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Abstract: To address the impacts of future land changes on biodiversity and ecosystem services,
land-use scenarios have been developed at the national scale in Japan. However, the validation of
land-use scenarios remains a challenge owing to the lack of an appropriate validation method. This
research developed land-use maps for 10 land-use categories to calibrate a land-change model for
the 1987–1998 period, simulate changes during the 1998–2014 period, and validate the simulation
for the 1998–2014 period. Following an established method, this study assessed the three types
of land change: (1) reference change during the calibration time interval, (2) simulation change
during the validation time interval, and (3) reference change during the validation time interval,
using intensity analysis and figure of merit components (hits, misses, and false alarms). The results
revealed the cause of the low accuracy of the national scale land-use scenarios as well as priority
solutions, such as aligning the underlying spatial vegetation maps and improving the model to
reduce two types of disagreement between the simulation and reference maps. These findings should
help to improve the accuracy of model predictions and help to better inform policymakers during
the decision-making process.

Keywords: land-use scenario; validation; intensity analysis; figure of merit; land change; persistence

1. Introduction

Land-use models have been used to project future changes with the aim of supporting
decision-making by policymakers [1]. The Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services encouraged the use of modeling approaches to predict
ecosystem changes based on possible future scenarios [2] because the use of scenarios
allows information to be synthesized and streamlines key messages to facilitate communi-
cation with policymakers [3]. In Japan, national-scale future scenarios (the Predicting and
Assessing Natural Capital and Ecosystem Services (PANCES) scenarios) were developed
based on surveys and expert discussions with the aim of assessing the quantity of future
changes in ecosystem services through 2050 [4]. Population and land-use modeling have
been further conducted to translate these qualitative scenario storylines into quantitative
simulations [5–7].

As the conventional classifications of land use and land cover (LULC) categories are
too limited to sufficiently assess ecosystem services, especially in Asia where different
vegetation types exist, national-scale land-use scenarios using newer datasets derived from
vegetation inventory data were developed with nine LULC categories at the special resolu-
tion of 1 km2 to enable sufficient assessment of natural capital and ecosystem services [7].
The PANCES land-use scenarios revealed the consequences of land-use interventions in a
plausible future in Japan, including land abandonment and the underutilization of natural
resources, which are currently a critical concern because of depopulation and an aging
society. However, the requirement of fine spatial resolution is still a challenge in modeling
agricultural land abandonment, which has been expanding in many areas throughout the
country in the past few decades. Generally, a resolution of 1 km2 is too coarse to detect
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these land transitions, and finer spatial resolution and updated data are required to detect
the critical land transitions related to farmland abandonment [8].

Verifying and validating models as well as assessing and managing uncertainty in
scenario analysis are also often critical, as, otherwise, the analysis can rest on unsupported
assumptions and limited data [9]. The PANCES land-use scenarios were developed using
Land Change Modeler, a land change model tool that empirically models relationships
of explanatory variables of observed land changes and simulates future scenarios [10].
These land-use scenarios showed key land changes as consequences of intensive/extensive
land-use interventions and regional differences in the gains and losses of each LULC
category in each scenario. However, the accuracy assessment measure, figure of merit
(FOM; defined in Section 2.4), was low for the simulation results, and this remains an
important issue in terms of the credibility of the quantitative scenarios showing policy
impacts [7]. In processing the PANCES land-use scenarios, past LULC maps (1987 and
1998) were used in the change analyses to detect historical patterns of land change. Existing
and dominant transitions were identified in these analyses to be modeled in the prediction
processes. Predictions were made using transition matrices adjusted to produce future
land-use demands that would meet government land-use policies and the narratives of the
PANCES scenarios. The transition modeling might, however, be limited in its description
of the transitions relating to land abandonment, which, along with depopulation, began
to increase around 2010. As such, an updated dataset would need to detect current land
change trends.

