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Abstract: To understand the urbanization process, it is essential to detect urban spatial growth and
to study relations with social development. In this study, we take Wuhan as a case to examine urban
land growth patterns and how social factors relate to the urban land evolution between 1990, 2000,
and 2010. We first classify land cover using Landsat images and examine the urban growth patterns
during various stages based on landscape metrics regarding the area, density, and shape. Afterwards,
principal component analysis and census data are used to extract key social factors. Thirdly, we
apply geographically weighted regression (GWR) to depict the link between urban land metrics and
social factors. The results indicate that the urban land coalescence and diffusion simultaneously
exist, for which redevelopment, infilling, and edge expansion dominate the city center, and diffusion
dominates the peripheral areas. The social factors have global regression relationships with urban
land areas while local spatial non-stationarity presents in the relationships with the urban land patch
shape irregularities. Industrial upgrading, educational levelling up, and population aging show
significant with local heterogeneities in the relationships. The simulation of the relationship provides
a social-spatial perspective to understand urban land growth. The authors conclude that sustainable
urban management should consider the coexistence of different urban spatial growth models and
underline social transitions when examining the urban growth process. This works for cities in
rapidly urbanizing countries or regions.

Keywords: urban land growth; urban expansion; fractal dimension; social transition; geographically
weighted regression (GWR); Wuhan; China

1. Introduction

The changes in growth patterns caused by China’s rapid urbanization process are
remarkable. Currently, widely accepted concepts of urban growth are related to popu-
lation, economic, and spatial growth [1]. Spatial growth is concerned with the changes
in the geographical space occupied by impervious surfaces, which connects to human
intervention. It is also the focus of this research. Urban spatial growth is described as an
alternating process of diffusion and coalescence in high-income countries [2,3]. The two
are considered to occur at various stages, showing a spiral upward trend. The growth is
presented through five common forms “infilling, extension, linear development, sprawl,
and large-scale projects” [4].

The different growth patterns among cities distinguish the corresponding develop-
ment stages and characteristics, and a simultaneous occurrence of these patterns is also
common [5]. While population agglomeration and economic growth promote sustained
urban growth, they have also accelerated the pace of suburbanization and the shrink-
ing of urban centers [6,7]. Having first been carried out in high-income countries and
regions, urban expansion and contraction have long been the focus of urban research. In
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China’s large cities, urban expansion has been the focal point of research in the past two
decades [8–13], while research on urban shrinkage, redevelopment, or suburbanization has
only appeared in recent years [14–16]. Case studies comparing cities in China to those in
high-income countries/regions also exist [17]. However, research on urban management
still has challenges to handle the different processes of growth and contraction [1].

Scholars study urban growth patterns from a macro-spatial scale and compare the
patterns in different-income countries, to find common laws or differences for urban spatial
growth in various stages. Findings on Beijing, Shanghai, Tianjin, and Guangzhou show
that urban growth in these cities has almost been dominated by a coalescent period in the
1990s and 2000s with edge expansion [18]. Comparisons between 25 global cities in the
1990s, including Wuhan and Guangzhou, classified cities into four types as low-, high-,
expansive-, and frantic-growth cities, suggesting that no low-density sprawl is shown
in the Chinese case cities [19]. Both Wuhan and Guangzhou are categorized into high-
growth cities with rapid, fragmented development. Though a few cities are involved in
the macroscopic study, the studies are coarse. Thus, to explore the urban spatial growth
pattern microscopically, a case study from its perspective is essential.

In recent years, most studies draw attention to single, developed cities in China. Li et al.
(2017a) find that a variety of growth modes such as infilling, edge expansion, and leapfrog
expansion concurrently took place in Beijing urban growth during 2000 and 2010 [20].
Gong et al. (2018) draw a similar conclusion for Guangzhou where the different modes
developed alongside a reposition of “relative dominance” to reflect a dramatic process of
change [21]. Lei (2019) finds that during 1988–1999 and 1999–2011, Shenzhen developed
more expansively in 1988–1999 and 1999–2011, and “a higher percentage of infilling” in
2011–2015 [22]. Studies on other second-tier cities such as Tianjin and Nanjing draw similar
findings. Chen et al. (2016) find that in 1980–2013, Nanjing grew from a combination
to the separation “of residential and manufacturing land” [23]. The process promoted
Nanjing to transform from a compact mononuclear city to a polycentric one, dominated on
different stages by “infilling, extension, and enclave”. Liu et al. (2019) suggest that Tianjin’s
growth was dominated by edge expansion, strongly pushed by government planning a
for project-driven development zone [5]. Literature has successfully explored urban land
growth patterns within single cities, but more case studies on the second-tier cities in China
are still essential to find a common law or differences for the growth process and to provide
valuable information for city management.

