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Abstract: Agriculture terraces constitute a significant element of the Mediterranean landscape, en-
abling crop production on steep slopes while protecting land from desertification. Despite their
ecological and historical value, terrace cultivation is threatened by climate change leading to aban-
donment and further marginalization of arable land imposing serious environmental and community
hazards. Re-cultivation of terraced landscapes could be an alternative strategy to mitigate the climate
change impacts in areas of high vulnerability encouraging a sustainable agroecosystem to ensure
food security, rural development and restrain land desertification. The article presents the case study
of abandoned terrace re-cultivation in the Aegean Island of Andros, using a climate smart agriculture
system, which involves the establishment of an extensive meteorological network to monitor the
local climate and hydrometeorological forecasting. Along with terrace site mapping and soil pro-
filing the perfomance of cereal and legume crops was assessed in a low-input agriculture system.
The implementation of a land stewardship (LS) plan was indispensable to overcome mainly land
fragmentation issues and to transfer know-how. It was found that climate data are key drivers for
crop cultivation and production in the island rainfed farming system. The study revealed that terrace
soil quality could be improved through cultivation to support food safety and stall land degradation.
In line with global studies this research suggest that cultivation of marginal terraced land is timely
through a climate smart agriculture system as a holistic approach to improve land quality and serve
as means to combat climate change impacts. The study also discusses land management and policy
approaches to address the issue of agricultural land abandonment and the benefits gained through
cultivation to the local community, economy and environment protection and sustainability.

Keywords: terrace landscape; land abandonment; climate-smart agriculture; sustainability; digi-
tal technologies

1. Introduction

The construction of artificial terraces on slopes for cultivation, known as terrace
farming or terracing, is considered the only anthropogenic designed landscape that has
a relief-modifying impact on all landscape factors in an area, as they improve rainfall
absorbency, reduce soil erosion, smooth extreme summer temperatures, but also mitigate
the risk of floods and forest fires [1]. The use of terrace landscape dates back in ancient years
and it is tightly linked to early human settlement and primary agricultural activities [2,3].
Ever since, terrace construction has been extensively used across diverse landscapes to
increase land productivity and to protect local environment and human infrastructure from
severe mass movement and landslides [4,5].

Cultivated terraces are a prominent feature of the Mediterranean agricultural land-
scape and the main cultivating system supporting primary production on the islands of the
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Aegean archipelago (Greece). Terracing is known to have multiple benefits on ecosystem
services and human welfare, depending on land use and topography [6]. Estimation of
the provided ecosystem services in terraced slopes over non-terraced slopes, revealed the
prominent role of terracing in erosion control, runoff reduction, biomass accumulation,
soil water recharge and soil nutrient enhancement [7]. All of these are vital to support
agriculture sustainability, rural development and more importantly to lessen the effects of
climate change on marginal lands, such as terraces.

During the last decades there has been a significant decline in land resources globally,
mainly due to land degradation and desertification processes, which are taking place to an
alarming rate. Climate change and human activities are major factors triggering ecosystem
change, which is accompanied by a loss of biodiversity at different scales [8]. Prolonged
drought seasons and dramatic reduction of water supplies are both important negative
effects of climate change worldwide and near-future scenarios predict that the increasing
frequency of extreme drought events will cause major crop yield losses threatening food
security [9]. The significant loss of arable land in conjunction with the expected drop in
crop yield and the upcoming increase of the global population (9 billion by 2050) are posing
a serious threat on food security worldwide [10]. Therefore, combating land degradation
and desertification to ensure global food security constitute the main challenges of the
21st century. In order to achieve these goals, sustainable land management and policy
interventions are needed to reduce the negative impacts of multiple stressors, restore
ecosystems and safeguard their sustainable use. In Europe, the use of agricultural land is
going towards two opposite directions: (a) abandonment of economically marginal, remote
and upland areas and (b) intensification of farming practices in the restricted but productive
lowland areas, both of which have serious implications for biodiversity and ecosystem
services [11]. The drivers of agricultural land abandonment are manifold, depending on
the economic, social and demographic situation of every region, the climatic conditions
and topography [12]. Changes in the land-use of agricultural areas have a negative impact
on the rural landscape and lead consequently to the marginalization of the abandoned land,
while at the same time affect local food production, food security and the socioeconomic
status of the area [13]. Marginal lands are defined as the abandoned agriculture lands of
low productivity potential and reduced economic return, and sites with serious constraints
for cultivation due to slope, soil structure and erosion phenomena [14]. Studies have
shown that the countries of the Mediterranean basin are confronted with an alarming
marginalization pace of their arable land, as the region is regarded a critical hotspot for
land desertification and climate change in Europe [15–17]. Being a Mediterranean country,
Greece faces the problem of increased desertification, with its islands being listed as areas
of high desertification risk due to intense relief and low vegetation cover [18].

