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Abstract: This research was focused on estimation of tree canopy cover (CC) by multiscale remote 
sensing in south China. The key aim is to establish the relationship between CC and woody NDVI 
(NDVIW) or to build a CC-NDVIW model taking northeast Jiangxi as an example. Based on field 
CC measurements, this research used Google Earth as a complementary source to measure CC. In 
total, 63 sample plots of CC were created, among which 45 were applied for modeling and the 
remaining 18 were employed for verification. In order to ascertain the ratio R of NDVIW to the 
satellite observed NDVI, a 20-year time-series MODIS NDVI dataset was utilized for decomposi-
tion to obtain the NDVIW component, and then the ratio R was calculated with the equation R = 
(NDVIW/NDVI) *100%, respectively, for forest (CC >60%), medium woodland (CC = 25–60%) and 
sparse woodland (CC 1–25%). Landsat TM and OLI images that had been orthorectified by the 
provider USGS were atmospherically corrected using the COST model and used to derive NDVIL. 
R was multiplied for the NDVIL image to extract the woody NDVI (NDVIWL) from Landsat data 
for each of these plots. The 45 plots of CC data were linearly fitted to the NDVIWL, and a model 
with CC = 103.843 NDVIW + 6.157 (R2 = 0.881) was obtained. This equation was applied to predict 
CC at the 18 verification plots and a good agreement was found (R2 = 0.897). This validated 
CC-NDVIW model was further applied to the woody NDVI of forest, medium woodland and 
sparse woodland derived from Landsat data for regional CC estimation. An independent group of 
24 measured plots was utilized for validation of the results, and an accuracy of 83.0% was ob-
tained. Thence, the developed model has high predictivity and is suitable for large-scale estima-
tion of CC using high-resolution data. 

Keywords: canopy cover; NDVIW; time-series analysis; CC-NDVIW model 
 

1. Introduction 
Forest canopy cover (CC), defined as the proportion of the tree canopy by vertical 

projection on the forest floor [1,2], is an important parameter with multiple factors of 
ecological significance, especially for characterizing woodlands and forests. It can be 
applied to a number of aspects, most commonly measuring forest stand density [3,4] and 
distinguishing different animal habitats [1,4,5]. CC data can also be employed for pre-
diction of woody plant composition, tree stand volume, forage production, and for 
monitoring and assessment of forest pest damage [6,7]. In particular, CC is useful for 
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assessing forest microclimate and light conditions [1], estimating the leaf area index (LAI) 
[8–11], and predicting the interception losses (i.e., wetted-canopy evaporation) from for-
ests [12] and woody biomass [13]. It has to be noted that CC is a different concept from 
canopy closure, the latter of which is defined as the proportion of the sky hemisphere 
obscured by vegetation when viewed from a single point [1]. CC has been gradually 
recognized as a key indicator of forests and incorporated into forest inventory programs 
[1–3]. 

Traditional CC measurements are performed on site. This measurement method 
can obtain high-precision data but is time-consuming and labor-intensive [1,3] and may 
also face unknown natural risks-for example, venomous snakes, bumblebees, insects, 
and, especially, getting hurt by thorns and brambles. The second method of estimating 
CC is to construct a statistical model based on known forest measurements. For exam-
ple, Bechtold [14] used the strong correlation between at-breast height diameter and 
crown diameter to construct a crown diameter prediction model. This method is limited 
by forest statistics and is improper for small areas where statistics are lacking. The third 
method is to use remote sensing data to obtain CC, which is in general estimated from 
multiresolution satellite images for different types of forests and woodlands [13,15]. 

At present, satellite remote sensing provides great facility for forest research and 
has been widely applied in tree cover characterization, forest performance monitoring, 
biomass estimation and carbon sequestration/emission analysis at local, regional and 
global scales [13,16–23]. Woodlands and forests account for 68.6–75.9% of the total an-
nual net primary production (NPP) in global terrestrial ecosystems [13,24], which are 
important carbon sinks that are capable of mitigating carbon emissions and climate 
change. This demonstrates the importance of employing remote sensing data for forest 
and woodland research. 

