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Abstract: Plants are affected by the features of their surrounding environment, such as climate
change and air pollution caused by anthropogenic activities. In particular, agricultural production
is highly sensitive to environmental characteristics. Since no environmental factor is independent,
the interactive effects of these factors on plants are essential for agricultural production. In this
context, the interactive effects of ozone (O3) and supraoptimal temperatures remain unclear. Here,
we investigated the physiological and stomatal characteristics of leaf mustard (Brassica juncea L.) in
the presence of charcoal-filtered (target concentration, 10 ppb) and elevated (target concentration,
120 ppb) O3 concentrations and/or optimal (22/20 ◦C day/night) and supraoptimal temperatures
(27/25 ◦C). Regarding physiological characteristics, the maximum rate of electron transport and triose
phosphate use significantly decreased in the presence of elevated O3 at a supraoptimal temperature
(OT conditions) compared with those in the presence of elevated O3 at an optimal temperature
(O conditions). Total chlorophyll content was also significantly affected by supraoptimal temperature
and elevated O3. The chlorophyll a/b ratio significantly reduced under OT conditions compared
to C condition at 7 days after the beginning of exposure (DAE). Regarding stomatal characteristics,
there was no significant difference in stomatal pore area between O and OT conditions, but stomatal
density under OT conditions was significantly increased compared with that under O conditions.
At 14 DAE, the levels of superoxide (O2

-), which is a reactive oxygen species, were significantly
increased under OT conditions compared with those under O conditions. Furthermore, leaf weight
was significantly reduced under OT conditions compared with that under O conditions. Collectively,
these results indicate that temperature is a key driver of the O3 response of B. juncea via changes in
leaf physiological and stomatal characteristics.

Keywords: Brassica juncea L.; ozone; physiological characteristics; stomatal characteristics; supraopti-
mal temperature

1. Introduction

Over the next 40 years, the demand for agricultural production is expected to increase
by at least 50% as a result of the projected growth of human population [1]. However,
agricultural production is highly sensitive to environmental characteristics [2]. According
to the latest Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report,
anthropogenic activities, such as rapid industrial development, have led to substantial
climate change due to increased greenhouse gas emission [3]. The global mean temperature
is expected to increase by 1.1 ◦C to 4.8 ◦C depending on future climate scenarios within
this century, which will further worsen global warming and its associated problems related
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to the ecosystems and crops [3,4]. Climate change is a critical threat to ecosystem health. In
particular, global warming may severely damage agricultural crops [4].

To combat global warming, the responses of agricultural crops to increased tempera-
tures in the future must be investigated. Prolonged exposure to elevated temperatures is
a critical threat to global crop production [5]. Depending on their developmental stages
and specific characteristics, plants respond differently to temperature. However, tempera-
tures exceeding the upper tolerance threshold of plants decrease their net photosynthetic
rate and total biomass [6]. Given the importance of temperature in determining net car-
bon metabolism [7], supraoptimal temperatures can negatively affect plant growth and
development. In general, high temperatures increase respiration and photorespiration
and possibly deactivate ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) to
limit photosynthesis. There are two reasons for the increased photorespiration and sup-
pressed photosynthesis under elevated temperatures. First, high temperature decreases
the specificity of RuBisCO for CO2 relative to that for O2, promoting rapid oxygenation.
Next, the solubility of O2 decreases more slowly than that of CO2 [8]. In addition, the
imbalance between photosynthesis and respiration impairs plant growth under elevated
temperatures [9].

Furthermore, elevated environmental temperatures can increase stomatal movement,
which is linked to primary metabolism [10]. Plant stomatal processes play pivotal roles
in carbon cycles [11]. In particular, stomatal conductance is one of the important factors
influencing plant net photosynthetic rate and carbon metabolism. However, previous
experiments assessing the direct dependence of stomatal conductance on temperature
have achieved inconsistent results [12]. In general, stomatal characteristics are strongly
affected by elevated temperatures [13]. Recent studies have reported that plants can
acclimate to warmer conditions by regulating the interaction between stomatal movement
and vapor pressure deficit to allow growth and photosynthesis [14,15]. As a result of these
physiological changes, plant growth and development are suppressed at supraoptimal
temperatures, which further reduces the total biomass and yield of crops [16].

In addition, tropospheric ozone (O3) concentration is expected to rise along with
global warming, since the levels of O3 precursors, such as NOx, CO, and volatile organic
compounds, are predicted to increase in the future [17]. Currently, O3 is more harmful to
agricultural crops than other air pollutants. Specifically, elevated O3 levels may impede
plant physiological processes, including photosynthesis [18]. Plants grown in the presence
of elevated O3 levels show decreased carbon metabolism [19]. In particular, photosynthetic
inhibition by O3 exposure has been attributed to reduced carboxylation efficiency, impaired
electron transport, and dysregulated stomatal movement. Consequently, the levels of
nonstructural carbohydrates, including sucrose and starch, are reduced [20]. In addition
to decreased carbon availability, O3-induced stress indirectly affects the carbon balance in
plant cells via reactive oxygen species (ROS) generation [21].

The rate of O3 influx to leaves is controlled by the stomatal aperture. Typically,
stomatal closure is recognized as a response to limit O3 uptake. Acute O3 exposure can
substantially decrease stomatal conductance via ROS accumulation in the guard cells [22].
Several studies using open-top chamber experiments have reported that O3 decreases
stomatal conductance, consequently limiting CO2 influx to leaves [23,24]. Nonetheless,
this mechanism is not supported by the results of other experiments. Some studies have
reported that stomata cannot rapidly close as a result of impairment following expo-
sure to high O3 concentrations [25,26]. Elevated O3 may delay the stomatal response by
delignifying the guard cells and reducing abscisic acid (ABA) sensitivity [26]. The ABA
response of stomata is associated with O3-induced ethylene emission [27]. Regardless of
the mechanisms involved, O3 is evidently an important determinant of plant physiology.