Multi-mode-growth of urban space has led to significant spatial heterogeneity within
city to a certain extent. To better serve the community residents, sustainable management
needs to consider the complexity of the urban growth process. The spatial heterogeneity of
urban growth is not only resulted in by physical conditions, but also by social structures
and performances [24–27]. With the support of urban ecology theory and social ecology
framework, researchers have developed strong academic interests in examining the rela-
tionships between social transformation and urban land growth [28–30]. It has become a
consensus that the urban system is a human-dominated one. In an urban system, the social
subsystem and the physical subsystem have the same weight, and the two interact with
each other. With the socio-ecological approach, researchers understand the relationships
between social and physical subsystems as a spirally upward drive-pattern-process-result
(DPPR) flow or equally weighted bilateral interactions [29,31]. No matter from which
point of view, the social-ecological approach regards the relationships between society
and physical subsystems as an important field for studying the process of urban growth,
providing valuable information for urban space management. From another point of view,
due to the limitations of data, skills, methods, etc., how to examine the relationships still
has a lot of room for improvement [32].

Empirically, urban spaces grow with the dominance of linear elements such as traffic
lines and river/lake banks, constrained by the supply of land suitable for development,
which is defined by natural elements such as hills/mountains, rivers/lakes as well as
conservatory zones [24,33]. Besides physical factors, socio-economic development has been
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recognized as triggers as well as consequences of urban spatial growth [26,27]. Academic
attention toward socio-economic forces in literature is mainly focused on temporal relation-
ships, for which population density and GDP are the most popular explanatory variables
to interpret urban spatial growth. Even though both temporal and spatial features of urban
growth are studied, focusing on the dual dimensions of time and space concurrently is not
common when exploring how social factors are associated with urban growth. Further,
the literature on the relationships based on cross-sectional data is scarce, mainly due to
data unavailability [33], though few are published. For example, Han (2012) studies the
dynamics of social influences on Beijing urban land growth for twenty years between 1980
and 2000 [12], suggesting that significant associations with spatial nonstationary present at
the relationships between social and physical subsystems. Despite the extensive research
on the driving mechanisms of economic development on urban spatial growth, there is
still a lack of analyses from the perspective of social dimensions such as age, employment,
family size, mobility, and so on.

Global regression approaches such as Ordinary Least Square (OLS) regression, step-
wise regression, and logit regression are popular methods used to model the relationships
between demographic characteristics, economic development, and urban land patterns [27].
The global regression ignores the spatial heterogeneity of the relationship between urban
spaces and social dimensions, which is far different from reality, whereas the local re-
gression model can more closely reflect this element. To explore spatial non-stationarity,
Geographically Weighted Regression (GWR), a local regression approach, is employed
widely. GWR introduces geographic coordinates that define spatial locations as inde-
pendent variables, and its results reflect the spatial non-stationarity of the regression
relationship between explanatory variables and the dependent one [34]. Literature shows
that GWR is used to detect how physical elements and economic development affect urban
land growth [35,36], but it is necessary to pay more attention to social factors’ links with
the growth.

The main purpose of this research is to examine the growth pattern of a fast-growing
second-tier megacity in China, using Wuhan as a case, and to analyze social dimensions’ re-
lationship with the spatial-temporal evolution. Research on Wuhan intends to understand
the foundation for urban spatial changes, especially from a social perspective, which is im-
portant for framing eventual urban planning policy in second-tier cities of China and cities
in rapidly urbanizing countries or regions. Specific questions are broken down to: (1) What
are the spatial characteristics of urban land growth and the center–periphery relationships,
measuring with landscape metrics? (2) How are urban spatial changes related to socio-
demographic transformations? and (3) How do these relationships evolve longitudinally?

2. Materials and Methods

This study combines remote sensing and GIS technology with landscape metrics to
map and quantify the spatiotemporal features of the Urban Development Zone (UDZ), the
severest development area, in Wuhan from 1990 to 2010. We used impervious surfaces
to measure the evolution of urban space and to analyze growth patterns. The research
focuses on comparing the growth in neighborhood units and depicting the local differences
in social relationships. It is outstanding by providing a distinct perspective for urban
growth research. To achieve the objective, we carried out the extraction of urban land and
computation of selected landscape metrics, the dimensionality reduction and extraction of
social factors, and the regression modeling of the relationships.

2.1. The Study Area

Wuhan is the capital of the Hubei Province, being recognized as the base of the New
Cultural Revolution and a major transportation hub in central China (Figure 1). Wuhan is
divided by the Yangtze River and the Han River and has many other bodies of water. Over
the past few decades, Wuhan’s status has steadily been elevated from a regional center to a
national center, with a continuous transformation of industrial and consistent economic
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growth. Wuhan is a representative second-tier city in terms of population and investment
agglomeration. Its growth is remarkable in the recent two decades, with corresponding
notable social transformation as well as spatial expansion.

