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Abstract: Landscape connectivity is important for all organisms as it directly affects population
dynamics. Yet, rapid urbanization has caused serious landscape fragmentation, which is the primary
contributor of species extinctions worldwide. Previous studies have mostly used spatial snap-shots to
evaluate the impact of urban expansion on landscape connectivity. However, the interactions among
habitats over time in dynamic landscapes have been largely ignored. Here, we demonstrated that
overlooking temporal connectivity can lead to the overestimation of the impact of urban expansion.
How much greater the overestimation is depends on the amount of net habitat loss. Moreover, we
showed that landscape connectivity may have a delayed response to urban expansion. Our analysis
shifts the way to understand the ecological consequences of urban expansion. Our framework can
guide sustainable urban development and can be inspiring to conservation practices under other
contexts (e.g., climate change).
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1. Introduction

Worldwide, the population boom has resulted in rapid urban expansion [1] and
dramatic land-use changes, which are considered as the primary drivers of landscape
fragmentation and biodiversity loss [2,3]. An adequate degree of landscape connectivity
plays a pivotal role in ecological processes such as colonization and extinction [4], ensuring
resilience of metapopulations [5]. Understanding the impact of urban development on
landscape connectivity and using suitable connectivity models to assess urban growth
scenarios can, therefore, significantly contribute to balancing urban development and
biodiversity conservation [6].

Certain relationships have been found between landscape connectivity and the rate [7,8],
the form [9–12], and intensity [13,14] of urban growth. For example, dense urban development
alleviates the encroachment to habitats but inevitably increases barrier effects of built-up
areas [13]. Additionally, compact development maintains more connectivity than urban
sprawl [15]. Yet, how different regional urban development strategies (uneven development
vs. balanced development) affect landscape connectivity is rarely investigated.

Furthermore, only a handful of studies have provided impact assessments from a
spatiotemporal perspective (e.g., refs. [16–19]), mainly due to that most of the connectivity
models [20–23] are spatial snap-shots [24], which facilitate impact evaluation by comparing
connectivity assessments performed independently at multiple time points. Nevertheless,
these purely spatial connectivity models overlook the temporal interactions among habitat
patches, such as the facilitation or impedance effect caused by the appearance or disappear-
ance of stepping-stone habitat patches over time [17], so that they may generate misleading
assessments (see schematic representation in Figure 1).
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among habitat patches, such as the facilitation or impedance effect caused by the appear-
ance or disappearance of stepping-stone habitat patches over time [17], so that they may 
generate misleading assessments (see schematic representation in Figure 1). 

To bridge this gap, here we developed a framework that combines a cellular automata 
(CA) model with a recent spatiotemporal connectivity model [17]. We aimed to answer 
which regional urban development strategy is less detrimental to landscape connectivity, 
and investigate different behaviours of spatial-only connectivity and spatiotemporal con-
nectivity under urban expansion. The CA model supports the design of the three urban de-
velopment strategies (S1: uneven development that concentrates urban land in the mega-
city; S2: balanced development; S3: controlling the mega-city size and put more urban land 
in other cities). The spatiotemporal connectivity model can capture the effects of temporal 
interactions of habitat patches. We selected the Three Gorges Reservoir Area (TGRA, SW 
China) as the study area for its high biological conservation values (one of the richest areas 
in terms of biodiversity in China; Wu, Huang [25]) and rapid urbanization [8]. 

 
Figure 1. A toy example for the illustration of potential interactions between habitat patches across 
space and time. At time point t1, two patches exist in the landscape and they are connected. Due to 
land use change, at time point t2, patch 𝑘 disappears while a new patch 𝑗 appears. Patch 𝑗 is not 
connected to 𝑖 since their distance exceeds dispersal ability of the species. Therefore, from the 
perspective of static connectivity assessment, landscape connectivity is lost during landscape dy-
namics. However, from the spatio-temporal perspective, an individual may start its first disperse 
from patch 𝑖 to 𝑘, then disperse again from 𝑘 to 𝑗 before 𝑘 finally loses habitat. As such, patch 𝑖 and 𝑗 can be connected across space and time when considering the temporal stepping stone 
effect of patch 𝑘. This figure is adapted from ref. [16]. (a) the spatial distribution of habitat patches 
in time point t1; (b) the spatial distribution of habitat patches in time point t2; (c) the potential in-
teractions between habitant patches across time point t1 and t2. 