To improve the land-use predictions, we need to know what is missing from the
existing model and what needs to be improved. Validation using a single metric has
been used to assess the multiple outputs and select the best model—that is, the one with
the best fit to the observations. However, validation from a collection of metrics might
generate insights that are deeper than any single metric can communicate [11]. Varga
et al. [11] recommended a visual and quantitative comparison of changes during two time
intervals: the reference change during the calibration interval and simulation change and
the reference change during the validation interval. In this way, we can observe calibration
patterns in subsequent simulations as well as distinguish between simulation and reference
changes during the validation interval and the degree to which the reference patterns
are stationary through time. Intensity analysis can reveal various levels of information
concerning quantity disagreement, and FOM components (hits, misses, and false alarms)
can distinguish quantity disagreement from allocation disagreement during the validation
interval. Distinguishing quantity disagreement from allocation disagreement is particularly
important, because both differences in land change might affect the ecosystem services in
different ways.

Considering these two limitations in the current PANCES land-use scenarios, this
study (1) developed newer land-use scenarios with a finer spatial resolution to include
transitions related to land abandonment and (2) assessed the scenarios by distinguishing
quantity disagreement and allocation disagreement to provide insights for model improve-
ment. These improvements should enable scientists to better inform policymakers about
including ecosystem service assessments when creating land-use policies.

2. Materials and Methods
2.1. Scenario Description

In Japan, a five-year research project, Predicting and Assessing Natural Capital and
Ecosystem Services (PANCES), developed national-scale future scenario storylines for
exploring potential changes in natural capital and ecosystem services through 2050 [12].
There are four PANCES scenarios: natural capital-based compact society (NC), natural
capital-based dispersed society (ND), produced capital-based compact society (PC), and
produced capital-based dispersed society (PD), in addition to business-as-usual (BaU).
The two scenario axes reflect drivers that were suggested from intensive discussions and
surveys among experts involved in the project were as follows: significant advances in
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ecosystem-based infrastructure development, disaster risk reduction, and land manage-
ment as well as further advances in the concentration of the population in major urban
areas by rural outmigration [4].

2.2. LULC Data Processing

At the national scale, conventional land classification data derived from satellite
images are limited in their utility for assessing natural capital and ecosystem services
because the vegetation is only distinguished as agricultural land, wasteland, and forest.
Thus, this study developed newer LULC maps at time-1 (1987), time-2 (1998), and time-
3 (2014) on the basis of geographic information system (GIS)-based vegetation maps at
the national scale. The national scale GIS-based vegetation maps were provided by the
Biodiversity Center of Japan, Ministry of the Environment (http://www.biodic.go.jp/
index_e.html, accessed on 12 March 2021).

These maps were created for the three-time points using survey data acquired in
1978–1987, 1988–1998, and 1999–2014. In this study, numerous vegetation categories were
aggregated into 10 LULC categories by applying the aggregation methods proposed by the
National Institute for Environmental Studies, Japan [13–15]: (1) residential area; (2) paddy
field; (3) cropland; (4) other agricultural land; (5) abandoned farmland; (6) bush and
grassland; (7) natural forest; (8) secondary forest; (9) plantation forest; and (10) others
(Table 1).

All input data were prepared at 500 m spatial resolution, with a total of 1,890,318 cells
(472,580 km2). Owing to a lack of data in the latest vegetation map in 2014 (it was 26%
incomplete), LULC maps at time-1 (1987) and time-2 (1998) were used for scenario-based
land change modeling, and the LULC map at time-3 (2014) was used only for validation
(the total number of cells was 1,393,165 in the LULC map for validation).

Table 1. Land-use categories for the Predicting and Assessing Natural Capital and Ecosystem Services
(PANCES) scenarios.