Individual effects of supraoptimal temperatures and O3 levels are unlikely to occur
in natural environments, because neither factor acts independently on plants [28]. As
such, tropospheric O3 concentration shows a linear relationship with atmospheric tem-
perature [29]. In addition, elevated O3 is related to increased temperature, which can
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directly affect the chemical kinetics and mechanisms of O3 formation [30]. Environmental
factors can synergistically affect plant responses, which cannot be predicted based on the
results of experiments on individual factors [31]. Although recent studies have proven the
individual effects of O3 or temperature on plants, their interactive effects remain relatively
understudied [5,7,19,32]. Furthermore, in addition to greenhouses, agricultural crops are
cultivated on open fields, where they are highly prone to exposure to elevated temperatures
and O3 concentrations. Therefore, the interactive effects of these two environmental factors
on crops warrant close attention.

To this end, the present study examined the individual and combined effects of supraop-
timal temperatures and elevated O3 concentrations in leaf mustard (Brassica juncea L.), which
is widely cultivated in East Asia. Leaf mustard B. juncea is a biennial vegetable crop usually
used for edible leaves and seeds to make mustard [33]. The effects of elevated O3 have been
largely researched on Brassica species throughout the world [34–37]. Singh et al. [37] reported
observed decreases in photosynthetic rate and nutrient levels of Brassica campesteris L. var.
Kranti under ambient O3 ranging from 40 to 52 ppb at field condition. Singh et al. [38] also
studied the synergistic effects of elevated O3 and CO2 on yield and photosynthetic rate of
Brassica juncea. There is not sufficient research to assess the effects of O3 and temperature
on the physiological changes of B. juncea. Specifically, we investigated the effects of optimal
and supraoptimal temperatures and/or ambient and elevated O3 concentrations on the phys-
iological and stomatal characteristics of leaf mustard and observed whether supraoptimal
temperatures alter the O3 responses of plants by regulating stomatal movement and carbon
metabolism. We hypothesized that (i) the interactive effects of supraoptimal temperature
and elevated O3 concentration on the primary metabolism of leaf mustard are negative and
stronger than their individual effects and (ii) supraoptimal temperatures worsen O3 damage
by regulating stomatal movement in B. juncea.

2. Materials and Methods
2.1. Plant Material and O3 Fumigation Chamber

Seedlings of leaf mustard (B. juncea), which is widely cultivated in East Asia, were
used as the test plant material in this study. Seeds were germinated and cultivated for
2 weeks in a closed-type plant factory (temperature: 20 ± 2 ◦C; relative humidity: 60 ± 5%;
light intensity: 200 ± 20 mol m−2 s−1; day length: 16 h) at the University of Seoul, Seoul,
Korea (37◦34′57.5” N, 127◦03′39.1” E). Thereafter, the seedlings were transplanted into
3 L plastic pots filled with a growing medium containing perlite, vermiculite, and peat
moss (Green Partner, Nongwoo Bio, Suwon, Korea). All test seedlings were allowed to
acclimatize for a week in the chambers, which were enclosed by glass, under sunlight
before starting the treatments.

The present experiment was performed in growth chambers (Growth chamber, Koito
Industries, Yokohama, Japan) equipped with an O3 generator (ON-1-2, Nippon Ozone
Co., Tokyo, Japan). The fumigation system has been described elsewhere [39]. For each
test, 15 plants with similar growth conditions were placed in a control chamber with a
charcoal filter, and an additional 15 plants were placed in a treatment chamber with an O3
fumigator. All plants were irrigated well and randomly placed everyday throughout the
experiment. Leaves were sampled twice at 7 and 14 days after the beginning of exposure
(DAE) between 09:00 and 12:00 h. The experiment lasted from March to April 2018. Fully
expanded leaves were used to analyze the O3 response of physiological and stomatal
characteristics. Samples were stored at − 80 ◦C until analysis.

The treatment conditions in the growth chamber are summarized in Table 1. The
elevated O3 concentration used was based on the hourly average maximum O3 concen-
tration from March to July 2016 measured in South Korea [40]. The optimal temperature
was 22 ◦C, since Brassica spp. grow the best within the temperature range of 22–25 ◦C
according to previous reports [41–43]. The supraoptimal temperature was 5 ◦C above the
optimal temperature range for leaf mustard considering one of the moderate scenarios for
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2100 projected previously [3]. The test plants were exposed to O3 for 8 h daily from 09.30
to 17.30 h while controlling the temperature and relative humidity for 24 h (Figure 1).

Table 1. Controlled environmental conditions in each treatment chamber in the experiment.

Treatment Notation Ozone Concentration
(ppb)

Temperature
(◦C, Day/Night)

Charcoal-filtered O3 + optimal temperature C 11 ± 3.4 22/20
Charcoal-filtered O3 + supraoptimal temperature T 13 ± 3.9 27/25

Elevated O3 + optimal temperature O 105.6 ± 9.2 22/20
Elevated O3 + supraoptimal temperature OT 103 ± 9.9 27/25

Values are presented as mean ± SD (n = 5).