2. Materials and Methods 
2.1. Study Area and Target Species 

The TGRA is located in the middle catchment of the Yangtze River in China (Figure 2). 
It covers c. 58,000 km2 and includes multiple administrative districts of Chongqing City 
and Hubei Province. According to the national classification of urban size [26], there is 
one mega-city (i.e., Chongqing main city proper) in the TGRA. The TGRA is one of the 
richest areas in terms of biodiversity in China, and the biodiversity of genera and families 
is among the highest globally [25]. The TGRA has experienced fast urban expansion to 
resettle an enormous population of immigrants during the Three Gorges Dam Project, and 
the fast rate of urban expansion will continue as it is a key region in the Yangtze River 
Economic Belt [27]. Meanwhile, the Grain-to-Green Project (GTGP) has been implemented 

Figure 1. A toy example for the illustration of potential interactions between habitat patches across
space and time. At time point t1, two patches exist in the landscape and they are connected. Due
to land use change, at time point t2, patch k disappears while a new patch j appears. Patch j is
not connected to i since their distance exceeds dispersal ability of the species. Therefore, from
the perspective of static connectivity assessment, landscape connectivity is lost during landscape
dynamics. However, from the spatio-temporal perspective, an individual may start its first disperse
from patch i to k, then disperse again from k to j before k finally loses habitat. As such, patch i and j
can be connected across space and time when considering the temporal stepping stone effect of patch
k. This figure is adapted from ref. [16]. (a) the spatial distribution of habitat patches in time point t1;
(b) the spatial distribution of habitat patches in time point t2; (c) the potential interactions between
habitant patches across time point t1 and t2.

To bridge this gap, here we developed a framework that combines a cellular automata
(CA) model with a recent spatiotemporal connectivity model [17]. We aimed to answer
which regional urban development strategy is less detrimental to landscape connectiv-
ity, and investigate different behaviours of spatial-only connectivity and spatiotemporal
connectivity under urban expansion. The CA model supports the design of the three
urban development strategies (S1: uneven development that concentrates urban land in
the mega-city; S2: balanced development; S3: controlling the mega-city size and put more
urban land in other cities). The spatiotemporal connectivity model can capture the effects
of temporal interactions of habitat patches. We selected the Three Gorges Reservoir Area
(TGRA, SW China) as the study area for its high biological conservation values (one of the
richest areas in terms of biodiversity in China; Wu, Huang [25]) and rapid urbanization [8].

2. Materials and Methods
2.1. Study Area and Target Species

The TGRA is located in the middle catchment of the Yangtze River in China (Figure 2).
It covers c. 58,000 km2 and includes multiple administrative districts of Chongqing City
and Hubei Province. According to the national classification of urban size [26], there is
one mega-city (i.e., Chongqing main city proper) in the TGRA. The TGRA is one of the
richest areas in terms of biodiversity in China, and the biodiversity of genera and families
is among the highest globally [25]. The TGRA has experienced fast urban expansion to
resettle an enormous population of immigrants during the Three Gorges Dam Project, and
the fast rate of urban expansion will continue as it is a key region in the Yangtze River
Economic Belt [27]. Meanwhile, the Grain-to-Green Project (GTGP) has been implemented
in this region to convert the cropland in the steep slope to the forested land since 2000,
which significantly increase the forest area [28].
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Figure 2. The study area: The Three Gorges Reservoir Area. Species photos credit to Saniakhan, Nicola Scatassi and
Saul Flores.

Three nationally protected animals inhabiting the TGRA: the large Indian civet
(Viverra zibetha, represented by “LIC” hereafter), the leopard cat (Prionailurus bengalen-
sis, “LC”) and the leopard (Panthera pardus, “L”) were selected as our target species, to
represent a wide range of body sizes of local forest mammals. The home range sizes of
the three species are 6 km2 [29], 12.7 km2 [30] and 28.2 km2 (the mean value of 5 collared
individuals in Odden, Athreya [31]), respectively. As species natal dispersal distance is
proportional to the home range size, the natal median dispersal distance of each target
species was estimated as [32]:

Median dispersal distance = 7
√

home range area (1)

Therefore, natal median dispersal distances were estimated as: 14.7 km for the large
Indian civet, 25.0 km for the leopard cat, and 37.2 km for the leopard. In addition, the data
collected and used in this study are listed in Table 1.