Category Description

Residential area Built-up, residential area, and artificial bare land
Paddy field Irrigated rice field
Cropland Cultivated cropland (e.g., wheat, beans, and vegetables)
Other agricultural land Pasture, fruit farm, tea plantation, farm road, and roadside
Abandoned farmland Weedy vegetation in fallow paddy fields and abandoned cropland

Bush and grassland Natural/secondary grassland, bamboo bush, and invasive
species-dominated grassland

Natural forest Natural forest (e.g., deciduous/evergreen and broadleaf/needle leaf
forest, shrub forest, and coastal forest)

Secondary forest Secondary forest mainly deciduous/evergreen broadleaf forest (e.g.,
oak), and bamboo forest

Plantation forest Plantation forest (e.g., cedar, cypress, fir, and larch plantations)
Others Golf course, water area, coastal cliff, bare land

2.3. Land Change Simulation

Land Change Modeler, which is a spatially explicit modeling tool available in IDRISI
software [10], was used to simulate future land changes. This tool has three major steps:
(1) change analysis, (2) transition potential modeling, and (3) change prediction. As
the first step, the two LULC maps for time-1 and time-2 were used for change analysis.
Based on the past change analysis, existing and dominant transitions were identified to be
modeled in the second step. In the second step, the transitions were modeled using a multi-
layer perceptron neural network, which developed a multivariate function to estimate
the transition potential based on the explanatory variables, which mainly influence the
distribution of land cover.

Selected variables were used for modeling. The physical factors included the (1) el-
evation, (2) slope, (3) annual temperature, and (4) precipitation, which mainly influence

http://www.biodic.go.jp/index_e.html
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the distribution of vegetated land covers; and the socio-economic factors included the
(5) distance to a stream, (6) distance to a main paved road, and (7) population den-
sity, which mainly influence the distribution of human-dominated land covers. All ex-
ploratory maps were obtained from the GIS-based products from the National Land
Numerical Information (National Land Information Division, National and Regional
Policy Bureau: http://nlftp.mlit.go.jp/, accessed on 12 March 2021). The population
data were obtained from the National Population Census (Statistics Bureau of Japan:
http://www.stat.go.jp/english/data/kokusei/, accessed on 12 March 2021) and PANCES
projected population data [5,6]. In addition to these variables, the empirical likelihood
of change was added to each category as an explanatory variable [10]. As the third step,
possible future land change was simulated by using transition probabilities and transition
potential models.

The probability of one category transitioning to another category was calculated using
the Markov chain method, and the modeling was then run to produce a prediction through
2050 for each year. The transition matrix derived from the changes in 1987–1998 (the
calibration time interval) might not continue until 2050 because of the depopulation that
started around 2010; therefore, we manipulated it to produce future land-use demand
meeting government land-use policies and PANCES scenario narratives, as described in
Shoyama et al. [7] (the definitions of future land-use demand are shown in Appendix A
Table 1).

2.4. Scenario Assessment

For model validation, three types of land change in the BaU scenario were compared
using intensity analysis and FOM components to distinguish quantity disagreement from
allocation disagreement during the validation interval: (1) reference change during the cali-
bration time interval (1987–1998), (2) simulation change during the validation time interval
(1998–2014), and (3) reference change during the validation time interval (1998–2014).

Intensity analysis was used to examine the amount and intensity of change at three
levels: interval, category, and transition [16,17]. Interval-level analysis was used to examine
the amount and intensity of change during each time interval, category-level analysis was
used to examine the amount and intensity of gain and loss in each category, and transition-
level analysis was used to examine how the gain of a category transition from other
categories during each time interval. The analysis was conducted using the calculation
method proposed by Aldwaik and Pontius [17] (see also https://sites.google.com/site/
intensityanalysis/, accessed on 12 March 2021). The FOM, which is an indicator of the
performance of predictions, was calculated as the ratio of the intersection of simulated and
reference change to the union of simulated and reference change.