Actually, more and more multisensor and multiresolution remote sensing data have 
become available, and a number of scholars have extracted information from these data 
and constructed CC models based on spectral reflectance [13,16,19,21,25]. As an im-
portant remote sensing index, the Normalized Difference Vegetation Index (NDVI) has 
been proven to be highly and linearly correlated to CC [13,26]. Wu et al. [13], utilized a 
number of vegetation indices (VIs), such as the NDVI, Soil-Adjusted and Atmospheri-
cally Resistant Index (SARVI [27]), Enhanced Vegetation Index (EVI [28]) and Wide Dy-
namic Range Vegetation Index (WDRVI [29]), to build CC-VIs models, namely, CC-EVI, 
CC-SARVI and CC-NDVI. Their research revealed that for African tropical savanna 
woodlands and forests, the CC-NDVI model, or rather, the one coupling CC with the 
NDVI of woody vegetation (denoted as NDVIW), performed best and it was hence se-
lected for assessment of the woody biomass in tropical Africa [13]. 

Remote sensing-based techniques have been applied for CC estimation in devel-
oped countries with multiresolution data [3,11,13,21], yet they have rarely been reported 
in China, especially in south China, with application of high-resolution data. Based on 
the above studies, the main objective of this study is to develop a south China-suited 
CC-NDVIW model, conduct a woodland cover mapping, and use the developed model to 
estimate and map CC taking northeast Jiangxi as an example. 

2. Materials and Methods 
To achieve the objective, a flowchart demonstrating the overall methodology of this 

research is shown in Figure 1. 
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Figure 1. The overall methodological flowchart applied in this study. 

2.1. The Study Area 
The research area of this study is located in northeast Jiangxi, China, including three 

cities, namely, Jingdezhen, Shangrao, and Yingtan, and encompassing 19 counties. The 
terrain inclines largely from the east, composed of a series of northeastern striking 
mountains and interbedded basins, to the west, where Poyang Lake is situated. The 
mountain-basin landscape in the east mainly includes three mountain ranges—the 
Wulong Mountains in the north, the Wuyi Mountains in the south, and the Huaiyu 
Mountains in the central east. The highest point in the region is Huanggang Mount, the 
peak of the Wuyi Mountains in Yanshan County, with an altitude of 2157 m. The lowest 
point is Poyang Lake in the west of the region, with an altitude of nearly 10 m. The water 
system is well-developed in the study area where the main rivers are Xinjiang, Raohe and 
their tributaries flowing from east to west into Poyang Lake (Figure 2). 

 
Figure 2. Location of the study area—northeast Jiangxi, China. 
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The study area belongs to the subtropical monsoon climate zone. The annual aver-
age temperature is around 17 °C. The average temperatures in January and July are about 
5 and 29 °C, respectively. Precipitation generally decreases from east to west, with an 
annual average precipitation of more than 1600 mm. 

The main land use and cover types are croplands, forests and woodlands, grass-
lands, water bodies and artificial areas. Here, woodlands encompass about 19,651.57 km2, 
including mixed forests (11,041.29 km2), coniferous forest (2854.00 km2), bamboo forests 
(1943.52 km2) and shrublands (2839.05 km2). 

2.2. Data 
The data used in this study consist of two types: field data obtained from the field 

surveys and multiresolution satellite images. 

2.2.1. Field Data 
Two field campaigns were conducted, respectively, during 25–31 October 2019, and 

5–18 October 2020, and 28 plots of woodlands and forests (conifers and mixed forests) 
were measured, including CC, diameter at breast height (DBH), canopy height and tree 
species and numbers, which will be used for biomass calculation in future. 