Table 1. The data used in this study. All raster datasets are transformed into the same resolution (250 m) and projection
(WGS_1984_Albers) prior to model implementation.

Name Data Type & Resolution Source

The information of target species Html & pdf International Union for Conservation of Nature (IUCN) Red List
Land use data (2000 & 2010) Raster, 30 m

CAS (http://www.resdc.cn/, accessed on 19 December 2020)Population (2010)
Raster 1 kmGDP (2010)

DEM Raster, 90 m SRTM 90 m Digital Elevation Data [33]
Traffic network Shapefile [34]

Ecological redline Shapefile Chongqing Environment Protection Bureau
Population statistical data Pdf & Xls The statistical yearbook of Chongqing and of Hubei

http://www.resdc.cn/
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2.2. Research Framework

An overview of the research framework is displayed in Figure 3. Firstly, future urban
expansion was simulated under three different development strategies by the FLUS model.
Secondly, the connectivity model that fully takes account of spatiotemporal connections
between patches was developed. Thirdly, we evaluated the effects of urban expansion on
surrounding forest landscape connectivity based on connectivity metrics.

1 
 

 
 
 
 
 
 

 
Figure 3. Illustration of the research framework.

2.3. The Future Land Use Simulation Model

The Future Land Use Simulation (FLUS) model [35] is an artificial neuron network [36]
(ANN) based CA model. We opted to use the FLUS model as it can better tackle the non-
linear relationships in the land-use system than many other CA models [37,38]. First, the
probability-of-occurrence of each land-use type on a grid cell is estimated through the ANN
training based on a land-use map and other auxiliary geographical information, including
terrain factors (elevation, slope and aspect), proximity factors (distance to the mega-city
core, distance to common cities, distance to road, and distance to river), and socio-economic
factors (GDP and population density). Second, the probability-of-occurrence is multiplied
by the neighbourhood effect, inertia coefficient, and the conversion difficulty to obtain the
total land-use conversion probability. This is to fully account for factors affecting landscape
dynamics and efficiently implement spatial allocation, while also acknowledging that
not all grid cells can be converted [39]. Third, based on the total probability, the roulette
wheel selection method is applied to determine whether land-use conversion occurs on
a grid cell or not. This is to reflect the competition within a land-use system. Please see
Supplementary Materials Table S1 or Liu, Liang [35] for detailed information.

2.4. Simulating Different Regional Urban Development Strategies

All grid cells were classified into “mega-city urban land”, “common city urban land”
and “non-urban land”, based on the administrative districts which they are located in
and the land-use type which the grid cell belongs to. As population growth necessitates
the development of urban land [40], we calculated future urban land demands according
to the predicted population growth. We assumed that the increase rate of population
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declines with the increase in population amount, and thus the logistic model was used
(see Supplementary Materials Table S1). Based on the predicted urban land demand,
we designed three urban development strategies (S1–S3). S1 is an uneven development
strategy that concentrates 75% of the new urban land in the mega-city. S2 is a balanced
development strategy that equally places the new urban land in the mega-city and the
other cities. S3 is a strategy that speeds up development in small and medium cities (by
allocating 75% of the new urban land) while controls urban expansion in the mega-city.

The potential urban expansion under different strategies were simulated by the FLUS
model, and were then overlaid on the current land-use map (with six land-use types) to
create future land-use maps. This was to ensure that no transitions would occur among
other non-urban land-use types, so that the connectivity change is only dependent on
urban expansion (i.e., habitat loss and stronger barrier effect caused by conversion from
non-urban land to urban land).