Figure 1. Map of the study area. Hankou, Hanyang, and Wuchang are three regions that are divided by the Yangtze River
and the Han River. I, II, III, IV refer to the expressway loops from the center to the periphery.

In the research period, the population density is increasing in the city center, reflecting
traditional secondary industry removal. Industrial upgrading has significantly reshaped
the urban center. The employment of the tertiary industry increased significantly in the
urban center in the 1990s, and in the periphery of the urban center in the 2000s. The
employment of the secondary industry shows a continuous decline in the urban center
and a significant increase in the periphery of the urban center in the 2000s (Appendix A,
Figure A1).

2.2. Urban Land Extraction and Metrics Selection

We prepared temporal Landsat 5 Thematic Mapper (TM) images for the extraction of
urban land. Rich-vegetation images in June and July were screened. However, because
there are no suitable cloud-free images in 1990 and 2010, we considered a replacement by
those in 1991 and 2011. Thus, the TM images employed are from 1991, 2000, and 2011,
matching the social dimensions in 1990, 2000, and 2010, respectively. We then cut the
images to the study area. The land cover extraction is based on the I–V–W (Impervious
surface–vegetated area–water area) urban model. Band math is employed for the extraction
(Appendix B). The water area was first masked using the modified normalized differ-
ence water index (MNDWI) [37]. The impervious surfaces were then extracted using a
Modified Biophysical Composition Index (MBCI) we proposed, based on the Biophysical
Composition Index (BCI) [38], for better distinguishing urban land and bare soil. The rest
is vegetation area. An example of land cover extraction is presented in Figure 2.

MBCI = [(BT + B + W)/3 − G]/[(BT + B + W)/3 + G) (1)
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where top of atmosphere reflectance (TOA) and brightness temperature (BT) images are
used for MBCI computation. BT is [0, 1] standardized bright temperature extracted from
the thermal band (Formula (2)). B, W, and G stand for [0, 1] standardized brightness,
wetness, and greenness are calculated using the Formula (3)–(5) based on the first, second,
and third principal components of Tasseled Cap Transformation (TCT), respectively.

BT = (BT0 − BTmin)/(BTmax − BTmin) (2)

where BT0, BTmin, BTmax are the observed, minimum, and maximum values of the bright
temperature, respectively, and

B = (TC1 − TCmin)/(TC1max − TC1min) (3)

G = (TC2 − TC2min)/(TC2max − TC2min) (4)

W = (TC3 − TC3min)/(TC3max − TC3min) (5)

where TC1, TC2, TC3 are the first three TC components; TCimin and TCimax are the min-
imum and maximum values of the ith (i = 1, 2, 3) TC components, respectively. The
brightness, greenness, and wetness surfaces are computed using the TCT coefficients of
Landsat 5 TM data proposed by Crist et al. (1986) [39].

Figure 2. Example of the land cover extraction process (2011).

2.3. Selected Urban Land Metrics

Literature focuses on quantifying urban land growth patterns and further evalu-
ates a variety of spatial, demographic, or social characteristics associated with those
patterns [19,40]. Landscape metrics are widely introduced to describe the growth pat-
tern [41,42]. Based on the connotation of the landscape indexes, the interrelationships
in this case (Table A2) and in literature [1,40,43], we selected the total area (TA) of the
impervious surface, the proportion of the landscape (PLAND), the patch density (PD), the
largest patch index (LPI), and the area-weighted classification dimensions (FRAC_AM)
to present the area, density, aggregation, and shape. PD measures the fragmentation as
well as the scatter dispersion of urban land, while LPI gives a view on how the biggest
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patches occupy the total landscape. They work together to express the composition and
outstanding of the urban landscape. FRAC_AM measures the regularity or irregularity of
the urban landscape patches. The indicators and their implications for urban land growth
patterns are explained in Table 1 [1,40,43].

Table 1. Landscape metrics and urban land growth pattern.

Metrics Value Meaning Significance

TA ≥0 Total area of impervious surface,
representing the size of urban space

Differences of size of urban land
present overall view of urban growth

PLAND ≥0 Percentage of the area of urban land to
the total area

Changes of urban land percentage
reveal urban spatial growth pattern
including improvement, infilling
and expansion

PD ≥0

Patch density, number of patches per
unit of total landscape. Here, urban
patches are defined as homogenous
regions of urban land.

A higher value of patch density
indicates a more scattered and
fragmented distribution of urban land
patches. The value of PD is expected to
increase until the later stages of
individual urban patches gradually
merge into continuous areas.