Figure 1. Daily variation in ozone concentration (solid line) and temperature (dash line) in each treatment chamber. C:
optimal temperature + ambient O3; T: supraoptimal temperature + ambient O3; O: optimal temperature + elevated O3; OT:
supraoptimal temperature + elevated O3.

2.2. Physiological Characteristics

Photosynthetic rate curves were plotted against intercellular CO2 concentration (A/Ci)
using a portable photosynthesis measurement system (Li-6400 XT, LI-COR Inc., Lincoln, NE,
USA) with an LED source (6400-02B, LI-COR Inc., Lincoln, NE, USA). Measurements were
performed on the second to fourth fully expanded leaves in each treatment group, with
CO2 concentration settings of 50, 100, 150, 200, 400, 600, 800, 1000, and 1200 µmol mol−1,
tested under photosynthetically active radiation of 1000 µmol m−2 s−1, block temperature
of 20 ◦C, and relative humidity of 50–60%. The maximum reaction velocity of RuBisCO
for carboxylation (Vcmax), maximum rate of electron transport (Jmax), triose phosphate use
(TPU), daytime respiration (Rd), and mesophyll conductance (gm) were calculated based on
the response curves using the A/Ci curve fitting utility program described previously [44].

Chlorophyll a (Chl a) fluorescence was determined for the second to fourth fully
developed leaves using Pocket PEA software (PEA plus V1.10, Hansatech Instrument
Ltd., Norfolk, UK) between 10.00 and 12.00 h. Before measurement, leaves were adapted
to darkness using leaf clips for 30 min. A saturating pulse at an intensity of 3500 µmol
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m−2 s−1 (peak wavelength, 627 nm) was applied to the upper surface of the test leaves to
measure the minimum fluorescence (Fo), maximum fluorescence (Fm), and OJIP transients.
The maximum photochemical efficiency of photosystem II (PS II) was determined as the
ratio of variable fluorescence (Fv = Fm − Fo) to maximum fluorescence (Fv/Fm).

The measured values of OJIP transients indicate Fo intensity at 50 µs when all PS II
reaction centers (RCs) are open (O-step), fluorescence intensity at 2 ms (J-step), fluorescence
intensity at 30 ms (I-step), and Fm intensity when all PS II RCs are closed (P-step). The JIP
parameters were calculated to identify the extent of damage to the electron acceptor sites
of PS II by O3 according to the JIP test equations [45,46]. The value of each JIP parameter is
listed in Table S1.

2.3. Chlorophyll Content

Chl a, chlorophyll b (Chl b), and total chlorophyll (Chl a + Chl b) content was estimated
as previously described [47]. Fresh leaves (0.1 g) were extracted in 10 mL of 80% (v/v)
acetone for 14 days at 4 ◦C. The chlorophyll content was quantified using a microplate
reader (Epoch Microplate Spectrophotometer, Synergy, BioTek, Winooski, VT, USA) at an
absorbance (A) of 663, 645, and 470 nm. Chlorophyll content was determined using the
following formulas:

Chlorophyll a (mg g−1 FW) = 12.7 × A663−2.69 × A645
Chlorophyll b (mg g−1 FW) = 22.9 × A645−4.68 × A663

Total chlorophyll (mg g−1 FW) = 20.2 × A645 + 8.02 × A663.
(1)

In practice, the phytol chain of chlorophyll molecules can be easily cleaved with the
addition of 80% acetone [48]. We did not consider the phytol chain cleavage, because
phytol has the same absorption and light spectra as chlorophyll and thus does not affect
the values obtained using this method [49].

2.4. Stomatal Characteristics

For the measurement of stomatal characteristics, leaf samples were harvested at
14 DAE between 09:00 and 12:00 h and freeze-dried using a lyophilizer (FD 8508, ilShin-
biobase CO. Ltd., Dongducheon, South Korea). Stomatal density per leaf and stomatal size
were evaluated via field emission scanning electron microscopy (FESEM; SU-70, Hitachi,
Tokyo, Japan). Stomatal density was determined based on the number of stomata obtained
by FESEM.

2.5. Hydrogen Peroxide (H2O2) and Superoxide (O2
−) Accumulation

H2O2 and O2
- accumulation in sampled leaves was measured as described previ-

ously [50], with slight modification. To detect H2O2, leaf discs were cut with a cork borer
(diameter, 2 cm), vacuum-infiltrated in 1 mg ml−1 of 3,3-diaminobenzidine (DAB) in 0.2 M
HCl (pH 3.8), and incubated at 25 ◦C for 4 h in the dark. To detect O2

-, the leaf discs were
cut (diameter, 2 cm), vacuum-infiltrated in 50 mM potassium phosphate buffer (pH 7.8)
containing 0.1% (w/v) nitroblue tetrazolium (NBT), and incubated at 25 ◦C for 20 min in the
dark. For both measurements, leaf discs were immersed in 96% (v/v) ethanol for 20 min
at 70 ◦C to remove chlorophyll. After cooling, the leaf discs were stored in 70% (v/v)
glycerol. The leaf discs were photographed and observed under a stereomicroscope (Leica
M275, Leica Microsystems, Mannheim, Germany). The stained areas were calculated as
the proportion of pixels in the stained area to the total pixels using Adobe Photoshop CS6
(Adobe Inc., Mountain View, CA, USA).

2.6. Growth Characteristics

All plants in each treatment chamber were collected at 14 DAE. Five plants per
treatment were randomly selected to determine leaf fresh and dry weight, leaf number,
and leaf area. Leaf area was measured on three fully expanded leaves of five plants using
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winFolia (Regent Instruments Inc., Sainte-Foy, QC, Canada). Leaf dry weight was obtained
by drying the samples for 48 h at 60 ◦C in an oven (HK-300DO, HUKO FS, Seoul, Korea).