2.5. Model Validation

The FLUS model was validated through two aspects: (1) the Area under a Receiver
Operating Characteristic curve (AUC) values [41] were applied to quantify the ANN per-
formance in fitting the probability-of-occurrence of the individual land-use type (Figure 4),
and (2) the fuzzy Kappa index [42] was used to evaluate the goodness-of-fit of simulation
landscape in 2010. For the first aspect, a perfectly fitted result yields an AUC value of 1
while a completely random model yields an AUC value of 0.5. The AUC values of the three
land-use types are 0.796, 0.862, and 0.678, respectively, indicating that the fitted probability-
of-occurrence of the three land-uses can be well explained by the selected driving forces.
For the second aspect, the fuzzy kappa indices of the three land-use types are 0.84, 0.88,
and 0.82 respectively; and the overall fuzzy Kappa is 0.85, indicating a considerable high
goodness-of-fit of the simulation result. The receiver operating characteristic curve (ROC)
curves were obtained through SPSS 23, and the fuzzy Kappa was obtained through Map
Comparison Kit [43].
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such information. Nodes were attributed to the corresponding patch sizes. 

Figure 4. ROC curves and AUC values of the three land-use types fitted by the ANN.

2.6. Spatial-Temporal Connectivity Model

Conceptually, a spatiotemporal path across a habitat network represents the possibility
of an individual moving from a given habitat patch (i.e., node in spatial graph terminology)
at time t1 to another patch at t2 (t1 < t2). For conservation applications, such a path
also indicates the likelihood that an individual will persist from t1 to t2 in a changing
landscape [17].

We deemed the forest patch whose (1) size is larger than the home range size of a given
species and (2) location is 200 m away from urban land and roads as the habitat node of the
corresponding species [17]. This selection was to ensure the species’ relatively long-term
persistence and adequate tolerance to anthropogenic activities. However, tolerance to an-
thropogenic activities (i.e., distance to construction land) was considered invariable among
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the three focal species given that we did not find documents reporting such information.
Nodes were attributed to the corresponding patch sizes.

Given two time points (t1, t2), all habitat patches in a landscape can be classified into
three types by overlay analysis for habitat maps in t1 and t2, including (1) Gain: not habitat
in t1 but habitat in t2, (2) Stable: habitat in both t1 and t2, and (3) Loss: habitat in t1 but not
habitat in t2. To persist in a dynamic landscape, an individual must stay in a Stable habitat
patch, or disperse from a habitat patch at t1 (i.e., Loss or Stable) to another habitat patch at
t2 (i.e., Gain or Stable).

Temporal interactions between patches can occur if and only if they simultaneously
exist in the landscape for a while, that is, having temporal overlap. For example, a Loss
patch and a Stable patch must have temporal overlap, since that Loss patch can only
lose habitat after an intermediate time point tx (t1 < tx < t2) and Stable patch persists in
the landscape through t1 to t2. Similarly, a Gain patch and a Stable patch can also have
temporal interactions. In cases where temporal overlap exists, the probability of temporal
interactions between these two patches is assigned as 1 (i.e., pt

ij = 1). However, for a Loss
patch and a Gain patch, they may or may not have temporal interactions since we do not
know at time point the Loss patch loses habitat and the Gain patch gains habitat. Therefore,
in this case, the probability of temporal interactions is assigned as 0.5 (i.e., pt

ij = 0.5).
Additionally, the temporal links can also be classified into two types: (1) the essential

link and (2) the auxiliary link [17]. An essential link is a link that, alone, is enough to ensure
that an individual can move from habitat node at t1 to another habitat node at t2. An
auxiliary link is a link that cannot achieve the transportation for individuals as an essential
link does. However, through a path that combines consecutive auxiliary links (and at least
one essential link), an individual may be able to indirectly move from a habitat node at
t1 to another habitat node at t2. By doing so, more habitats are reachable than by using
essential links only. For example, for a path “Loss -> Loss -> Stable”, the first link is an
auxiliary link because when dispersing from Loss to Loss, no habitat is available for that
individual to ensure persistence. The second link is an essential link because two endpoints
have habitat at the beginning and at the end, such that it alone can ensure that individual’s
persistence. Thus, a successful temporal path can either be (1) a direct path that consists of
a single essential link or (2) an indirect path constituting of any combinations of auxiliary
links and essential links, as long as at least there is one essential link. The probability of
each movement scenario is listed in Table 2.

Table 2. Probability of movements along temporal links without considering the spatial dispersal probability following
ref. [17]. For auxiliary links, an individual can make a first movement in time tx (t1 < tx < t2) to a Loss patch that still has
suitable habitat at tx but will have no suitable habitat at t2. In this case, it has to use some other links to move somewhere
else after tx but before t2. Alternatively, an individual may also make a movement in tx from a Gain patch that has habitat at
tx but had no habitat at t1. In this case, it has to be located in some other patch with habitat at t1, and hence the individual
must have previously used some other link in the graph to get to the patch where it is located in tx.