2.2.2. Multiresolution Satellite Data 
While selecting satellite images for vegetation-related research and land cover 

mapping, phenology is a crucial factor to consider [13,19,21,30,31]. It is natural that her-
baceous vegetation grows together with trees in forests and woodlands. Favored by a 
humid and warm climate, herbaceous vegetation in Jiangxi flourishes in spring, is full of 
vigor in summer, but withers in late autumn and dries in winter. One may think it rea-
sonable to select winter images for forest research as there is no influence of herbaceous 
vegetation. Nevertheless, one key factor lies in that most broadleaf trees become leafless, 
and the sun-elevation angle is so low at that time that the impact of mountain shadow 
has to be taken into account. Hence, it came to our knowledge that late autumn, e.g., 
November, is the best month for forest/woodland research as influences of herbaceous 
vegetation can be reduced and deciduous trees are still green. Another advantage is that 
the study area becomes dry from November onwards, and there is high possibility to 
acquire cloud-free satellite images in this month. Therefore, in consideration of all these 
reasons, November Landsat images were acquired for our study. 

As required by multiscale research [13,31] and in order to achieve our objectives, 
multiresolution and multisensor remote sensing data were prepared as follows: 
1. Very high-resolution images available on Google Earth (©Google: 

https://www.google.com/earth/). 
2. Four scenes of Landsat 8 OLI images (30 m) with Pass/Row Nos. 120/40 and 120/41 

acquired on 16 November 2019, and three with Pass/Row No 121/39 and 121/40 on 
23 November 2019, were obtained from the USGS data server 
(https://glovis.usgs.gov/, accessed on 9 March 2020). 

3. MODIS MOD13Q1 data with frame No h28v06 (250 m, vegetation index 16-day com-
posite product) of a 20-year period from March 2000 to February 2020 were obtained 
from USGS data server (https://lpdaac.usgs.gov/, accessed on 15 March 2021), and 
the NDVI data of each month within a 20-year period were extracted to form the 
NDVI time-series dataset. 

2.3. Development of the CC-NDVIW Model 
A number of vegetation indices such as NDVI, SAVI, SARVI, WDRVI, EVI, and 

Generalized Difference Vegetation Index (GDVI) have been developed and widely ap-
plied in different domains of research, especially in vegetation monitoring 
[13,27–29,31–36]. Wu, et al. [13], performed a regression analysis to couple different veg-
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etation indices with CC and concluded that NDVI performed better in building model 
with CC than other vegetation indices. Therefore, following their conclusion, NDVI, or 
rather, its woody component, NDVIW, was selected for CC modeling in this research. The 
detailed procedure and steps for the development of the CC-NDVIW model are as fol-
lows. 

2.3.1. CC Measurement 
(1) CC plots for modeling 

The measurement of CC is the key to the establishment of the model and requires 
representative plots for sampling. In different geographical backgrounds, CC of wood-
lands has been differently classified by different authors or institutions. In consideration 
of the climatic conditions in Jiangxi and previous studies, woodland cover in the study 
area was divided into three categories: forests when CC is greater than 60% (CCH), me-
dium woodlands when CC is between 25 and 60% (CCM), and sparse woodlands when 
CC is 1–25% (CCL). 

The first step was to conduct field campaigns to measure CC of conifers, deciduous 
species and bamboo across the study area in October 2019 and October 2020. However, 
due to the complexity of the natural conditions, including landform, canopy interlayer 
and inaccessibility to the plots of the mixed forests, it was extremely difficult to find 
reasonable 30 × 30 m2 plots, not to mention the full-size ones (100 × 100 m2) on the ground. 
The 28 measured plots varied from 10 × 10 m2 to 30 × 30 m2 in size, and the two directions 
of canopy diameters were used to calculate CC. Unfortunately, five measured dense 
forest plots of CC reach >100%, mainly incurred from the overlap of canopies with each 
other. Hence, these five abnormal plots were removed and not used for modeling. The 
other 23 plots were more or less usable as they are close to those measured on Google 
Earth, with about 5–12% of difference. 

It should be mentioned that under the mature tree canopies, no matter whether they 
are mixed (Cinnamomum camphora, Schima superba, Liquidambar formosana, Castanea mollis-
sima Blume, Quercus palustris) or coniferous (Pinus massoniana or Pinus elliottiiforests) for-
ests, mid-and young-age trees were rarely observed in the field except for thorns, bram-
bles and rattan vegetation inside the plots. In the young conifer plots, only pure young 
pines (Pinus massoniana), at ages of about 6–10 years, were found. 