Despite the manifold advantages, limiting constraints of the terrace cultivation system,
such as unfavorable cultivating conditions, high production cost and labor demand, along
with a decline in rural population over the last decades, have led to the neglect of the
terraces or even to complete abandonment [19,20]. The abandonment of terraced landscape
increases environmental hazards, such as soil erosion, water runoff and biodiversity loss
and consequently accelerates landscape degradation and marginalization [21]. Terraces
must be well-designed, correctly built and well-maintained in order to provide ecosystem
services [22]. Lack of appropriate maintenance or total abandonment of terraces lead to col-
lapses of the structural features (stone-walls and benches) and increases geo-hydrological
hazards through gully erosion and possible land sliding [23,24]. Thus soil loss and average
runoff in poorly maintained terraces can be up to five times that of well managed ones [25].

At the same time valuable arable land is lost in areas where agriculture used to be
the main economic activity, affecting significantly the socioeconomic conditions of local
communities [26,27]. Therefore, re-cultivation of abandoned terraces could serve as an
essential stategy to revitalize sustainable rural development, to restrain climate change
hazards and land degradation of marginal lands. Over the last years, marginal lands have
gained attention as an alternative potential for agriculture expansion that could help to
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increase food supply and avoid environmental and land degradation [28–31]. The economic
and ecological success of the above scenario requires a specific landscape management
plan, in order to fully exploit the dynamic of marginal sites. Thus restoration and re-
cultivation of terraced landscape should be implemented with environmental impact
considerations to avoid negative effects on terrain morphology as stated in the case of
new terraced vineyards in Spain [32]. Moreover, innovative and sustainable production
systems could be implemented collectively to achieve smart crop cultivation, stimulating
in parallel ecosystem services conservation and strengthening. In that regard climate smart
agriculture (CSA) could have a key role to increase production of marginal lands in an
ecologically and profitably sustainable way and secure farmers’ economic interest [33].
Building farmers’ adaptive capacity is central to CSA, empowering an effective feedback
to long-term climate change and associated manage risks [34,35]. In turn CSA combines
tested practical techniques, such as conservation agriculture, crop rotation, mulching,
intercropping and improved water management with innovative technologies, such as
precise weather forecasting, early warning systems and risk assessment models [36] and
crop phenotyping [37]. On the other hand, agriculture in the Aegean islands is vulnerable to
climate change due to limited water resources and increased periods of heat stress, entailing
for a close linkage of weather forecast and monitoring for terraced lands cultivation.

The present study aimed to assess the potential of abandoned terraces to serve as
green infrastructures through cultivation to alleviate climate change effects and land aban-
donment. An understanding of the challenges and constraints associated with agricultural
land use and management in climate change times will assist to abate land abandonment
and degradations for sustainable improvement. Yet, there are scattered and limited ev-
idence of climatic conditions, soil resources of abandoned or cultivated terraced lands
in the East Mediterranean islands. Thus, the role of these parameters in agriculture still
remains obscure. The study addresses these knowledge gaps in a systematic research
approach. Establishing a meticulous meteorological network of stations along with soil
profiling and position mapping of terraced fields, recultivation assessment, functioning
and effects are explored. The ultimate objective is to contribute evidence to policies to
address terraced lands re-cultivation implementing a climate smart agriculture approach
for rural agroecological sustainability and development.