Source Node: Individual Location at
t1 for the Essential Links or at

tx(t1 < tx < t2) for the
Auxiliary Links

Target Node: Individual Location after t1

Essential Link (Individual Location at t2) Auxiliary Link (Individual Location in ty, tx < ty < t 2)

Stable Loss Gain Stable Loss Gain

Stable 1 0 1 N/A 1 N/A
Loss 1 0 0.5 N/A 1 N/A
Gain 0 0 0 1 0.5 1

For the spatial links, the movement probability from node i to node j (represented as
ps

ij) is determined by using an exponential function of the species dispersal capabilities

and the distances between patches [17]: ps
ij = e−kdij ; where k is a species-specific constant

reflecting the dispersal ability, and dij is the distance between i and j. Here, the distance
between patches is the cost-weighted distance derived from the least-cost modelling [17],
to consider the spatial heterogeneity of impedance of the landscape (see Supplementary
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Table S2 for the cost of each land-use type). Some studies noticed that the landscape
impedance may vary with time [44,45], hence such variations were also taken into account.
Given that detailed information about when land-use changes occur during t1 and t2 is
unavailable, we obtained the spatiotemporal cost surface by taking the average between
the cost surfaces in t1 and t2. For instance, for a grid cell p belonging to the cropland at t1
and being converted to the grassland in t2, its cost value in the spatiotemporal cost surface
is the average between cost values of the cropland and the grassland. The median dispersal
distance was multiplied by the median cost value of the dynamic cost surface from 2000 to
2010, and the result determined the dispersal threshold corresponding to a spatial dispersal
probability of 0.5 (i.e., to parameterise k; Gurrutxaga, Rubio [46]).

The ultimately spatiotemporal links and their dispersal probabilities (pst
ij ) are ob-

tained through multiplying the temporal dispersal probability (pt
ij) by the spatial dispersal

probability (ps
ij), which is formulated as:

pst
ij = pt

ij × ps
ij (2)

By doing so, the connectivity model fully takes account of all possibilities of spa-
tiotemporal connections between patches, in either direct or indirect fashion, while also
acknowledging that not all paths will lead to a successful transportation for an individ-
ual. The overlay analysis was implemented in ArcGIS 10.2, the least-cost modelling was
implemented in Linkage Mapper V1.1 [47].

2.7. Connectivity Metrics

Network theory is a powerful approach to measure connectivity [48], and five network-
based metrics: the Probability of Connectivity (PC; Saura and Pascual-Hortal [23]), the
Equivalent Connected Area (ECA; Saura, Estreguil [49]), and the three PC′s fractions [50]
are popular connectivity metrics for conservation planning. These metrics were adapted
to spatiotemporal connectivity model by replacing the spatial-only dispersal probability
ps

ij in the original formulas with the spatiotemporal dispersal probability pst
ij (with the

subscript “st”). PC is defined as the probability that two individuals randomly placed
within a landscape fall into habitat patches that are reachable for each other across the
habitat network [23], and is formulated as:

PC =
∑n

i=1 ∑n
j=1 aiaj p∗ij
A2

l
(3)

where ai and aj denote the area of patch i and j, respectively; Al is the area of the study site;
p∗ij is the maximum product probability of all possibly spatial paths (ps

ij) for the spatial-
only connectivity case (original PC), or of all possibly spatiotemporal paths (pst

ij ) for the
spatiotemporal connectivity case (PCst).

ECA and ECAst indicate the amount of spatially reachable habitat and the amount of
spatiotemporally reachable habitat, and are formulated as the square root of the numerator
of PC and PCst, respectively.