The second step was carried out using Google Earth, on which high-resolution (e.g., 
0.5–2m) satellite images were available. We considered that this would be better since 
tree canopy could be recognized and parameterized easily in the forests and woodlands. 
Thus, 40 plots with an area of 1 ha (100 × 100 m2 = 1 ha) were randomly selected in the 
mixed forests, conifers and woodlands at different CC levels—i.e., high CC (>60%), me-
dium CC (25–60%) and low CC (1–25%), denoted as CCH, CCM and CCL, respectively, on 
Google Earth. A screenshot function was used to capture the images of these plots. We 
then imported them into Photoshop, and after discarding the color information, all these 
plots of images were converted into black and white. An adjustment of the brightness 
and contrast of the image followed—for example, for each image, the brightness and 
contrast were uniformly increased to 120 (150 at maximum) and 95 (100 at maximum), 
respectively. After this processing, the tree canopy (dark) in the sample plot could be 
clearly separated from other ground features, such as soil and herbaceous vegetation 
(white). Through the Density Slice tool of ENVI (an image processing package: ©Harris 
Geospatial Solutions, Inc., https://www.l3harrisgeospatial.com/), the proportion of 
canopy covered areas in the sample plot could be obtained, and this is the CC we were 
looking for (Figure 3). This method is appropriate for CCH, where the plots are filled with 
tree canopies, and herbaceous vegetation is generally hidden under the canopies, which 
will not affect the reading of the crown area. 
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Figure 3. An example of extracting CC using Photoshop and Density Slicing within ENVI. (a) 
Captured image plot on Google Earth using the screenshot function; (b) discarding of color and 
enhancement of brightness and contrast of the plot to 120 (150 at maximum) and 95 (100 at maxi-
mum), respectively, in Photoshop; and (c) canopy cover rendered by thresholding using the Den-
sity Slice tool of ENVI. 

The warm and humid climate favors the vigorous growth of herbaceous vegetation 
in the study area and even in late autumn it is still green to some extent. In the cases of 
CCM and CCL, such vegetation will definitely influence the recorded signal by sensors as 
it is a mixture of tree canopies and herbaceous vegetation. If we used a satellite-based 
vegetation index, e.g., the NDVI, to study CC, herbaceous vegetation would be a prob-
lematic issue. 

To sort out this issue, we used plot dichotomy to deal with CCM and CCL cases. The 
procedure for this method was first to randomly select a number of candidate areas. 
Then, inside the selected area, plot(s) were carefully chosen without or with very little 
herbaceous vegetation, which was distinct from woody trees with dense and concen-
trated crowns while soil was clear. We defined the tree canopy part of the plot as a closed 
vector polygon on Google Earth. The area of this polygon was actually the CC of the CCM 
and CCL cases and the left of the plot was soil with low vegetation cover. 

Therefore, in total 63 plots of CC were made available for the successive modeling, 
where 45 plots were dedicated to modeling and 18 plots were used for model validation. 
(2) CC plots for time-series analysis 

With the same operation, 60 large plots with sizes of four ha (200 × 200 m2) were also 
defined on Google Earth at different CC levels, i.e., 20 plots for each category of CCH, 
CCM and CCL. These plots were used for NDVI sampling in the successive time-series 
decomposition analysis with MODIS data to estimate the woody component of the ob-
served NDVI. When selecting these sample plots, it was necessary to ensure their spatial 
representativeness to avoid farmland and mountain terraces, forest fire and deforestation 
activities so that the plots were not affected by other disturbing features and could be 
useful. 
(3) CC plots for final CC map validation 

To validate the final product of this research, the CC map derived from Landsat 
images, a third independent group of 24 CC plots with a spatial size of 30 × 30 m2 was 
defined on Google Earth. 

The locations of all these three groups of plots are shown in Figure 4. 
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Figure 4. Locations of the three sets of plots for modeling, decomposition and validation. 