2. Methods
2.1. Study Area

The island of Andros belongs to the Cyclades island complex of Aegean Sea in Greece
and it is characterized by intense relief with low vegetation cover, a typical landscape
type for the majority of Aegean Sea islands. Terrace cultivation has been for years the
main cultivating system, supporting primary production on the island. However, over the
last decades agricultural activity has been significantly reduced and the majority of the
terraces were abandoned. Land fragmentation and high cultivation costs were the main
reasons of land abandonment in the area. However, the majority of teracce fields on the
island are well-maintained and minimum restoration work was applied where needed. The
selection of the terraces was based on their topography and cultivation history (terraces
that remained uncultivated for more than ten years). The accessibility of agricultural
machinery was also an important criterion of terrace fields selection. The intervation site is
composed of discontinious parcels; each terrace field consisted of 3–5 individual parcels.
Terraces have no irrigation system or access to irigation. As terraces remaied uncultivated
for years, low vegetation (mainly shrubs) removal was performed in the intervation area.
Terraces that included trees were excluded, as removal of trees is under national regulation,
requiring special permits.

2.2. Study Implementation

A total area of 45 hectares of terraced fields was engaged in re-cultivation. Thirteen
meteorological stations were placed near the cultivation sites in order to monitor micro-
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climatic conditions in the area (Figure 1). This is the first large-scale establishment of a
meteorological network on the island, as until recently there was only one station in the
north-west part of Andros providing basic data for navigation purposes.
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In particular, one fully automatic weather station with remote-access has been in-
stalled on the roof of the Moustakeio building at Korthi, South East Andros (ϕ = 37◦

44.775′ N, λ = 24◦ 55.658′ E, height = 215 m a.m.s.l.), completed with a central CR310
data-logger by Campbell Scientific Ltd. and a number of high precision sensors covering
all meteorological parameters such as air temperature (◦C) and relative humidity (RH) (%),
atmospheric pressure (hPa), precipitation (mm), wind speed (m/s) and direction (deg.),
and finally incoming solar radiation intensity (W/m2) received in an horizontal surface.
The continuous data-series of the automated station at Moustakeio stretches back to July
2018, consisted of 1-min averages of 10-s samples. Hourly, daily and monthly data were
then generated for further analysis (see Supplementary Materials).

Additionally, twelve small autonomous battery backup stations from onset, model
HOBO MX2302 T/RH loggers, with bluetooth low energy communication abilities, cover-
ing only air temperature (◦C) and relative humidity (RH) at 2 m height, have been installed
inside a solar radiation shield at abandoned or cultivated terrace sites in the south part of
the island, reporting with a high-resolution of 10-min time step, micro-climatic data for the
study needs. These stations are not remotely accessible and data are downloaded manually
during periodical visits to Andros Island.

In order to compare the readings for temperature and relative humidity between
the two types of stations, the MOUSTAKEIO site has been selected where both types of
stations operate. Thus, Figure 2 represents mean daily values of air temperature from the
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Moustakeio central station and the difference from HOBO sensor’s measurements for the
available period: 1 July 2018 to 17 December 2020. Differences in temperature generally do
not exceed ±0.5 ◦C. For the same period, RH measurements were also analysed for both
stations at Moustakeio, and the plot is given in Figure 3. Differences in humidity between
the two types of stations generally do not exceed ±2%.
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the smal HOBO sensor from the central on-line station (purple line).

During the summer period, the HOBO station shows slightly higher values of temper-
ature and lower values of relative humidity than the online station, which is attributed to
the fact that the online station is at a better ventilated position on top of a building where
typical summer etesian winds are strong in the island of Andros. The pattern is reversed
in winter since the HOBO station is surrounded by seasonal wild vegetation something
that does not occur at the building terrace where the online station resides. Hence, in
the wetter, cooler period of the year, the HOBO station shows higher relative humidity
levels and lower temperature values. However, these differences are considered minor and
insignificant.

Therefore, emphasis was given on getting site-specific meteorological data, which are
critical in a climate-smart agriculture system in order to provide precise weather forecasting,
early warning systems and risk assessment models. Resources management was based
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on microclimatic conditions (e.g., rainfall accumulation, solar radiation and wind speed)
during the cultivation period.