Moreover, PC’s fractions are formulated as Equations (4)–(6):

PCintra =
∑n

i=1 a2
i

A2
l

(4)

PCdirect =
∑n

i=1 ∑n
j=1, i 6=j aiaj pij

A2
l

(5)

PCstep =
∑n

i=1 ∑n
j=1, i 6=j aiaj

(
p∗ij − pij

)
A2

l
(6)
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where PCintra corresponds to the intra-patch connectivity [51] provided by all patches
for the spatial-only case or by “Stable” patches for the spatiotemporal case (PCintra, st);
PCdirect corresponds to the inter-patch connectivity provided by directly spatial paths
(for the spatial-only case) or by directly spatiotemporal paths (for the spatiotemporal
case, PCdirect, st) without using stepping-stones; PCstep corresponds to the inter-patch
connectivity provided by indirect spatial paths (for the spatial-only case) or by indirectly
spatiotemporal paths (for the spatiotemporal case, PCstep, st) that pass through intermediate
stepping-stones. We also built a linear univariate model to present the relationship between
the amount of habitat change and the contribution of ECAst compared with ECA at t2.

3. Results
3.1. Urban Expansion and Habitat Change in Different Urban Development Scenarios

Under S1–S3 at 2020, the urban size is predicted to be 1716 km2, which is over twice
the size in 2000. The mega-city takes up 59.2% of the total urban land in S1 while only
43.1% in S3. New urban land is put to west and east Chongqing main city proper in S1,
while put to cities in northeast TGRA that are close to large and continuous tracts of forests
in S2 and S3 (Figure 5). From 2000 to 2010, the three focal species gained more habitats
and LIC had the largest habitat increment (+2.99%), but they suffer habitat loss in S1–S3 at
2020. Among all scenarios in 2020, S3 has the severest habitat shrinkage for all considered
species while slight habitat loss occurs in S1. Among all target species, L’s habitats are
more affected by urban expansion (Table 3).
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Table 3. The habitat amount (unit: km2) and the change rate (%, compared to the last time point) of each species under each
scenario.

Year
LIC LC L

Area Change Rate Area Change Rate Area Change Rate

2000 27504 N/A 26,843 N/A 26,043 N/A
2010 28241 2.68% 27,509 2.48% 26,823 2.99%

2020 S1 28160 −0.29% 27,414 −0.34% 26,703 −0.45%
2020 S2 28118 −0.43% 27,363 −0.53% 26,679 −0.54%
2020 S3 28045 −0.69% 27,309 −0.73% 26,627 −0.73%

3.2. The Spatial-Only and Spatiotemporal Connectivity in Different Scenarios

During 2000 and 2010, the amount of spatiotemporally reachable habitat (indicated by
ECAst, see Methods) is smaller than the amount of spatial-only reachable habitat (ECA) in
2010 for all target species (Figure 6). However, from 2010 to 2020, ECAst exceeds ECA in
2020 and this holds for any species under any scenario. The linear model suggests that,
when the amount of habitat increases or decreases by 1%, ECAst will be c. 0.5% lower or
higher than ECA at t2 (Figure 7). Additionally, for each species, ECA increases during
2000 and 2010 due to habitat expansion and decreases during 2010 and 2020 due to habitat
shrinkage, while ECAst is higher in the period from 2010 to 2020 than in the period from
2000 to 2010.

Land 2021, 10, x FOR PEER REVIEW 9 of 14 
 

Table 3. The habitat amount (unit: km2) and the change rate (%, compared to the last time point) 
of each species under each scenario. 

Year 
LIC LC L 

Area Change Rate Area Change Rate Area Change Rate 
2000 27504 N/A 26,843 N/A 26,043 N/A 
2010 28241 2.68% 27,509 2.48% 26,823 2.99% 

2020 S1 28160 −0.29% 27,414 −0.34% 26,703 −0.45% 
2020 S2 28118 −0.43% 27,363 −0.53% 26,679 −0.54% 
2020 S3 28045 −0.69% 27,309 −0.73% 26,627 −0.73% 

3.2. The Spatial-Only and Spatiotemporal Connectivity in Different Scenarios 
During 2000 and 2010, the amount of spatiotemporally reachable habitat (indicated 

by 𝐸𝐶𝐴 , see Methods) is smaller than the amount of spatial-only reachable habitat (𝐸𝐶𝐴) 
in 2010 for all target species (Figure 6). However, from 2010 to 2020, 𝐸𝐶𝐴  exceeds 𝐸𝐶𝐴 
in 2020 and this holds for any species under any scenario. The linear model suggests that, 
when the amount of habitat increases or decreases by 1%, 𝐸𝐶𝐴  will be c. 0.5% lower or 
higher than 𝐸𝐶𝐴 at 𝑡  (Figure 7). Additionally, for each species, 𝐸𝐶𝐴 increases during 
2000 and 2010 due to habitat expansion and decreases during 2010 and 2020 due to habitat 
shrinkage, while 𝐸𝐶𝐴  is higher in the period from 2010 to 2020 than in the period from 
2000 to 2010. 