In this case, the FOM was derived from three components: hits, misses, and false
alarms [18]. Hits is the area where the reference change is correctly simulated as change;
misses is the area of error where the reference change is simulated as persistence; and false
alarms is the area of error where the reference persistence is simulated as change. The
components indicate both quantity disagreement and allocation disagreement (which are
important aspects of model validation [11]) by calculations as follows:

Quantity disagreement = |False Alarms − Misses| (1)

Allocation disagreement = 2min(False Alarms, Misses) (2)

3. Results
3.1. Land Changes in Each Scenario

The proportions of simulated LULC in 2050 for each scenario are shown in Table 2.
The BaU scenario showed a 2% decrease in both agricultural land (paddy, crop, and
other agricultural land) and secondary forest, whereas there was about a combined 2%
increase in bush/grassland area and abandoned farmland as a result of depopulation and
an aging society. In the natural capital-based scenarios (NC and ND), which keep the

http://nlftp.mlit.go.jp/
http://www.stat.go.jp/english/data/kokusei/
http://www.stat.go.jp/english/data/kokusei/
https://sites.google.com/site/intensityanalysis/
https://sites.google.com/site/intensityanalysis/
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populations engaged in agriculture and forestry, agricultural land and secondary forest
were maintained, mainly by inhibiting the increase in abandoned farmland.

The produced capital-based scenarios (PC and PD), which target the intensive use of
land, but without any intervention to manage unused land, showed substantial decreases
in agricultural land (a decrease of 2.8% in PC) and plantation forest (a decrease of 3.3% in
PC) and an increase in abandoned farmland (0.16–0.35%), bush/grassland (1.25–4.2%), and
secondary forest (1.94%), suggesting a substantial increase in unmanaged land. Human-
dominated land (i.e., residential area, agricultural land, and plantation forest) was retained
at a higher level in a dispersed society as compared with a compact society (NC and PC).

Table 2. The proportions of each land-use category in each scenario.

Category
1998 2050

BaU NC ND PC PD

Residential area 4.20 4.20 3.50 3.74 3.85 3.97
(0.00) (−0.70) (−0.46) (−0.35) (−0.23)

Paddy field 8.65 7.52 8.33 8.81 6.92 7.6
(−1.13) (−0.32) (0.16) (−1.73) (−1.02)

Cropland 3.80 3.30 3.93 4.15 3.26 3.60
(−0.50) (0.13) (0.35) (−0.54) (−0.20)

Other agricultural land 3.11 2.70 3.06 3.23 2.54 2.80
(−0.41) (−0.05) (0.12) (−0.57) (−0.31)

Abandoned farmland 0.07 0.30 0.00 0.00 0.42 0.23
(0.23) (−0.07) (−0.07) (0.35) (0.16)

Bush, grassland, and
other vegetation 2.66 3.89 3.67 1.44 6.86 3.91

(1.23) (1.01) (−1.22) (4.20) (1.25)
Natural forest 13.81 13.81 14.09 14.09 13.81 13.81

(0.00) (0.28) (0.28) (0.00) (0.00)
Secondary forest 19.40 17.38 19.40 19.40 21.34 21.34

(−2.02) (0.00) (0.00) (1.94) (1.94)
Plantation forest 19.97 22.57 19.69 20.81 16.67 18.38

(2.60) (−0.28) (0.84) (−3.30) (−1.59)
Others 24.33 24.33 24.33 24.33 24.33 24.33

(0.00) (0.00) (0.00) (0.00) (0.00)
Total 100.00 100.00 100.00 100.00 100.00 100.00

Note: Numbers in parenthesis indicate the difference from the 1998 reference. BaU: business-as-usual, NC: natural
capital-based compact society, ND: natural capital-based dispersed society, PC: produced capital-based compact
society, PD: produced capital-based dispersed society.

3.2. Scenario Assessment

Three types of land change in the BaU scenario were compared to gain insight for
the model validation: (1) reference change during the calibration time interval (1987–1998,
11 years), (2) simulation change during 1998–2014 (16 years), and (3) reference change
during the validation time interval (1998–2014) (Figure 1). Gains and losses were shown
in both the simulation (Figure 1f,i) and validation (Figure 1g,j) periods more than in the
calibration time interval (Figure 1e,h). The land-use categories for gains differed between
the simulation (Figure 1f) and validation (Figure 1g) periods, but they were similar for
losses (Figure 1i,j).