2.7. Statistical Analysis

Effects of O3 concentration, temperature, sampling date, and their interactions on
the physiological and stomatal characteristics of B. juncea were analyzed using two-way
or three-way analysis of variance (ANOVA). Tukey’s honestly significant difference test
(p ≤ 0.05) was used to compare the differences among the parameters tested. Significance
of differences in values at 7 and 14 DAE among various treatments was tested using inde-
pendent t-test. All analyses were performed using SPSS Statistics 25 (SPSS Inc., Chicago,
IL, USA). Values in figures and tables are presented as mean ± SD.

3. Results
3.1. A/Ci Curve Response

At 7 DAE, Vcmax was significantly decreased under ambient O3 + supraoptimal tem-
perature (T) (by 19.3%) and elevated O3 + supraoptimal temperature (OT) (by 36.2%)
conditions compared with that under ambient O3 + optimal temperature (C) conditions. At
14 DAE, Vcmax under O and OT conditions was significantly reduced by respectively 44.6%
and 54.3% compared with that under C conditions. Therefore, supraoptimal temperatures
did not significantly affect the Vcmax of B. juncea at 14 DAE (Figure 2). Three-way ANOVA
showed that Vcmax was significantly affected by all individual factors and their interactions
except for the temperature × O3 × sampling date interaction (Table S2).

At 7 and 14 DAE, Jmax under OT conditions was significantly decreased by respec-
tively 34.9% and 67.9% compared with that under C conditions. Furthermore, Jmax under
O conditions was significantly reduced by 55.05% compared with that under C conditions
(Figure 2). Three-way ANOVA showed that two individual factors, namely elevated O3
and sampling date, significantly affected Jmax. Moreover, the interactions among factors
also significantly affected Jmax, except the temperature × O3 × sampling date interaction
(Table S2).

At 7 DAE, there were no significant differences in TPU under O, OT, and T conditions
compared with that under C conditions; however, at 14 DAE, TPU under O (by 31.6%) and
OT (by 43.4%) conditions was significantly reduced compared with that under C condi-
tions (Figure 2). Three-way ANOVA showed that TPU was significantly affected by two
individual factors, namely elevated O3 and sampling date, as well as by interactions among
all factors, except the temperature × O3 × sampling date interaction (Table S1).

At 7 DAE, Rd was increased under OT conditions compared with that under C and
O conditions (by 56.3% and 53.3%, respectively). At 14 DAE, Rd under T conditions
was significantly increased (by 44.8%) compared with that under C conditions (Figure 3).
Three-way ANOVA showed that elevated temperature strongly affected Rd (Table S2).
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Figure 2. The maximum rate of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) carboxylation, electron
transport, and triose phosphate use of Brassica juncea L. under different ambient and supraoptimal temperatures and O3

concentrations at 7 and 14 DAE. Data are plotted as mean ± SD (n = 5). Different letters indicate significant differences
among treatments at p < 0.05 according to Tukey’s honestly significant difference test. C: ambient O3 + optimal temperature;
T: ambient O3 + supraoptimal temperature; O: elevated O3 + optimal temperature; OT: elevated O3 + supraoptimal
temperature; DAE: days after the beginning of exposure.
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Figure 3. Daytime respiration and mesophyll conductance of Brassica juncea L. under different ambient and supraoptimal
temperatures and O3 concentrations at 7 and 14 DAE. Data are plotted as mean ± SD (n = 5). Different letters indicate
significant differences among treatments at p < 0.05 according to Tukey’s honestly significant difference test. C: ambient O3

+ optimal temperature; T: ambient O3 + supraoptimal temperature; O: elevated O3 + optimal temperature; OT: elevated O3 +
supraoptimal temperature; DAE: days after the beginning of exposure.

Moreover, gm was significantly reduced under OT conditions compared with that
under C conditions. Similarly, gm under OT conditions was significantly reduced by 47.4%
compared with that under T conditions (Figure 3). Three-way ANOVA indicated that gm
was significantly affected by the sampling date alone (Table S2).

3.2. Chl Content

At 14 DAE, total Chl content was significantly decreased under O (by 23.2%) and OT
(by 55.3%) conditions compared with that under C conditions. However, at 7 DAE, total
Chl content was significantly reduced under OT (by 36.2%) conditions alone (Figure 4).
Total Chl content was affected by two individual factors, namely supraoptimal temperature
and O3, whereas sampling date and interactions among all factors did not significantly
affect total Chl content, except the O3 × sampling date interaction (Table S2).

Chl a/b ratio was significantly reduced under OT conditions compared with that
under C conditions at both 7 (by 25.0%) and 14 (by 25.7%) DAE (Figure 4). Three-way
ANOVA showed no significant effect of any factor or interaction on this ratio except for the
temperature × sampling date interaction (Table S2).
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Figure 4. Total chlorophyll content and chlorophyll a/b ratio of Brassica juncea L. under different ambient and supraoptimal
temperatures and O3 concentrations at 7 and 14 DAE. Data are plotted as mean ± SD (n = 5). Different letters indicate
significant differences among treatments at p < 0.05 according to Tukey’s honestly significant difference test. C: ambient O3

+ optimal temperature; T: ambient O3 + supraoptimal temperature; O: elevated O3 + optimal temperature; OT: elevated O3 +
supraoptimal temperature; DAE: days after the beginning of exposure.