2.3.2. Atmospheric Correction of Landsat Data 
Already orthorectified by the provider, it is only necessary to conduct atmospheric 

correction for these Landsat 8 OLI images. Radiation transmission is affected by atmos-
pheric scattering and absorption [13,37,38]. Atmospheric correction is used to remove or 
to minimize such effects in images, and at the same time, to convert the at-satellite solar 
radiance in digital number (DN) into surface reflectance [13,37–39]. Atmospheric correc-
tion methods mainly include the radiative transfer code, ground wave measured data 
regression correction, the histogram minimum value removal, and the image-based DOS 
(dark-object subtraction) model [33] and its improved version, the COSine Theta (COST) 
model (in which theta is the zenith angle θ) developed by Chavez [37]. The DOS model 
only corrects the additive scattering and not the multiplicative transmittance effect [37]; 
additionally, it may produce an overcorrection and not be applicable in images without 
dark objects [38]. The COST model provides a reliable image-based approach to correct 
additive scattering and multiplicative transmittance effects, and it is hence proper for 
application in vegetation research by remote sensing [13,37,38,40]. 

In this paper, the COST model was applied for atmospheric correction, i.e., to re-
move or reduce the haze effects in the at-satellite spectral radiance and at the same time 
to convert the radiance into surface reflectance [37]. Wu [38] simplified the correction 
equation of the COST model, and for band i, it can be expressed as: 

)(
cos2 DNDN

DN

LL

E
R hii

iMax

iMiniMax

oi
i −−•=

θ
π

 
(1) 

Ri: spectral reflectance of the surface of band i; 
Eoi: maximum solar spectral irradiance of band i; 
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θ: solar zenith angle; 
LiMax and LiMin: the maximum and minimum spectral radiances of band i; 
DNiMax: the maximum digital number (DN) of pixel of band i; 
DN: DN value of pixel of band i; 
DNhi: the haze value of pixel of band i. 
In this atmospheric correction, we used the band minimum as the haze effect. After 

correction, NDVI of five forest patches increased from 0.61–0.71 to 0.78–0.84. These cor-
rected NDVI values were considered normal and reliable. 

2.3.3. Decomposition of Time-Series MODIS NDVI 
As we planned to use Landsat data for CC-NDVIW modeling, the purpose of this 

decomposition analysis using the time-series MODIS NDVI dataset was to partition the 
woody component from the herbaceous vegetation, or rather, to calculate the ratio be-
tween the woody component and the satellite observed NDVI. We can thence apply this 
ratio to Landsat NDVI for extraction of the Landsat woody NDVI (NDVILW). 

Roderick et al. [41] and Lu et al. [42] extracted NDVIW by the moving average 
method to obtain the baseline of NDVI time-series data, thus realizing the partition of 
woody and herbaceous components. They attributed the baseline of the trend to the 
woody vegetation and the seasonal signal to the understory herbaceous vegetation. 
Therefore, they decomposed the NDVI time-series dataset (F) into three components: 
trend (T), seasonal (S), and irregular variable (E). At a given time t, F can be expressed as: 

)()()()( tEtStTtF ++=  (2) 

Shifting T by a constant K to get the baseline, this is actually the woody component 
of the observed NDVI. K is the absolute value of the minimum seasonal component for 
two consecutive years. Then, we have the following equation: 

KTNDVI −=w  (3) 

Our study followed these concepts and used the Statistical Product and Service So-
lutions (SPSS), a powerful statistical software platform developed by IBM 
(https://www.ibm.com/analytics/spss-statistics-software, accessed on 9 April 2021), to 
perform the decomposition analysis using the time-series MODIS NDVI dataset. The 60 
4-ha plots, more clearly, 20 plots for each of the three categories CCH, CCM, and CCL 
which were randomly defined in forests, medium woodlands and sparse woodlands on 
Google Earth, were saved as vector polygons, and then imported into ENVI and con-
verted into regions of interest (ROIs) of three categories as previously defined. 