The overall reference change during the calibration time interval was 28,825 cells
(2.06% of the spatial extent), the overall simulation change during the validation time inter-
val was 23,292 cells (1.67% of the spatial extent), and the overall reference change during
the validation time interval was 385,944 cells (27.7% of the spatial extent) (Appendix A
Table 2). The annual change intensity at the interval level was 0.19% of the spatial extent
for the calibration time interval, 0.10% for the simulation change, and 1.73% for the refer-
ence change in the validation time interval. Therefore, taking the interval duration into
account, the rate of land change was greatest in the reference change during the validation
time interval.
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Figure 1. Entire land-use map in 2014 (left) and examples of reference maps and changes during two time intervals: reference map in 1987 (a); reference map in 1998 (b); simulation map in
2014 (c); reference map in 2014 (d); and gains (e–g) and losses (h–j) of each land use category during the calibration (1987–1998), simulation (1998–2014), and validation (1998–2014) time
intervals. Each color shows the changes in land-use, and the grey color shows persistence, which indicates that a land-use category remained the same during a time interval (e–j).
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Figure 2 shows the results of the category-level intensity analysis. If the intensity was
greater than the uniform intensity for a given category, land change was considered to be
active; if the intensity was less than the uniform intensity, land change was considered to be
dormant. Overall, the transitions simulated in 1998–2014 were more active than those in the
1987–1998 reference group. Losses in agricultural land (paddy, crop, and other agricultural
land) changed from dormant to active, and gains in abandoned farmland changed from
dormant to active (Figure 2a,b), as shown also in the 1998–2014 reference (Figure 2c).
However, the transition status in the simulation change and reference change during 1998–
2014 was not consistent, except for losses in agricultural land and secondary forest, gains
and losses in abandoned farmland and bush/grassland, and gains in plantation forest.
These inconsistencies between the simulation and reference changes should be improved
in the simulation model.
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Figure 3 shows the results of the transition-level intensity analysis. If the intensity
level was greater than the uniform intensity, the transition was considered to be active. If it
was less than the uniform intensity, the transition was considered to be dormant. As the
land change intensities were larger in the gains of two categories, abandoned farmland
and bush/grassland, we focused on those two categories in the figure. The transitions of
the two categories were active both in the simulation and the 1998–2014 reference, whereas
there was a very little transition in the 1987–1998 reference.
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Upon comparing the gains in the simulation and 1998–2014 reference, it can be seen
that abandoned farmland targeted only paddy fields in the simulation, but targeted paddy
fields, cropland, other agricultural land, and bush/grassland in the reference (Figure 3a).
Gains in bush/grassland targeted paddy fields, cropland, other agricultural land, and
abandoned farmland in the simulation; paddy fields were not a target in the 1998–2014
reference, but natural forest and plantation forest were to a small extent (Figure 3b). These
inconsistencies between the simulation and reference changes should be improved in
the simulation model. Specifically, transitions to abandoned farmland from cropland,
other agricultural land, and bush/grassland should be involved in the simulation model.
Transitions to bush/grassland from paddy fields could be reduced in the simulation model.
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3.3. Figure of Merit Components

Table 3 shows the FOM components and correct rejection for the BaU scenario. Cor-
rect rejection, which is the area where the reference persistence is correctly simulated as
persistence, was dominant (71.5%), which indicates that the persistence of land use was
dominant in this area. Misses (26.8%) was the second largest category, followed by false
alarms (1.5%) and hits (0.17%). The FOM was 0.58% (hits as a percentage of the sum of the
three components).

The total disagreement (misses plus false alarms) was 28.3%. The quantity disagree-
ment was 25.3%, and the allocation disagreement was 3.0% relative to the spatial extent.
These results suggest that the disagreement between the simulation and reference in the
validation interval was caused by quantity rather than allocation.

Table 3. Figure of merit components and correct rejections for the business as usual (BaU) scenario.

Component Number of Cells

Hits 2314 (0.17)
Misses 373,447 (26.8)

False alarms 20,978 (1.51)
Correct rejections 996,426 (71.52)

Total 1,393,165
Note: Numbers in parentheses indicate the percent of the total.