Another important parameter for the successful re-cultivation of terraced landscapes
was the selection of appropriate crops and varieties, which must be well-adapted to
the indigenous climate and landscape conditions. Therefore, the cultivation plan of the
abandoned terraces focused on the use of local landraces, which are considered valuable
genetic resources preserving and promoting biodiversity, and support production of local
products. The cultivation plan included local landraces of cereals (barley) and legumes
(vetch). Barley (Hordeum vulgare) landraces were selected due to their high tolerance
to drought conditions, compared to wheat and other cereals. Legumes, such as vetch
(Lathyrus sp.), provide protein-rich food and feed, but more importantly, legumes enhance
soil fertility due to their symbiotic ability of nitrogen fixation. The selection of the crops was
conducted according to island’s agricultural tradition, as cereals and legumes have been
extensively cultivated in terraced fields. As there were no site-specific meteorologiacal data
available before the intervention, weather monitoring was crucial to assess the perfomance
of the crops during the growing seasosns. The selected crops were introduced in rainfed
cropping schemes of low-input farming.

Due to lack of geomorphological map and extensive field surveys on the island, the
condition and structure of terraces top soil is unknown. Therefore, soil analyses were
conducted to study important soil features, such as nutrient status, soil-type and organic
matter content (%). Soil sampling was perfomed in terraces prior and after cultivation to
assess soil profile and chemical analyses of nutrient and organic matter content. Moreover,
soil analyses were conducted to assess the effect of crop cultivation on soil fertility and
for further resources management plan. A chemical analysis of macro and micro element
content was used to assess the nutrient value of the produced crops. A commercial cultivar
of barley was incorporated as a reference crop to assess both performance and nutrient
content of the crop.

Additionally, a land stewardship (LS) enterprise was established as a necessary mea-
sure to overcome land fragmentation issues and lessen production costs in order to create
a sustainable terrace cultivation system. The LS enterprise was used as a leverage to
encourage active participation of local bodies and land users in terrace re-cultivation and
new technologies.

3. Results

Data collected from the meteorological stations were further used for the development
of local weather forecast models, but also in the cultivation operation plan for better
utilization of natural resources. More precisely, solar radiation and rainfall frequency and
distribution throughout the growing season were utilized to determine the kind of crops
to be cultivated in the area. Cumulative precipitation (mm) per month for three growing
seasons (2018–2021) in Andros Island is presented in Figure 4. According to the graph, there
is significant rainfall during the period October to April, which coincides with the critical
growing stages of the winter crops. Sowing season for barley in Eastern Mediterranean
is usually late October to early November and soil humidity at that stage is needed to
facilitate the preparation of the fields (tillage), but most importantly rainfall is critical to
ensure high germination rate of the crop. Winter legumes are sowed in November and
benefit also from the autumn rainfalls during that time. Another critical developmental
stage for both crops is the seed filling stage (April to early May), when the need for water
supply is high for seeds to increase in size and weight. Total precipitation in Andros Island
during April (Figure 4) was high enough in growing seasons 2018–2019 and 2019–2020,
allowing thus, crops to take full advantage of the available “green water” (rainfall water
that is stored as soil humidity).
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Average solar radiation (W/m2) per month for the three growing seasons is presented
in Figure 5. The highest values are evident between May and September (with a peak
during summer months), which is a typical climatic condition for the countries of the
Mediterranean basin. High solar radiation during that period, accompanied by hot temper-
atures, is combined also with a drop in precipitation (Figure 4), resulting in a thermal dry
environment. Under these circumstances, crop cultivation is challenged. However, winter
crops such as cereals and legumes are positively affected by these climatic conditions, as
hot and dry weather is essential for the maturation of the seed until harvest time (June
to early July). It becomes obvious that the suggested crops can be successfully cultivated
in Andros Island under a low-input rainfed agriculture system, taking full advantage
of the available natural resources. Hence the establishment of a meteorological network
is essential to a smooth transition of agriculture to digitization suppling valuable data,
helping farmers, improving practices and decision making.
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In order to estimate the quality of the produced crops, the concentration of macro
and micro nutrients was tested in both barley and vetch landraces. Chemical composition
(mean values) of the crops is presented in Table 1. Local landrace of barley had higher
concentration of all macro and micro elements, compared to the reference barley crop. The
chemical analysis of vetch landraces showed a high concentration of N, as expected for
legumes. High concentrations of Fe, Mg, Mn, K and Zn add extra nutrient value to the
crops (Table 1). The results show that local landraces are characterized by good quality of
the harvested product and could be used to a climate-smart agriculture system.