3.3. Chl a Fluorescence

In the OJIP transient curves of B. juncea, each step showed a different response to
various treatments. Overall, the expected degradation of the photosynthetic apparatus
in plants grown under O and OT conditions was observed in the OJIP transient curves.
Fluorescence at the J-step was significantly reduced under OT conditions compared with
that under C conditions at 7 and 14 DAE (by 12% and 23.7%, respectively). Fluorescence
at the I-step was also significantly decreased under OT conditions compared with that
under C conditions at 14 DAE (by 28.8%). Moreover, relative fluorescence at the P-step was
decreased under O and OT conditions (by 25% and 33%, respectively) compared with that
under C conditions at 14 DAE (Figure 5B). The values of JIP parameters estimated based
on the OJIP transient curves of Chl a fluorescence were significantly different between
the test and controls plants, and these values were used to construct the spider plots
shown in Figure 6. There were no significant differences among treatments in terms
of phenomenological fluxes per excited cross-section (CS) at both 7 and 14 DAE. The
maximum quantum yield of PS II (ϕPO) was significantly decreased, but the quantum
yield of energy dissipation (ϕDO), electron transport flux per RC (ETO/RC), and dissipated
energy flux per RC (DIO/RC) were significantly increased under OT conditions compared
with that under C conditions at 7 DAE. The absorption flux, trapped energy flux, and
electron transport flux per RC under O conditions were significantly increased compared
with those under C conditions at 7 DAE. Compared with controls, test plants showed
significantly reduced ϕPO, QA reducing PS II RC/CS, and performance index assessed on
an absorption basis (PIABS) but significantly increased ϕDO, ETO/RC, and DIO/RC under
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both O and OT conditions at 7 DAE. The estimated initial slope of the fluorescence transient
(Mo), relative variable fluorescence at 2 ms (VJ), absorption flux per RC (ABS/RC), and
trapped energy flux per RC (ETO/RC) were significantly increased under O conditions
compared with those under C conditions at 14 DAE (Figure 6).

Figure 5. (A) Chlorophyll a fluorescence OJIP transient curves and (B) J-, I-, and P-steps derived from chlorophyll a
fluorescence OJIP transient curves of Brassica juncea L. under different ambient and supraoptimal temperatures and O3

concentrations at 7 and 14 DAE. The J- (intensity at 2 ms), I- (intensity at 30 ms), and P (maximum intensity when all PS II
reaction centers (RCs) are closed) steps in the figure indicate fluorescence intensity at these points relative to that at the
O-step (when all PS II RCs are open). Data are plotted as mean ± SD (n = 5). Different letters indicate significant differences
among treatments at p < 0.05 according to Tukey’s honestly significant difference test. C: ambient O3 + optimal temperature;
T: ambient O3 + supraoptimal temperature; O: elevated O3 + optimal temperature; OT: elevated O3 + supraoptimal
temperature; DAE: days after the beginning of exposure.
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Figure 6. Spider plots of JIP parameters derived from chlorophyll a fluorescence OJIP transient curves of Brassica juncea
L (see Table S1 for definitions) under different ambient and supraoptimal temperatures and O3 concentrations at 7 and
14 DAE. The parameters values of plants grown under control conditions were set to 1. Only parameter values that were
significantly different from those under C conditions at p < 0.05 according to Tukey’s honestly significant difference test are
shown in the figure. C: ambient O3 + optimal temperature; T: ambient O3 + supraoptimal temperature; O: elevated O3 +
optimal temperature; OT: elevated O3 + supraoptimal temperature; DAE: days after the beginning of exposure.

3.4. Stomatal Characteristics

The stomatal appearance differed among plants exposed to supraoptimal temperature,
elevated O3 concentration, or a combination of both (Figure 7A). Stomatal density on the
abaxial leaf surface in B. juncea was decreased (by 45%) under O conditions compared
with that under C conditions. However, there were no significant differences in stomatal
density under T, OT, and C conditions (Figure 7B). The stomatal pore area was slightly
increased by supraoptimal temperatures, albeit not significantly. The stomatal pore area
was significantly decreased under O (by 57.8%) and OT (53.9%) conditions compared with
that under C conditions (Figure 7B). Two-way ANOVA showed that individual factors
and their interactions significantly affected stomatal density, whereas only ambient and
elevated O3 concentration significantly affected stomatal pore area (Table S2).

3.5. H2O2 and O2
− Accumulation

DAB and NBT staining showed ROS accumulation in B. juncea at 14 DAE (Figure 8A).
The DAB-stained area, representing H2O2 accumulation, was significantly increased under
O and OT conditions compared with that under C conditions. However, there were no
significant differences between C and T conditions at 14 DAE (Figure 8B). In addition, there
were no significant differences between O and OT conditions. Following NBT staining at 14
DAE, blue spots indicating O2

- accumulation were the most abundant under OT conditions
(Figure 8A). NBT staining revealed O2

- accumulation in the leaves of plants under O and
OT conditions at 14 DAE. Blue spots resulting from a reaction between O2

- and NBT were
the most abundant in the leaves of plants under OT conditions (Figure 8B). Two-way
ANOVA showed that all individual factors, but not their interactions, significantly affected
H2O2 accumulation. Moreover, all individual factors and their interactions significantly
affected O2