For the MODIS NDVI product, MOD13Q1, from March 2000 to February 2020, a 
total of 240 scenes were imported one by one into ENVI to extract the average NDVI for 
each defined CC category from each NDVI image using the 20 large plots of ROIs of CCH, 
CCM, and CCL, respectively. The average NDVI dataset of each category with a time span 
of 240 months was hence prepared. Then, the SPSS package was employed again to 
conduct the decomposition analysis of the NDVI dataset of 20 high CC (CCH), 20 CCM 
and 20 CCL plots separately. In the decomposition process, four new sequences were 
decomposed—namely, the seasonal factor sequence (SAF), seasonal adjustment sequence 
(SAS), smooth trend cycle sequence (STC), and irregular (error) component sequence 
(ERR). These sequences correspond to Equation (2): SAF = S, STC = T, ERR = E. Therefore, 
Equation (3) can be expressed as: 

KSTCKTNDVI −=−=w  (4) 

SAS was obtained by deleting the seasonal variations in the original sequence. SAS = 
OS-SAF. OS is the original value of NDVI. The same operation was carried out for the 
NDVI dataset of the CCM and CCL plots, respectively, and the decomposition results are 
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shown in Figure 5. It can be seen that the K values of the CCH, CCM, and CCL plots are 
0.0947, 0.1272, and 0.1335, respectively. 

 
Figure 5. Decomposition results: (a) forests; (b) medium woodlands; and (c) sparse woodlands. 
Note: Here “Observed” denotes the original value of MODIS NDVI. X−axis represents 
months—240 in total; Mar−00 = March 2000 and May−19 = May 2019. SAF—seasonal factor se-
quence, STC—smooth trend cycle sequence, and NDVIW—woody component of the observed 
NDVI. 
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Using Equation (4), the NDVIW for any month from March 2000 to February 2020 can 
be calculated. Since Landsat images used for modeling in this paper were acquired in 
November, it was necessary to calculate the NDVIW of November for all these three types 
of plots during the 20-year period. Then, the ratio R of woody NDVI to the satellite ob-
served NDVI was calculated as follows: 

%100)/( w ×= NDVINDVIR  (5) 

According to the above formula, the R values of the CCH, CCM, and CCL plots in 
November were 0.8774, 0.8462 and 0.8338, respectively. 

2.3.4. Derivation of Landsat NDVILW 
The atmospherically corrected Landsat images of November 2019 were loaded in 

ENVI, and the NDVIs corresponding to different R values were calculated, denoted as 
NDVILH, NDVILM and NDVILL, respectively. The 45 sample plots with 1 ha area as men-
tioned above were imported into the ENVI. These 45 plot frames, in three classes of CCH, 
CCM and CCL, were, respectively, converted into ROIs, and denoted as ROIH, ROIM and 
ROIL. In the NDVILH image, the NDVILW of each CCH plot in ROIH was obtained. The 
same was effectuated to obtain the NDVILW of the other two types of plots, ROIM and 
ROIL. 

2.3.5. CC-NDVIW Modeling 
The measured CC of the 45 plots and their corresponding NDVILW obtained from 

the above procedure were coupled with a linear regression analysis to construct the 
CC-NDVILW model at the confidence level of 95% (see Figure 6). The regression equation 
was obtained as follows: 

)881.0(  6.15703.8431 2 =+= RNDVICC LW  (6) 

 
Figure 6. CC-NDVILW model calibrated by linear regression analysis. 

2.3.6. Verification of CC-NDVILW Model 
As described in the foregoing sections, the 18 remaining CC plots were used as ver-

ification samples to validate the above model. We took advantage of Equation (6) to 
calculate the predicted CC at the verification sample plots and coupled it with the 
measured CC samples using the linear regression model again at a confidence level of 
95% (Figure 7). It is clear that the agreement is extremely high, indicating that the de-
veloped CC-NDVIW model is capable of achieving reliable CC prediction. 
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Figure 7. Model validation: agreement between the measured and predicted 18 plots of CC. 

2.4. Application of CC-NDVILW Model for CC Mapping 
2.4.1. Woodland Classification 

To apply the developed model for estimating woodland CC of the study area, an 
essential procedure is to derive different CC level masks where woody NDVI can be, 
respectively, calculated from the Landsat NDVI. Based on an intensive land cover map-
ping, all woodlands and forests of the study area were extracted to build a woodland 
mask. As divided during the CC classification, samples of CCH, CCM, and CCL were fur-
ther defined in forest and woodland areas in Landsat images with reference to Google 
Earth, and a supervised classification with a random forests algorithm was further car-
ried out under the woodland mask. All woodlands were hence divided into three levels, 
i.e., forests, medium woodlands and sparse woodlands in northeast Jiangxi in terms of 
the CC levels, i.e., CCH, CCM, and CCL. 