Table 1. Chemical analysis of macro and micro elements of barley (Hordeum vulgare) and vetch (Lathyrus sp.) landraces.

N
(%)

P
(%)

K
(%)

Ca
(%)

Mg
(%)

Na
(%)

Zn
(ppm)

Fe
(ppm)

Cu
(ppm)

Mn
(ppm)

B
(ppm)

Barley landrace 1.69 0.41 1.98 0.33 0.10 0.36 27.47 81.50 6.59 40.23 2.99

Barley cultivar 1.19 0.24 1.07 0.13 0.05 0.05 24.01 45.90 4.99 31.96 2.83

Vetch landrace I 3.38 0.63 2.37 0.84 0.23 0.10 56.54 198.82 12.69 52.24 2.75

Vetch landrace II 3.25 0.50 1.94 0.64 0.19 0.06 50.80 255.69 13.75 52.94 2.75

Soil nutrient status and type (soil composition) of the recultivated terraced fields was
defined by chemical analyses in order to develop a spatial profile for each field engaged in
the study. These profiles are further used for monitoring crop impact on soil properties,
but also in decision-making process regarding input management. Soil profiles according
to their composition in sand (S%), clay (C%) and silt (Si%) are presented in Table 2. Soil
electrical conductivity (Ec) and pH were also measured. The majority of the tested soils was
classified as sandy-loam (SL), expect terrace 6 and 7, which were classified as loamy-sand
(LS) and loam (L) respectively (Table 2). In soil electrical conductivity is an indicator of
nutrient availability and it is associated with soil fertility. Results show that Ec of terrace
soils is within the optimal range (110–570 milliSiemens/m). However, high values of Ec
indicate excess amount of salts in the soil and may hinder plant growth.
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Table 2. Soil texture (sand%, clay% and silt%), soil pulp pH and electrical conductivity (mS/m) of
seven selected terrace fields.

Terrace Soil Type S% C% Si% pH Ec (mS/m)

1 SL 68 10 22 6.16 415
2 SL 60 18 22 6.32 578
3 SL 74 6 20 5.75 410
4 SL 68 8 24 5.85 421
5 SL 58 12 30 6.83 520
6 LS 84 2 14 6.95 754
7 L 50 16 34 6.33 444

The impact of crop cultivation on soil fertility was assessed through soil organic
matter (SOM) content (%). Organic matter was measured before cultivation, in terraced
fields, which remained uncultivated for more than ten years, and after cultivation and
incorporation of crop residues in soil. The calculation of increase (%) in soil organic matter
was based on preliminary results from two growing seasons (2018–2019 and 2019–2020).
Results showed that organic matter content was significantly increased after cultivation,
suggesting the beneficial impact of crop cultivation on soil properties. Terraced fields 1–5
were cultivated with barley, while terraces 6 and 7 with vetch (Figure 6). Terraced fields
3 and 6, which had the lowest increase in organic matter content, had also the highest
content of sand (S%), according to soil analyses results (Table 2). Sandy soils are generally
considered poor soils of low organic matter content, cation exchange capacity (CEC) and
therefore of low nutrient retention capacity [38]. High Ec value of terrace 6 may indicate
salinity problems, which also affect negatively soil fertility.
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Figure 6. Increase in soil organic matter (SOM) content (%) in selected terraced fields after crop cultivation. Terraces 1–5
were cultivated with barley (Hordeum vulgare), while 6 and 7 with vetch (Lathyrus sp.).

4. Discussion

The functional restoration of the terraced landscapes as an agricultural area of high
natural value, aims to preserve valuable land resources by mitigating the negative effects
of climate change, which accelarate land degradation and desertification phenomena. The
Mediterranean landscape with its steep slopes and intense relief is prone to soil erosion