- accumulation (Table S2).
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Figure 7. (A) Field emission scanning electron micrographs (A–H) and (B) stomatal density and stomatal pore area of
Brassica juncea L. under different ambient and supraoptimal temperatures and O3 concentrations at 14 DAE. Micrographs
under control conditions (A,E); at supraoptimal temperature and ambient O3 (B,F); at optimal temperature and elevated
O3 (C,F); and at supraoptimal temperature and elevated O3 (D,H) at 500 and 5000× magnification, respectively. (a–d)
Scale bar = 100 µm. (e–h) Scale bar = 10 µm. Data are plotted as mean ± SD (n = 5). Different letters indicate significant
differences among treatments at p < 0.05 according to Tukey’s honestly significant difference test. C: ambient O3 + optimal
temperature; T: ambient O3 + supraoptimal temperature; O: elevated O3 + optimal temperature; OT: elevated O3 +
supraoptimal temperature; DAE: days after the beginning of exposure.
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Figure 8. (A) Hydrogen peroxide (H2O2) and superoxide (O2
−) accumulation and (B) percentage of 3,3′-diaminobenzidine

(DAB)- and nitroblue tetrazolium (NBT)-stained leaf area of Brassica juncea L. under different ambient and supraoptimal
temperatures and O3 concentrations at 14 DAE. (a–d) Histochemical detection of H2O2 in B. juncea leaves by DAB staining.
(e–h) Histochemical detection of O2

- in B. juncea leaves by NBT staining. H2O2 and O2
- accumulation under control

conditions (a,e); at supraoptimal temperature and ambient O3 (b,f); at optimal temperature and elevated O3 (c,g); and at
supraoptimal temperature and elevated O3 (d,h) at 14 DAE. Scale bars = 0.5 mm. Data are plotted as mean ± SD (n = 5).
Different letters indicate significant differences among treatments at p < 0.05 according to Tukey’s honestly significant
difference test. C: ambient O3 + optimal temperature; T: ambient O3 + supraoptimal temperature; O: elevated O3 + optimal
temperature; OT: elevated O3 + supraoptimal temperature; DAE: days after the beginning of exposure.

3.6. Plant Growth Characteristics

Leaf fresh weight was significantly decreased under T, O, and OT (by 26.5%, 57.3%,
and 93.4%, respectively) conditions compared with that under C conditions. Leaf fresh
weight under OT conditions was significantly decreased compared with that under O
conditions. Conversely, leaf dry weight was not significantly different between OT and O
conditions (Figure 9). Leaf dry weight was significantly decreased under T, O, and OT (by
34.7%, 48.3%, and 55.8%, respectively) conditions compared with that under C conditions.
Leaf number and area were significantly decreased under O and OT conditions compared
with those under C conditions (Figure 9). However, there were no significant differences
between O and OT conditions. Two-way ANOVA showed that leaf fresh and dry weight
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was significantly affected by all individual factors and their interactions, whereas leaf
number and area were not affected by any factor or interaction (Table S2).

Figure 9. Leaf fresh weight, dry weight, number, and area of Brassica juncea L. under different ambient and supraoptimal
temperatures and O3 concentration at 14 DAE. Data are plotted as mean ± SD (n = 5). Different letters indicate significant
differences among treatments at p < 0.05 according to Tukey’s honestly significant difference test. C: ambient O3 + optimal
temperature; T: ambient O3 + supraoptimal temperature; O: elevated O3 + optimal temperature; OT: elevated O3 +
supraoptimal temperature; DAE: days after the beginning of exposure.

4. Discussion

Given the potential effects of supraoptimal temperature and elevated O3 on plants,
the present study explored the impact of these environmental factors on the physiolog-
ical and stomatal characteristics of B. juncea. We demonstrated that the interactions of
supraoptimal temperature and elevated O3 negatively affected leaf mustard rather than
the individual factors.