4. Discussion
4.1. Development of Land-Use Scenarios with Limited Data

This study developed finer resolution land-use maps using a GIS-based vegetation
database and developed scenarios for estimating plausible future land changes through
2050. The developed scenarios showed notable differences in the future land changes,
which policymakers can consider when making decisions about policy options.

GIS-based vegetation maps are a valuable resource to identify detailed land-use
categories; however, an important disadvantage is that they are based on field surveys,
which are infrequently updated as compared with those created using remote-sensing
based techniques. In this study, the latest vegetation data from 2014 were incomplete
because of a lack of survey data. Thus, the scenarios used maps from 1987 and 1998 for
calibration, and the 2014 map was used for validation only. Finer spatial resolution and
updated data are required to detect critical land transitions. The extracted abandoned
farmland area was only about 350 km2 in the reference map in 1998. Given that currently
abandoned farmland accounts for 4230 km2 (Census of Agriculture and Forestry, Japan
in 2015), transitions relating to abandoned farmland were rarely identified in the map of
500 m resolution. Considering the average cultivated acreage per farm is about 2.4 ha in
Japan, a 100 m resolution is required for modeling agricultural land abandonment.

Applying higher spatial and thematic resolution is a fundamental issue in the land-
use scenario approach. For example, the CORINE land-cover data, which consist of 44
land cover categories classified using high-resolution satellite imagery, have been used to
assess ecosystem services provided by various landscapes in the European Union (EU) [19].
In turn, land system classification to capture the variety of different mosaics of agriculture
and forestry was used in Asia [20] rather than biophysical land-cover classification. The
classification system is country-specific. However, newer land-use/cover datasets, devel-
oped with various sources, such as remote sensing products and GIS-based inventories,
enable researchers and practitioners to predict future ecosystem services considering the
regional context.

Another issue is how current national scale scenarios could align with climate change
scenarios. Specifically, agricultural land use is an important subject in the discourse of cli-
mate change impact and adaptation [21]. Climate and population change will affect future
land-use changes; however, the impacts might differ depending on the land-use/cover
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types. In Japan, climate change is likely to have a large impact on croplands, forests, and
wastelands, whereas population change may have more influence on paddy fields, built-up
areas, and other artificial land covers [22]. PANCES scenarios were used to investigate the
impact of plausible policy options for managing natural resources as well as population
change [12]. Projecting land-use changes and identifying the potential impacts of various
factors can be used to examine the impacts on future human society.

4.2. Scenario Assessment for Communication

Policymakers in Japan have referred to the PANCES land-use scenarios in discussions
of the direction of the National Biodiversity Strategy and Action Plan. Regional differences
in land changes are particularly important when discussing local strategies at a national
scale [12]. The first version of the PANCES scenarios had a resolution of 1 km and showed
significant regional differences in susceptible areas that could be influenced by the policy
options [7]. However, the scenarios have a low level of accuracy (FOM of 1.56%), which is
a concern when choosing policy options. Although communicating the uncertainty of the
scenarios is a central issue in any environmental decision-making [9], researchers still must
make clear predictions, often based on limited data.

FOM has been used to assess the accuracy of predictions derived from land-use
models and to select the best-fit models [23–27]. However, a single metric might not offer
sufficient insights as it cannot adequately assess all of the various aspects of modeling [11].
Therefore, this study assessed the developed scenarios by comparing the reference change
during a calibration interval, the simulation change, and the reference change during a
validation interval.

The reference change during the validation interval had the greatest change intensity
(1.7% of the spatial extent) at more than nine times that of the reference change during
the calibration interval. This suggests that land changes were overestimated in the 1998–
2014 reference map, possibly owing to noise in the vegetation data. National vegetation
surveys have been conducted by the Ministry of the Environment of Japan, and GIS-based
vegetation maps were created based on the results of the field vegetation surveys. In 1999,
however, the survey method changed from guidelines based on a 1:50,000 vegetation map
to those based on a 1:25,000 vegetation map [15]. To avoid a mismatch in developing
land-use scenarios, the PANCES scenarios used the earlier vegetation data based on the
1:50,000 vegetation map. However, for scenario assessment incorporating the latest land
transitions (e.g., transition to abandoned land), the alignment of these spatial data is a
primary concern.