 
Figure 6. Amount of reachable habitat from the spatial-only and the spatio-temporal perspectives (indicated by 𝐸𝐶𝐴 and 𝐸𝐶𝐴 , respectively) of each species under different land-use scenarios. 

Figure 6. Amount of reachable habitat from the spatial-only and the spatio-temporal perspectives
(indicated by ECA and ECAst, respectively) of each species under different land-use scenarios.



Land 2021, 10, 359 10 of 14Land 2021, 10, x FOR PEER REVIEW 10 of 14 
 

 
Figure 7. The linear model (n = 12) of the contribution of spatio-temporal connectivity 𝐸𝐶𝐴  compared with spatial-only 
connectivity 𝐸𝐶𝐴 at 𝑡  (formulated as 100% ∗ (𝐸𝐶𝐴 − 𝐸𝐶𝐴 𝑡 )/𝑡 ) and the percentage of habitat change. 

For contribution of 𝑃𝐶  fractions, when habitat area increases by c. 3% (corresponding 
to the habitat increment during 2000 and 2010), 𝑃𝐶  is c. 15% lower than 𝑃𝐶  for all 
focal species, whereas 𝑃𝐶  has relatively large contribution than 𝑃𝐶  (Figure 8), which 
ranges from 9% (for LIC) to 22% (for L). Under S1–S3, 𝑃𝐶  and 𝑃𝐶  have no dif-
ference and 𝑃𝐶  is slightly lower than 𝑃𝐶 , while remarkable contributions were 
found in 𝑃𝐶  for LC and L in scenarios with more dramatic habitat losses (i.e., in S2 
and S3). 

 
Figure 8. The scatter of 𝑃𝐶  fractions contributions compared with 𝑃𝐶  fractions (formulated as 100% � ( 𝑃𝐶 −𝑃𝐶  𝑡 )/𝑃𝐶  𝑡 ), 𝑖 denotes a fraction) and the percentage of habitat change. 

Figure 7. The linear model (n = 12) of the contribution of spatio-temporal connectivity ECAst

compared with spatial-only connectivity ECA at t2 (formulated as 100%∗(ECAst − ECA t2)/t2 ) and
the percentage of habitat change.

For contribution of PCst fractions, when habitat area increases by c. 3% (corresponding to
the habitat increment during 2000 and 2010), PCst

intra is c. 15% lower than PCintra for all focal
species, whereas PCst

step has relatively large contribution than PCstep (Figure 8), which ranges
from 9% (for LIC) to 22% (for L). Under S1–S3, PCst

intra and PCintra have no difference and
PCst

direct is slightly lower than PCdirect, while remarkable contributions were found in PCst
step for

LC and L in scenarios with more dramatic habitat losses (i.e., in S2 and S3).
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4. Discussion

The simulation results and consequential connectivity changes demonstrate that
regional urban development strategies have direct impacts on landscape fragmentation. In
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the TGRA, the strategy that concentrates new urban land in the mega-city helps to maintain
more connectivity for all target species than other strategies. Natural habitats near the
mega-city are much fewer than those near the other cities, so that concentrating urban land
in the mega-city reduces the encroachment to habitats. This finding agrees with the Urban-
rural Master Planning of Chongqing City, which articulates that the dominant function of
the northeast TGRA is biodiversity conservation, rather than urban development.

The impact also varies by species with different dispersal capabilities (Figure 5). Urban
expansion seems to have larger negative effects to species with long dispersal capacity,
which is contrary to findings in previous studies suggesting that such impact declined
with the rise in dispersal capacity [52,53]. However, the previous studies did not account
for whether a patch could be viewed as a habitat for a given species or not (i.e., the patch
size should be larger than the species home range size), hence the trade-off between the
intra-patch and the inter-patch connectivity (i.e., lower intra-patch connectivity provided
by fewer habitats vs. higher inter-patch connectivity provided by stronger dispersal ability)
was ignored. In our analysed landscape, the higher connectivity decline of long dispersers
mainly results from the habitat loss, rather than from the barrier effect and the loss of
stepping-stones habitat patches.