Regarding physiological characteristics, B. juncea leaves showed lower photosynthetic
capacity under OT conditions than under other conditions, as indicated by Vcmax, Jmax, and
TPU. Measurements of Vcmax and Jmax, which are indicators of biochemical capacity, are
typically based on intercellular CO2. Vcmax decreased under O and OT conditions compared
with that under C conditions at both 7 and 14 DAE (Figure 2). This result is consistent with
previous reports on the effects of O3 on plant physiological characteristics [51,52]. Previous
research found a significant reduction in net photosynthesis (Pn) of B. juncea under O and
OT conditions compared to C at 7 and 14 DAE. Furthermore, there was also significant
difference in Pn between O and OT conditions at 14 DAE [39]. Vcmax indicates the intrinsic
photosynthetic capacity as well as RuBisCo activity and kinetics, and Jmax indicates the
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rate of RuBP regeneration via electron transport [44,53]. Biochemical limitations related
to RuBisCo are associated with reduced CO2 assimilation in the presence of elevated
O3 [54,55]. In general, O3 reduces the RuBisCo protein content of plants by producing
ethylene [56]. O3 stress impairs the photosystems (PSs), thereby generating the energy
required to produce NADPH (nicotinamide adenine dinucleotide phosphate) and ATP
(adenosine triphosphate) [57]. Photosynthetic capacity is linked to leaf nitrogen (N) content
since the majority of leaf N comes from thylakoid proteins and stromal enzymes [58].
O3 can result in lower N content per leaf area, higher investment of N in cell walls,
and a reduction of leaf N allocation to photosynthetic processes [59]. However, in the
present study, there were no significant differences in Vcmax between C and T conditions
at 14 DAE (Figure 2). This result suggests that supraoptimal temperature (5 ◦C above
the optimal) did not affect Vcmax as much as elevated O3 did. The same tendency was
observed for Jmax and TPU. Similarly, Thwe et al. [57] have reported a strong correlation
between Vcmax and Jmax in tomato under O3 stress. However, some previous studies have
reported that a minor limitation to RuBisCo activation is closely related to moderately high
temperatures [60,61]. Indeed, in the present study, Jmax and TPU were not significantly
affected by supraoptimal temperatures alone (Table S2). Increased Jmax and TPU were
observed under T conditions compared with those under C conditions (Figure 2). By
shifting the operating range beyond the optimal temperature, short-term supraoptimal
temperature of about 5 ◦C may decrease Pn [62]. In previous study, Pn of B. juncea under
elevated temperature was significantly decreased compare to that in optimum temperature
at 7 DAE [39]. This form of acclimation, which results in a general up-regulation of leaf
N and photosynthetic proteins, is based on the availability of N resources for higher
investment in the photosynthetic apparatus [62]. Under sustained high temperatures, most
plants can acclimate their photosynthetic traits. Through thermal acclimation, metabolic
activities are modified to compensate for temperature changes, resulting in metabolic
homeostasis [63]. Three-way ANOVA on the response parameters of A/Ci curves indicated
that Rd was significantly affected by supraoptimal temperature. The rates of enzymatic
processes involved in Rd are enhanced by high temperatures [64]. An increase in Rd along
with a decrease in net photosynthesis reduces carbohydrate availability to plants [65].
In this study, there were no significant differences in these parameters in the presence
of elevated O3. Contrary to our results, Calatayud et al. [51] reported increased Rd in a
Mediterranean endemic plant exposed to an O3 concentration of 70 ppb. In this study,
significant reductions in gm were observed under O conditions at 14 DAE and under OT
conditions at both 7 and 14 DAE compared with the values under C conditions (Figure 3).
Several studies on soybean, birch, and poplar have reported negative effects of elevated O3
on gm [66–68]. As such, gm is affected by O3 conductance through cell wall, intercellular
air spaces, and intracellular fluid [69]. Elevated O3 likely reduces gm via mechanisms
involving the altered levels, shape, and position of the chloroplasts and thickening of the
cell wall [70]. gm is closely correlated with stomatal conductance (gs), since CO2 and H2O
are likely to share a common pathway in leaves [71]. In a previous study, a result was that
a rapid transient decrease in gs can occur when O3 level was elevated as with gm. The gs of
B. juncea under OT condition was found to be significantly lower than that of plants under
T condition [39].

Reduced total Chl content is considered an indicator of O3-induced biochemical
damage [72]. In this study, total Chl content was decreased under O and OT conditions
compared with that under C conditions at 14 DAE. Moreover, total Chl content under OT
conditions was lower than that under T and O conditions at 14 DAE (Figure 4). A decrease
in the total Chl content of leaves following O3 exposure has been reported previously [73,74].
O3 indirectly affects plant Chl content by accelerating leaf senescence [75]. A decrease in
total Chl content generally reduces CO2 assimilation [76], and there is a strong correlation
between total Chl content and photosynthetic rate [77].

A significant decrease in the Chl a/b ratio was observed under OT conditions com-
pared with that under C conditions at 7 and 14 DAE (Figure 4). These results regarding
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the relative O3 sensitivities of Chl a and b are overall contrary to previous reports [78].
There was a positive correlation between the ratio of Chl a to b and the ratio of PS II to
light-harvesting chlorophyll a/b protein complex-II (LHCII) level. LHCII is the major
light-harvesting complex in plants that exclusively contains Chl b and, accordingly, has a
low Chl a/b ratio [79]. Czuba and Ormrod [80] reported that the Chl b content of Lepidium
sativum L. was decreased to a greater extent than its Chl a content by O3. However, greater
reductions in Chl a content than in Chl b content by O3 have also been reported in other
plants [81].

In this study, OJIP transient curves were plotted and compared as indicators of pho-
toinhibition in leaves under all treatments. Photoinhibition decreases the photosynthetic
activity by reducing light-induced carbon assimilation [82]. Overall, the slope of OJIP curve
significantly decreased from the J- to P-step under OT conditions at 7 and 14 DAE, whereas
this decrease was only observed from the I- to P-step at 14 DAE (Figure 5A). These results
indicate that the function of PS II RCs was more severely inhibited under OT conditions
than under O conditions. Marzuoli et al. [83] reported that elevated O3 levels significantly
decreased PS II photochemical efficiency and electron flow in lettuce. O3 induced ROS
damage PS II RCs [84]. According to the OJIP transient curves in this study, elevated
temperature did not negatively affect PS II RCs. However, ϕPO was significantly decreased
under OT conditions at both 7 and 14 DAE (Figure 6). This result is consistent with previous
reports on the effects of elevated O3 [57,85]. The observed ϕPO reduction may be a result
of enhanced non-photochemical processes of PS II light-harvesting antennae, which are
related to the suppression of photochemical quenching and photodamage of PS II RCs [86].
In addition, ϕDO was increased under O and OT conditions at 7 and 14 DAE (Figure 6).
The observed increase in ϕDO (ϕDO = Fo/Fm) was reflected in the increased value of Fo,
which was perhaps due to the inactivation of some PS II RCs [87].