Category-level intensity analysis revealed differences in the three types of changes.
Although the noise may exist in the 1998–2014 reference group, the intensity of the land
change related to gains of abandoned farmland and bush/grassland was apparent in
both the simulation and reference validation groups (Figure 2). The transition-level
analysis showed which land-use categories were targeted by abandoned farmland and
bush/grassland (Figure 3). Gains in abandoned farmland targeted only paddy fields in the
simulation, whereas all types of agricultural land and bush/grassland were targeted in the
1998–2014 reference group. Modeling could be improved to reduce this kind of mismatch
using the appropriate map for validation.

Quantity disagreement was observed to be more important than allocation disagree-
ment in the BaU scenario in the simulation as compared with the 1998–2014 reference
validation (Section 3.3). This suggests the model could be improved by setting the amount
of future land-use demand first and then assessing the model to check for any allocation
disagreement. As information regarding the spatial distribution of land use is important in
the National Biodiversity Strategy and Action Plan, measuring the allocation disagreement
should also be considered in the assessment of land-use scenarios.
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5. Conclusions

This study conducted scenario assessment using land-use maps of 500 m spatial
resolution derived from vegetation inventory data at the national scale. The study revealed
the potential causes for low accuracy of the national scale land-use scenarios (noises in
reference maps and inappropriate transitions in the simulation model) as well as priority
solutions, such as the alignment of spatial vegetation maps and model improvement, in
order to reduce the two types of disagreement between the simulation and reference maps.
In the field of land-use modeling for environmental decisions, dynamic land changes,
such as rapid urban development and the reduction of natural vegetation, have been
modeled to reveal the impacts of land-use policy on ecosystems. This is particularly valid
in Asia, where population expansion and economic development are major factors affecting
biodiversity and ecosystem services. However, depopulation will pose new problems in the
near future. Developing plausible scenarios using limited information remains a challenge,
and further research is needed for the scenario assessment of various aspects of model
outputs. The updated scenarios enable us to identify trade-offs and synergies between
sustainable development goals.
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Appendix A

Table 1. Demand for each land use in the 2050 PANCES scenarios.

Land Use Definitions Variables

Residential area Area_resi2050 = (pop2050 × α) +
{Area_resi1998 − (pop2050 × α)} × (1− r)

pop2050: population in 2050
α: residential area per capita (m2)
r: reduction rate

Agricultural land Area_agri2050 = AW pop2050 × β
AW pop2050: population engaged in agriculture in 2050
β: agricultural area per population engaged in agriculture

Plantation forest Area_p f or2050 = FW pop2050 × γ
PW pop2050: population engaged in forestry in 2050
γ: plantation forest area per population engaged in forestry

Natural forest Area_n f or2050 = Area_n f or1998 × a a: change rate
Secondary forest Area_s f or2050 = Area_s f or1998 × b b: change rate

Note: α: 120 for compact society, 149 for dispersed society. r : 0.4 for natural capital-based society, 0.2 for produced capital-based society. β :
6.5 ha for natural capital-based society, 13 ha for produced capital-based society. γ : 2.7–3.0 km2 for natural capital-based society, 5.5–6 km2

for produced capital-based society. a : 1.02 for natural capital-based society, 1.0 for produced capital-based society. b: 1.0 for natural
capital-based society, 1.1–1.25 for produced capital-based society.

Table 2. Percent of transition cells from the start time to the end time.