Land 2021, 10, 457 10 of 16

due to long dry periods followed by heavy and abrupt erosive rainfalls [39]. Over the years
terracing was proven to be an ideal agricultural method for crop cultivation in slopping
landscapes, creating arable land where needed, while at the same time protects soil from
erosion and runoff phenomena through water absorption and moisture conservation [40].
Changes in land use during the last decades in the countries of the Mediterranean have led
to vast agricultural land abandonment, including terrace landscapes [41]. Hence terraces
that are not maintained and remain uncultivated, fail to protect soil against water runoff,
flooding and landslide phenomena due to stone wall collapse. Abandonment of terrace
landscape can have serious implications on the environment and cause structural damages,
when triggered by severe rainfall, as happened in the case of Liguria region (Italy) in
2014 [42]. Studies have shown that soil erosion and land degradation process is accelerated
in terraces that lack maintenance and vegetation cover, compared to well-maintained ones
with crop cultivation or dense wild vegetation [43–45]. Dry stone walls are paramount to
reduce slope length, trap erosion sendiments and reduce soil run-off. Hence the selection
of suitable materials and construction techniques constitute principal parameters of terrace
stone walls restoration and function for land protection [46]. Given that the majority of
dry stone walls in Andros terraced fields are in good condition, reintegration to cultivation
prevailes to safeguard land as a market good and added value to agriculture and sustainable
environment performance and protection.

As terraced landscape is usually characterized by great heterogeneity, the operational
cultivation plan to be followed should be site-specific, based on the peculiarities of each
area. Therefore, knowledge of the soil profile, including nutrient status, soil-type and or-
ganic matter content, is considered critical in the decision-making process of crop selection,
and in the management of integrated farming systems and natural resources. Geomor-
phological maps and spatial surveys are fundamental basis for management of terraced
landscape and hazards assessment [47]. Additionally, remote sensing techniques (e.g.,
LiDAR) and geographical information system (GIS) are implemented in the mapping of
terraced landscape to assess slope instabilities [48]. Spatial mapping of terraced landscape
in Andros Island is still ongoing and once completed will constitute a useful tool for land
management policy. Soil analyses in sampling areas provided a first assessment of top soil
condition (soil structure and composition). Primary results from two cultivating seasons
(2018–2019 and 2019–2020) in Andros terraced landscape showed an increase in soil organic
matter content after cultivation, suggesting the positive effect of crop residues input and
decomposition in soil, by increasing soil organic carbon (SOC), and thus enhancing soil fer-
tility [49,50]. However, as the experimentation is still ongoing, the role of crop cultivation
in soil fertility and climate change mitigation needs to be further investigated.

The study indicated that annual precipitation rate is a major driver of crop selection
and performance in the rainfed terraced system. Results showed that winter crops, such
as cereals and legumes can be cultivated in a rainfed system, taking full advantage of the
annual rainfall distribution in Andros Island during the critical crop developmental stages.
Detailed meteorological data collected by the extensive network of the meteo-stations
during the growing seasons (2018–2021), displayed a period of high precipitation on the
island (October to early May), followed by a hot and dry period (June to September). Barley
(Hordeum vulgare) landraces was selected for cultivation of abandoned terraces due to its
significant drought tolerance compared to other cereals [51–53]. Notably barley landraces
bear many desirable traits counting abiotic stress tolerance, nutrient use efficiency and
crop quality characteristics, and therefore are excellent germplasm material for a low-input
agriculture system [51]. Nonetheless barley crop productivity is dependent on water
supply during the critical developmental stages, after sowing for successful germination
rate (October to November) and during seed filling stage (April until early May), which
both coincide with the high precipitation period on the island. Studies have shown that
the environment (climatic and soil conditions) plays a major role in the determination
of grain size and weight in barley. Drought has a more significant negative effect on
grain growth, compared to the effect of high temperature [54,55]. Low rainfall during
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the grain filling period, and thus less soil water availability, results in lower grain yield
and dry matter accumulation in barley [56], affecting the final yield of the crop. Given
the precipitation levels and monthly distribution in Andros Island, it is suggested that
barley cultivation can be sustained under a rainfed system, taking full advantage of the
microclimatic conditions. In addition, reduction in post-anthesis radiation reduces grain
weight in barley and increases the heterogeneity of grain weight, affecting the final yield
of the crop [57]. Measured solar radiation in Andros during the post-anthesis period was
sufficiently high, ensuring good photosynthetic rate of the crops.