2.4.2. Model Application to Estimate Regional-Scale CC 
The produced CCH, CCM, and CCL zones were extracted to create three canopy cover 

masks, denoted as MaskH, MaskM and MaskL. Under these three different masks, the 
woody NDVI (i.e., NDVILW) was, respectively, calculated for each pixel using the above 
decomposition ratios. 

The CC-NDVILW model was applied to each of these three zones of NDVILW to 
produce CC, and then, a mosaic was conducted to merge all these three zones of CC to 
constitute the CC map. 

This CC map was verified against the independent group of 24 plots of CC (Section 
2.3.). If the agreement was good (e.g., >80%), the CC map was thereby validated. Other-
wise, it would be necessary to repeat the whole procedure until the agreement was sat-
isfactory. 

3. Results and Discussion 
3.1. CC Measurement 

Among the 63 measured plots of CC, their distributions in different CC levels were, 
respectively, 8 plots at CCL, 19 plots at CCM, and 37 plots at CCH. Measuring field CC was 
a tough job and less accurate than when using Google Earth due to the complex landform 
and difficulty of accessing the plots. Hence, we used a combination of the field measured 
CC with those from Google Earth for CC-NDVIW modeling. 

The CC measurement method can also be calculated by directly measuring the 
canopy diameter of the canopy in field and on Google Earth using a formula proposed by 
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Wu et al. [13]. This method is simple and feasible, but it is cumbersome to measure each 
tree. However, using the method of this paper described in Section 2.3.1 to process the 
plots can greatly improve the measurement efficiency and is more suitable for areas 
where there are luxuriant trees. The study area is complex in landform and composed of 
both mountains and basins; nevertheless, it is essential to select relatively flat areas for 
CC measurements. If plots were selected in the shadow of the north hillside with steep 
slopes, CC measurement and NDVIW would be affected, as would the CC estimation 
from Landsat data. In addition, disturbance from human activities such as deforestation, 
burning, terrace reclamation, ore mineral exploitation, etc., which directly affects the 
value of NDVIW, should be avoided. 

The acquisition time difference between Landsat images and the very 
high-resolution data on Google Earth has to be considered. If CC and NDVIW were found 
to be inharmonious, it was necessary to check whether there was sudden change in the 
plot. If NDVIW was derived from images before or after the change observed on Google 
Earth, there would be, respectively, a high NDVIW versus a low CC or a low NDVIW 

versus a high CC. These abnormal cases should be excluded. 

3.2. The Importance of Decomposition of Time-Series Dataset 
While extracting NDVIW, the influence from herbaceous vegetation has to be taken 

into account as it is still partially green in the study area even in late autumn. Although 
we had screened the sample plots to minimize herbaceous vegetation, it was impossible 
to completely eliminate its influence on NDVI. The direct extraction of NDVI in the 
sample plots from the November Landsat data would be risky and not be recommended. 
For this reason, it is critical to conduct the decomposition processing of time-series NDVI 
to minimize the impact of herbaceous vegetation on NDVIW. Our results may be applied 
to extract woody NDVI in any month of the year as we have obtained the year-round 
woody component, i.e., the baselines of forests, medium woodlands and sparse wood-
lands as shown in Figure 5. 

3.3. Woodland Classification and NDVIW Maps 
The classification map of woodlands was the basis for generating CC map. Using the 

abovementioned approach, the four scenes of Landsat 8 images acquired in November 
2019 were classified into forests (CCH), medium woodlands (CCM) and sparse woodlands 
(CCL) with accuracies of 90.17, 90.12, 94.23 and 91.78%, respectively. The three classes of 
woodlands of the four scenes were mosaicked to constitute the regional woodland map 
(Figure 8) and at the same time to produce three classes of woodland masks: forests, 
medium woodlands and sparse woodlands. These masks were used for derivation of 
NDVIW of each woodland class with its corresponding woody NDVI ratio R. After mo-
saicking, a Landsat NDVIW map was also produced. 
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Figure 8. Woodland classification map of northeast Jiangxi. Note: Forests where CC >60%—CCH, 
medium woodlands with CC of 25–60%—CCM and sparse woodlands with CC of 1–25%—CCL. 