Spatiotemporal connectivity and spatial-only connectivity have significantly different
responses to urban expansion and the resulting land-use change. Spatial-only connectivity
has an immediate rise or fall when habitats are gained or lost (e.g., at 2010 & the three
scenarios at 2020). However, the spatiotemporal connectivity may still increase (e.g.,
ECAst in the period from 2010 to 2020; Figure 5) despite the habitat shrinkage in the
period (Table 3). This can be explained by the delayed biodiversity responses to land-
use change, which are commonly studied in extinction debt research [54,55]. Landscape
connectivity is recognised to play a crucial role in affecting relaxation times (i.e., time lags)
and their trajectories [56]. By incorporating temporal connections that do not exist from the
perspective of the purely spatial connectivity, habitats are linked in a spatiotemporal fashion.
Such dynamics are essential to acknowledge the contribution of connectivity to relaxation
times and to capture the lag effect, which cannot be embodied in purely spatial connectivity
models. Additionally, in a rapidly changing landscape, more spatiotemporal connected
habitat mosaics may be created [17], which can enhance rescue effects [57] or restore
local extinctions with recolonizations [55]. Hence, we demonstrated that, the connectivity
decline and the risk of species extinction due to urban expansion may be overestimated
by previous studies using temporally static connectivity models. The spatiotemporal
connectivity can better reflect the lag effect, can exert influences on duration and trajectory
of relaxation time, and can help to prevent local and/or global species extinctions through
the contribution of temporal connectivity, especially in landscapes where dramatic habitat
loss occurs, such as those experiencing rapid urbanization ones.

The significance of the spatiotemporal connectivity is directly affected by the net
habitat amount change. We found that the spatiotemporal connectivity exceeds the spatial-
only connectivity for the net habitat loss cases, whereas the opposite is true for the net
habitat gain cases. This finding agrees with Martensen, Saura [17]. The relationship could
be described by a linear model, in which every 1% of net habitat loss or gain could result in
nearly 0.5% of spatiotemporal connectivity positive or negative contribution compared with
spatial-only connectivity. We further investigated why the spatiotemporal connectivity
ends up having no additional contribution when additional habitats are gained, and
found that the reason lies in the difference between the spatiotemporally and the spatially
intra-patch connectivity. The intra-patch connectivity for the spatiotemporal case is only
provided “Stable” patches (see Methods), while for the spatial-only case, it is provided
by all patches in the end of term, which include both “Stable” and “Gain” patches in
the net habitat gain landscapes. Therefore, the latter case can provide more intra-patch
connectivity and further lead to a higher estimated connectivity.

Moreover, we noticed that the spatiotemporal connectivity mainly contributes to
improving connectivity through the stepping-stone effect (PCst

step, see Figure 8). This



Land 2021, 10, 359 12 of 14

shows that most of spatiotemporal connections occur through habitats that are gained or
lost in temporal steps and are used as stepping-stones in temporal paths [58]. This also
explains why the spatiotemporal connectivity has higher contribution for long dispersers
than for short dispersers, as long dispersers experience more dramatic habitat change in
our case, so that the increasing stepping-stone effect over time boosts a higher overall
spatiotemporal connectivity.

The spatiotemporal connectivity model should have broad applications in any dy-
namic landscape, while it also has some limitations. Future research that investigates
how to incorporate other species traits, such as longevity, into the current spatiotemporal
model will be desired. For example, a long-lived species may better take advantage of
spatiotemporal links across the habitat network than another short-lived species, as the
former have a longer temporal overlap with patch persistence in its lifespan than the latter.

5. Conclusions

To conclude, our results demonstrated that previous studies had overestimated the
impact of urban expansion to landscape connectivity. The analysis also highlighted the
need to shift from the spatial-only perspective to the spatiotemporal perspective, as it helps
to incorporate the delayed biodiversity response to land-use change in practical urban
planning. The spatiotemporal connectivity should find its place in many future sustainable
studies, such as biodiversity conservation in diverse climate scenarios.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/land10040359/s1. Table S1: The terminology, the formula and the description in the FLUE
model, Table S2: Movement cost characterizing the impedance effect of each land-use type.
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