Vetch (Lathyrus sp.) is traditionally cultivated in the Aegean islands as a legume crop
used for the production of local products commonly known as “fava”. Its cultivation
is also favored under the climatic conditions described above. Moreover, cultivation of
legumes is known to have a beneficial effect on soil structure and fertility due to their
symbiotic ability to fix nitrogen, and it is recommended for the enhancement of poor
soils [58,59], and in rotation systems. Primary results showed that SOM content (%) was
increased in terraces cultivated with vetch. The increase of SOM content after cultivation
of legumes and cereals in abandoned terraced fields indicate that the soil composition
could be improved. Consequently, it improves the retention capacity of soil nutrients and
humidity for better crop development. Undoubtedly these characteristics could be further
improved and monitored following CSA practices such as intercropping, rotation and
limited tillage [35]. Re-cultivation of abandoned terraced fields have unraveled constraints
and knowledge gaps (i.e., precipitation rate, climatic data, soil features, etc.) that could
impede agriculture. On the other hand, implementation of a CSA system as a holistic
approach, combining agricultural practices and technological innovations to ensure crop
production and enhance resilience to climate change is urgently needed. In this regard
information communication technologies (ICT) could enable the transition stimulating a
precision agriculture system for climate smart landscapes. Thus, local climate information
services are crucial in defining critical stages of crop development that require efficient use
of natural resources, counting “green water” as precipitation rate, temperature extremes
and early warning for risk management. Therefore, awareness and training of farmers and
crop stakeholders is timely and crucial to enhance utilization of the above information in
farming systems of marginal lands.

Although the agricultural sector in the island regions of Greece (Ionian, North and
South Aegean) is smaller compared to the mainland regions, the impact of climate change
has severe environmental and economic dimensions. Strengthening agriculture in these
islands is very important to secure food safety at a local level, regarding issues that
arose recently from the COVID-19 pandemic, but also because islands are major tourist
destinations and thus have a large demand of agricultural products. This support should be
focused on mitigating water stress, which is the main restriction of crop cultivation on the
islands [60]. Land fragmentation and topographic issues of the Mediterranean islands pose
limitations on crop production increase and therefore, land use intensification of terrace
landscapes should aim on the production of high added value crops. Chemical analyses of
the crops showed that both barley and vetch landraces had good quality characteristics
when grown under low-input farming system. The dynamic of such crops should be
further exploited for the production of novel food products of high quality and nutrient
content, addressed to consumers with specific dietary needs. Biofortification of staple
foods, such as barley and legumes, could be an alternative strategy for the enhancement
of the primary sector and economy via the production of innovative products [61]. Apart
from human consumption, cereal and legume crops are also suitable for animal feed,
supporting livestock activity on the island and the production of a vast variety of local
dairy products. In addition, legume crops provide important pollination services and
enhance apiculture [62,63], which is a significant production sector in the Aegean Islands.
Therefore, sustainability of the primary sector on the island could be achieved in the context
of a green-economy development, with low-input agriculture, reduced carbon emissions,
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increased efficiency of resources usage, enhanced pollination and ecosystem services and
economic growth [64].