3.4. CC Mapping 
To demonstrate the applicability of the developed CC-NDVIW model, the latter was 

applied to the Landsat-derived NDVILW under the three woodland masks to predict CC 
and the result, the CC map, is presented in Figure 9. 

 
Figure 9. Forest and woodland canopy cover (CC) map of northeast Jiangxi. 
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For validation purpose, corresponding to the third group of 24 measured CC plots 
from Google Earth, the predicted 24 CC values from the CC map were extracted and both 
were coupled using linear regression analysis again at the confidence level of 95%. For-
tunately, the agreement reaches 83.0% (Figure 10), implying that using the proposed 
approach, the predicted forest and woodland CC is reliable, or rather, the developed 
CC-NDVIW model is operational and able to relevantly estimate CC with high accuracy in 
northeast Jiangxi. 

 
Figure 10. Agreement between the predicted CC from the Landsat-derived CC map and the inde-
pendent group of 24 validation plots of CC from Google Earth. 

3.5. Possibility of Extension 
The multiscale approach for regional scale CC mapping has clear advantages—i.e., it 

can be applied for CC estimation in any month of the year if cloud-free high-resolution 
images are available. It is known that wood species are normally Cunninghamia lanceolata, 
Pinus massoniana for coniferous forests, Cinnamomum camphora, Pinus massoniana, Schima 
superba, Pinus elliottii, Cunninghamia lanceolata, Liquidambar formosana, Castanea mollissima 
Blume, and Quercus palustris for mixed forests, and Phyllostachys pubescens, Phyllostachys 
heteroclada Oliver, and Phyllostachys stimulosa for bamboo forests in the study area. Actu-
ally, from north to south and from east to west, forests are more or less similar in the 
whole of Jiangxi Province, and even in the whole of south China. The only difference lies 
in the abundance of broadleaf trees between the southern coastal provinces, such as 
Guangdong and Guangxi, which are favored by abundant rainfall, and those inside the 
Yangtze River Watershed, e.g., Hunan, Hubei, Jiangxi and Anhui. 

Thus, the approaches developed in this study are most likely extendable to south 
China and the CC-NDVIW model is directly applicable to the whole of Jiangxi and even 
Hunan, Anhui and Zhejiang for regional and subnational CC mapping. 

Though global-scale tree cover data of 500 m resolution have been made available by 
NASA, which were derived from MODIS data [21], our approach can be considered as a 
complement to theirs to derive regional- and subnational-scale forest and woodland CC 
by high-resolution satellite data. Such a product may provide more useful information 
for forest resource monitoring and management for local and regional authorities. 

4. Conclusions 
This paper demonstrated development of a multiscale forest and woodland CC 

mapping approach based on the derivation of woody NDVI through time-series de-
composition analysis and construction of the CC-NDVIW model in northeast Jiangxi. This 
approach provided a simple, fast, and regional-scale CC estimation and mapping possi-



Land 2021, 10, 433 15 of 17 
 

bility. Compared with the traditional manual measurements, the developed method has 
evident advantages, i.e., cost-effectiveness, not time-consuming, and especially, possibil-
ity of year-round CC mapping. Theoretically, the developed model appears to be appli-
cable for characterization of forests and woodlands in the whole of Jiangxi. Moreover, as 
long as there is a CC classification map and corresponding NDVIW data, the model can be 
extended to other subtropical monsoon climate regions where coniferous and mixed 
forests coexist, for example, in south China, thanks to the similarity in woody species and 
climate conditions there. 

Moreover, after we encountered a difficulty in implementing the field measurement 
of CC, we employed Google Earth as an alternative to supplement the measurement so 
that this study provides an operational example of integration of field measurement with 
Google Earth. To overcome the field difficulty of measurement, use of an unmanned 
aerial vehicle (UAV) is a good option, and this is going to be conducted in our next step 
of research. 
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