two factors, and UNLI in each climate region. According to the
results, the mean of R is directly proportional to UNLI, while the mean of C is inversely
proportional to UNLI, and the coefficient of variation of C is directly proportional to UNLI,
while the coefficient of variation of R is not significantly related to UNLI. China has a variety
of climates, and vegetation under different climate types has different growth cycles; that
is, if affected by vegetation growth cycle, the variations in C values in each climate region
within a year are large. However, the RUSLE equation does not fully reflect the impact of
this difference on the estimation results, so the intra-year difference of C and the way in
which it interacts with R significantly affects the estimation of soil erosion and must be
evaluated. Considering the changes in R and C in each climate zone, we initially indicated
that the size of R would overestimate the uncertainty caused by the difference in C. In the
southern part of China, the main vegetation type is subtropical evergreen broad-leaved
forests, and the annual vegetation coverage is high. Therefore, C in southern China always
has a low value, reaching 0 at the annual scale, for which the original equation does
not consider the soil erosion caused by R in winter. However, due to the relatively poor
environmental conditions in winter, C has a non-zero value, and thus, in this case, the
actual soil erosion is generated by the winter R. Therefore, the traditional estimation of soil
erosion in most regions of southern China is characterized by a strong underestimation.

In northern China, the climate type is temperate monsoon, where the R level is higher
in summer and lower in winter, with significant seasonal variations. The dominant vegeta-
tion in northern China is temperate deciduous broad-leaved forest; thus, vegetation cover
varies greatly during the year. The C value in the entire year is high, but due to the better
growth during the summer, C has a value of 0 in summer. In addition, the actual amount
of soil erosion is generated by the non-summer R. However, in the original equation, the
higher C on the annual scale means that the calculation process considers the level of R
for the entire year. The R of non-summer months is much smaller than that of summer;
thus, the soil erosion values in most areas of northern China are highly overestimated.
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The uncertainty in the soil erosion estimates is very low in areas where R is extremely
low, but when C is significantly high, there is no obvious seasonal trend between the two.
Other low uncertainty regions, such as the extensive areas of the Huanghuai Plain, the
middle and lower reaches of the Yangtze River, the Liaohe Plain, and the Sichuan Basin
and the scattered banded areas distributed in the south of the southeast hills and the
Yunnan mountainous areas, are affected by the low values of LS, K, and P factors and
soil invasion estimates, despite having high erosion factors. In summary, this rule applies
where C reflecting vegetation cover inhibits the effect of R reflecting the rainfall on the soil
erosion potential.

5. Conclusions

This study questioned the correctness of the simple multiplication of the R and C in
the RUSLE equation. Assuming that the rainfall erosivity in summer is highest for the year,
and surface vegetation coverage is better at this time, that is, the Rm is high in summer,
and the Cm is low, then whether the simple multiplication of R and C can correctly assess
soil erosion raises doubt. This study improves the current soil erosion estimations by
considering the vegetation growth cycle obtained by matching R and C on a monthly scale
and comparing them with the traditional RUSLE model. To describe the uncertainty in the
RUSLE caused by the temporal variability of R and C, a new metric UNLI was defined. The
mean value and coefficient of variation were introduced to describe the time variations in R
and C in each climate zone. Finally, the law of the influence of vegetation growth cycle on
the uncertainty of soil erosion estimation was obtained. This result has a certain reference
significance for improving the estimation accuracy of RUSLE model.

This study shows that the uncertainty in the RUSLE results is affected by the dynamics
of R and C. Owing to monsoon climate in China, R and C have strong temporal variability,
which leads to great uncertainty in soil erosion estimation results. Moreover, owing to the
characteristics of C, the actual month of soil erosion is different from that considered in the
original equation. On this basis, the value of R aggravates the impact of this difference on
the uncertainty of the conventional soil erosion estimates. Therefore, under the monsoon
climate, when C is low and its coefficient of variation is high, the few months that should
have caused soil erosion were ignored in the original equation. In this case, the larger the
Rm are in these months, the stronger the negative uncertainty of the calculated results. In
addition, when both C and its coefficient of variation are high, the few months that should
not have caused soil erosion are counted in the original equation. In this case, the larger
the Rm in these months, the stronger the positive uncertainty of the calculated results.

The limitation of this study is that it only considers the uncertainty in the soil erosion
estimates calculated using the RUSLE at the regional scale; thus, the findings are only
applicable to specific regions. However, climatic conditions in different regions are different,
as well as the corresponding vegetation growth cycles. We plan to expand the research
scope to a global scale and consider the influence of different vegetation growth cycles.
Furthermore, our goal is to establish a model for the combined effects of R and C on the
uncertainty of soil erosion estimation to propose a suitable correction for the estimated
result of the RUSLE equation.
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