Start Time

End Time

LossResidential
Area

Paddy
Field Cropland

Other
Agricultural

Land

Abandoned
Farmland

Bush and
GRASS-
LAND

Natural
Forest

Secondary
Forest

Plantation
Forest Others

Residential
area

4.668 0.001 0.005 0.002 0.000 0.001 0.000 0.001 0.000 0.004 0.01
5.112 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4.110 0.263 0.104 0.100 0.001 0.031 0.011 0.240 0.114 0.13 1.002

Paddy
field

0.080 9.408 0.007 0.004 0.000 0.002 0.001 0.010 0.008 0.008 0.120
0.000 9.031 0.000 0.000 0.118 0.341 0.000 0.000 0.000 0.000 0.459
1.385 6.295 0.319 0.142 0.015 0.028 0.011 0.677 0.522 0.095 3.195

Cropland
0.037 0.006 3.992 0.003 0.000 0.001 0.001 0.017 0.016 0.007 0.088
0.000 0.000 3.921 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.200
0.519 0.284 2.210 0.236 0.006 0.029 0.026 0.411 0.338 0.061 1.911
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Table 2. Cont.

Start Time

End Time

LossResidential
Area

Paddy
Field Cropland

Other
Agricultural

Land

Abandoned
Farmland

Bush and
GRASS-
LAND

Natural
Forest

Secondary
Forest

Plantation
Forest Others

Other agri-
cultural

land

0.020 0.003 0.007 3.245 0.000 0.002 0.000 0.003 0.003 0.005 0.043
0.000 0.000 0.000 3.163 0.000 0.169 0.000 0.000 0.000 0.000 0.169
0.255 0.107 0.236 1.910 0.003 0.076 0.070 0.355 0.257 0.063 1.422

Abandoned
farmland

0.005 0.000 0.001 0.000 0.072 0.000 0.000 0.000 0.000 0.000 0.007
0.000 0.000 0.000 0.000 0.055 0.018 0.000 0.000 0.000 0.000 0.018
0.018 0.004 0.005 0.008 0.000 0.012 0.004 0.011 0.008 0.003 0.072

Bush and
grassland

0.024 0.005 0.009 0.012 0.000 2.232 0.005 0.049 0.060 0.018 0.183
0.000 0.000 0.000 0.000 0.000 2.308 0.000 0.000 0.201 0.000 0.201
0.077 0.033 0.030 0.115 0.003 0.461 0.347 0.665 0.672 0.106 2.048

Natural
forest

0.011 0.002 0.019 0.014 0.000 0.072 10.625 0.011 0.104 0.016 0.248
0.000 0.000 0.000 0.000 0.000 0.000 10.661 0.000 0.000 0.000 0.000
0.039 0.018 0.062 0.181 0.001 0.152 6.736 2.393 0.968 0.112 3.925

Secondary
forest

0.150 0.04 0.038 0.026 0.000 0.114 0.016 19.933 0.400 0.118 0.908
0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.466 0.626 0.000 0.626
0.385 0.443 0.113 0.165 0.003 0.134 0.628 13.405 4.645 0.172 6.687

Plantation
forest

0.076 0.019 0.040 0.024 0.000 0.080 0.012 0.060 19.997 0.074 0.385
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.601 0.000 0.000
0.239 0.291 0.210 0.181 0.003 0.144 0.501 4.733 14.195 0.104 6.406

Others
0.043 0.001 0.003 0.002 0.000 0.003 0.001 0.007 0.013 23.760 0.073
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 24.011 0.000
0.195 0.072 0.048 0.114 0.002 0.057 0.062 0.314 0.171 22.976 1.034

Gain
0.444 0.081 0.128 0.087 0.001 0.277 0.037 0.159 0.604 0.251 2.069
0.000 0.000 0.000 0.000 0.118 0.728 0.000 0.000 0.826 0.000 1.672
3.110 1.516 1.127 1.241 0.037 0.663 1.661 9.799 7.695 0.853 27.703

Note: For each transition, the top number shows the 1987–1998 reference, the middle number shows the 1998–2014 simulation, and
the bottom number shows the 1998–2014 reference. Bold numbers indicate persistence. Bold italic numbers in the lower right indicate
overall change.
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