One of the main social drivers of land abandonment is the shift in habitation pat-
terns from rural to urban societies in many parts of Europe. Globalization of agricultural
markets, low income, labor requirements, topography and loss of motivation for farming
have forced farmers to abandon their land and migrate to bigger cities for better oppor-
tunities [65]. Those who remained in marginal areas usually retain their land as family
property and have become part-time farmers in the parallel with another occupation, or
they are retired farmers with no identified succession and therefore prone to agriculture
and land abandonment [66]. Land tenure and ownership or rural land rental, combined
with land fragmentation and restricted resources often pose a significant obstacle to ap-
propriate management and rural development. The negative effects of fragmentation
mainly arise from the lack of sufficient investments by individual farmers on technological
equipment and agriculture practices (e.g., weather forecast, drainage, irrigation and soil
improvement), resulting in significant decline of crop production and profit [67]. Thus,
younger generations abandon farming and more arable land remains uncultivated. The
disadvantages of land fragmentation can be overcome through a collaboration system
between farmers, stakeholders and local authorities, which will encourage active partic-
ipation of local bodies and land users in a sustainable land management plan and will
revitalize the local society and economy [68,69]. The land stewardship (LS) system could be
a successful approach for a holistic management of abandoned and marginal areas. The LS
system could serve as a leverage of new technologies and digitization implementation in
the agriculture of marginal lands by helping farmers to work more precisely, efficiently and
sustainably. Through the implementation of LS plan the cost-input resources are shared
between participants, novel technologies and equipment become accessible to all, farmers
are trained to increase their capacity, crop production becomes cost-effective, economic
revenue is increased and finally sustainable management of wider landscape is achieved,
providing thus, motivation to farmers to get involved in crop cultivation [70]. Moreover,
the data-driven insights can improve decision-making and practices and enhance envi-
ronmental performance while making agriculture more attractive to younger generations,
reduce remoteness problems and increase access to services. In Andros Island the percep-
tion of local community regarding agricultural terrace landscape is high and people are
interested in maintaining terraces as a valuable feature of local environment. The reasons
for ceasing crop cultivation were mainly cost-related, due to high individual financial
investment requirements. Land fragmentation resulting in higher transaction costs in
combination with lack of modernization and low farmers’ income, are recognized among
the major drivers of terrace abandonment [71]. The implementation of an LS plan on the
island managed to resolve issues regarding land fragmentation and collective cultivation.
Adequate machinery was bought to fit the narrow terrace parcels and crop production
was upgraded, lessening individual cost. Thus, LS could serve as a leverage to halt land
abandonment and instigate use of novel farming systems to alleviate the climate change
effects for environment protection and rural sustainable development.

Despite its indisputable ecological value, terraced landscape is also an important
agricultural heritage system of great aesthetic and cultural significance. Terraces are
considered traditional landscapes and their conservation and management concept is
included in the international globally important agricultural heritage systems (GIAHS)
program, launched by Food and Agriculture Organization (FAO) [72]. National policies
are targeted on preserving such agricultural heritage sites around the world, but also
promote them as touristic attractions, which maintain their traditional and historical
character [73,74]. A survey on terraced landscape perception in the Chianti region (Italy)
showed that tourists clearly prefer visiting a traditional landscape, which is comprised
of a mosaic of agricultural patches with dry-stone terraces and forests [75]. In Greece
the majority of island terraces are neglected and only part-time farmers acknowledge
the productive, ecological, aesthetic and historical value of terraces, although terrace
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farming still remains hard-work. In this context, terraces appear to have lost their original
functional role in agricultural production and they remain as a decorative element of the
Mediterranean landscape [76]. However, in Andros Island the majority of terraces is well
maintained and could be a pole of touristic attraction, incorporated in the island’s quality
certified 100 km hiking route from European Ramblers Association (https://www.era-
ewv-ferp.org/lqt/, (accessed on 5 April 2021)). Tourists will have the chance to enjoy the
aesthetic value of the landscape, but also to come in touch with a sustainable agriculture
system of traditional crops. Terraces form a valuable part of the national landesque capital
and therefore, national government policy should be updated and measures are urgently
needed for the preservation of the island terraces, as elements of traditional landscape
heritage and of rural sustainability.

5. Conclusions

Agricultural terraces constitute a valuable element of the Mediterranean landscape,
which can be used as an alternative strategy to mitigate climate change effects on areas of
high desertification risk. Terraced landscape should be managed holistically, in order to
establish a sustainable agriculture system, to protect biodiversity and enhance ecosystem
services. This study showed that terraces crop production depends strongly on available
resources and must be closely linked to site-specific meteorological data, soil profiling,
site mapping and precise planning of agricultural activities and crop selection. More-
over, implementation of land stewardship conquers land fragmentation and technological
gaps stimulating the involvement of younger generations and overcoming socioeconomic
constraints that lead to land abandonment.

Thus, re-cultivation of abandoned lands could be realized under a climate-smart
agriculture system encompassing digital technologies, to foster production of added value
crops empowering local societies and economies. Land stewardship has a key role to
connect actively local communities to safeguard the landesque capital, enhance food se-
curity in vulnerable marginal lands strengthening rural development and environment
sustainability.

Supplementary Materials: The meteo data from Moustakeio fully automatic weather station are
presented on-line, with 30-min interval, at the following WEB page: https://www.iersd.noa.gr/
WeatherOnLine/s_Andros1/meteo_tableEN.html (accessed on 5 April 2021).
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