Stomata play a crucial role in determining the O3 influx to leaves, because the majority
of the O3 enters the leaf via stomatal pores [88]. Since O3 enters leaves of the plant through
stomata, O3 influx are highly dependent on stomatal density and conductance [89]. At 7
DAE, O3 influx of B. juncea under OT condition was significantly higher than plants grown
under O condition, as gs significantly increased under OT compared to those in O [39].
Elevated O3-induced oxidative stress also results in ultrastructural changes to mesophyll
cells and their cell walls in plants, limiting O3 entering into the leaves [90]. In a previous
study, 100 ppb of O3 led to the collapse of some epidermal cells adjacent to the stomata,
and 150 ppb of O3 led to the complete collapse of epidermal cells and loss of leaf structural
integrity [91]. Consistent with previous reports, we observed a collapse of stomatal shape
under O conditions (Figure 7A). Moreover, the stomatal density in leaf mustard under O
conditions was significantly lower than that under other conditions at 14 DAE (Figure 7B).
Neufeld et al. [92] reported that 100 ppb of O3 tended to reduce stomatal density, suggesting
structural changes in plants. Reductions in stomatal width and pore area in the presence
of elevated O3 have been confirmed in previous studies [93,94]. The stomatal density of
B. juncea was affected by supraoptimal temperatures, elevated O3, and their interaction,
while its stomatal pore area was only affected by elevated O3 (Table S2). Some previous
studies have reported increased stomatal densities at supraoptimal temperatures [95,96].
Some plant species can develop leaves with different stomatal density in supraoptimal
temperature, which can affect gs [97]. gs of B. jnucea under T and OT condition was
significantly higher that in the C and O condition at 7 DAE, respectively. However, no
significant difference in gs between C and T condition was observed at 14 DAE, which was
consistent with the result of stomatal density of B. juncea at 14 DAE [39].

Furthermore, increased H2O2 and O2
- accumulation observed under O and OT condi-

tions in this study suggests O3 injury in B. juncea grown under these conditions. The visible
injury of O3 (necrosis and chlorosis) was observed on the leaves of plants grown under
O and OT at both 7 and 14 DAE (Figure S1). The first O3 injury symptoms on the surface
of leaves under OT conditions at 3 DAE and those under O at 5 DAE were reported [39].
A major effect of O3 on plants is ROS generation. ROS production in plant cells is closely
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related to the O3 flux and oxidative stress tolerance of plants [98,99]. ROS production is
a critically harmful process and is also a key component of the abiotic stress responsive
signaling networks of plants [100]. In this study, DAB and NBT staining indicated signifi-
cant H2O2 and O2

- accumulation, respectively, as a consequence of elevated O3 (Table S2).
These results indicate that long-term exposure to elevated O3 can augment H2O2 and
O2

- production. Furthermore, our results showed an interactive effect of elevated O3 and
supraoptimal temperature on O2

- accumulation, but not on H2O2 accumulation, in plant
cells. O2

- produces a strong effect on carbon assimilation, and it is a vital precursor of other
ROS as an unstable radical with a high redox potential [101]. H2O2 can be produced from
O2

- via Mn-SOD [102].
In this study, we focused on the leaf growth response of B. juncea, because it is one

of the most widely consumed leafy vegetables in East Asia. A significant decrease in
leaf fresh and dry weight under O and OT conditions was observed (Figure 9). Many
studies have indicated that prolonged O3 exposure is typically detrimental to leaf growth
and development [103], which is possibly due to O3-induced damage to mesophyll cells
upon uptake into the plants [104]. Li et al. [19] reported that the growth of eggplant
(Solanum melongena L.) was significantly reduced in the presence of elevated O3. Cell death
as well as suppression of photosynthetic and stomatal activity in leaves can decrease
the biomass and yield of leafy vegetables [105]. Additionally, leaf area was significantly
reduced under O and OT conditions (Figure 9). The suppression of leaf primary metabolism
leads to a reduction in leaf area [18].

5. Conclusions

By studying the responses of leaf physiological and stomatal characteristics, we
demonstrated that elevated O3 caused more severe damage in leaf mustard (B. juncea)
at supraoptimal temperatures than at optimal temperatures. Stomatal density, which is
related to O3 influx to leaves, was higher in the presence of elevated O3 at supraoptimal
temperatures than that at optimal temperature, indicating detrimental effects of O3 on
the physiological, biochemical, and growth characteristics of B. juncea at 14 DAE. In
particular, the interactive effects of O3 stress and supraoptimal temperature decreased
photosynthetic parameters, including Jmax and TPU. Furthermore, Chl a fluorescence at
the J-step of the OJIP transient curves was decreased in the presence of elevated O3 at
supraoptimal temperatures. Regarding biochemical characteristics, NBT-stained spots
indicating O2

- accumulation in plant cells were abundant under OT conditions. As a
consequence of physiological and biochemical responses, elevated O3 at supraoptimal
temperatures significantly reduced leaf fresh and dry weight. Collectively, these findings
indicate the interactions of supraoptimal temperature and elevated O3 worsen the damage
to B. juncea rather than the individual factors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/land10040357/s1, Table S1: Formulas and descriptions of OJIP parameters based on data
obtained from OJIP transient curves. Table S2: Results of analyses of variance of the main effects
of temperature, O3, and sampling date and their interactions on A/Ci curve response, chlorophyll
content, chlorophyll a fluorescence, stomatal density, stomatal pore area, hydrogen peroxide and
superoxide radical accumulation, and leaf growth parameters. Table S3: Comparison of each
parameter under different ambient and supraoptimal temperatures and O3 concentrations at 7 and 14
days after the beginning of exposure (DAE). Figure S1: Visible ozone symptoms of Brassica juncea L.
under different optimal and supraoptimal temperatures and O3 concentration at 7 and 14 DAE.
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