LPI (0, 100]
Largest Patch Index, the percentage of
urban land area comprised by the
largest patch

LPI is a simple measure of the
dominance of urban land patch

FRAC_AM [1, 2]

Area-weighted mean patch (AM)
fractal dimension equals 2 times the
logarithm of patch perimeter divided
by the logarithm of patch area, with the
adjustment of patch area abundance
(multiplied by the proportional of
patch area to the sum of patch areas).

FRAC approaches 1 for shapes with
simple perimeters such as squares, and
approaches 2 for shapes with highly
convoluted, plane-filling perimeters.

2.4. Social Factors Computation

Most literature takes population density and economic indexes as independent vari-
ables to interpret the urban landscape from only a temporal serial [44,45]. Few interpret
urban landscape with integrated social factors, which cover more information about the
social subsystem. Extraction of social factors is foundational for the quantitative mea-
surement of relationships between social transitions and urban land growth. This study
selected social variables based on census data in 1990, 2000, and 2010, to build a social
factors system, which was further used to regress with urban landscape metrics for the
interpretation of evolution. The variable selection was based on the rule that the corre-
lation coefficient between variables in the same category is not equal or greater than 0.9.
Fourteen variables (thirteen variables for 1990 due to the limitation of population mobility
census) were selected; referring to people’s age, migration, employment, education, and
urbanization based on the census data. To reduce social dimensions, we used principal
component analysis and eigenvalue greater than 1 criterion to extract the components. We
further chose Varimax, an orthogonal rotation, to get clearer factor loadings and divisions.
The social factors are named according to the loadings. The factor scores were computed
with a regression approach, which was further employed to model the relationships with
urban landscape metrics.

2.5. Regression Relation Modelling

A regression approach was employed to explore how to interpret urban land metrics
from the social dimensions. This approach was chosen to examine if GWR, which is
designed to identify whether relationships vary across space, better fits the relationships
with the hypothesis that the regression relationships are spatially nonstationary in the study
area, based on neighborhood unit. Traditional spatial data analysis widely uses global
models, such as OLS regression. The basic assumption of global model variables is that
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the relationship between predictors and outcome variables is spatially stationary. Global
regression cannot detect spatial non-stationarity, which may exist. GWR is a statistical
technique that allows measuring spatial changes in the relationship between explanatory
variables and dependent variables within the framework of a local model [46]. The GWR
model can be expressed as:

yi = β0(ui, vi) +
k

∑
j=1

(
β j(ui, vi)χij + ei

)
(6)

where yi is the value of the predicted variable at the coordinate location i, (ui,vi) represents
the coordinates of i, β0(ui,vi) and βj(ui,vi) indicates the estimated intercept and coefficient
for variable j at the coordinate location i.

Researchers typically utilize the Akaike Information Criterion (AICc) to compare the
results from a “global” OLS regression with those from the “local” GWR [47,48]. Smaller
AICc indicates that the introduction of spatial information can improve model fitting.
Specifically, we first ran stepwise OLS regression to find the best models and obtained
the significant social variables, which will be used to form the GWR model further. We
tested the spatial autocorrelation of regression residuals using global Moran’s I. The null
hypothesis is rejected while the p-value is significant (≤0.10), indicating the residuals
clustered or scattered, rather than randomly distributed in space [49].

3. Results
3.1. Urban Landscape Evolution

Wuhan’s urban land has continued to grow rapidly since the 1990s. It has expanded
from 16636 ha in 1991 to 73328 ha in 2010, an increase of up to 3.41 times (Figure 3, Table 2).
The spatial growth accelerated in 2000 when China fully implemented a market-oriented
reform of real estate and the financial system, higher education, etc. Further, the average
annual increase of urban land was 1848 ha during 1991–2000, and 3467 ha during 2000–2011.
During the 2000s, Wuhan’s urban space had an annual growth as rapid as 1.87 times that in
the 1990s. The acceleration of the urban land growth since 2000 shows a temporal escalating
of urban space. The value of PD and LPI, from the density and aggregation perspective,
also continue to rise, with an acceleration during the 2000s. Compared to the density and
aggregation metrics, the shape measurements do not present the same trends. From a
global view, FRAC_AM had a slight decline during the 1990s and an increase between 2000
and 2011.

The overall metrics of TA and PLAND of urban land demonstrate a sufficient trend of
urban land growth with edge or leapfrog expansion, while LPI expresses infilling or edge
expansion in Wuhan during the 1990s and 2000s. The shape metrics of FRAC_AM disclose
an infilling development in the earlier stage and an expansion in the latter, based on the
regularity of the urban landscape patches.

Table 2. Urban land metrics in Wuhan Urban Development Zone (UDZ).

Urban Land 1991 2000 2011 1991–2000 2000–2011

TA (ha) 16,635.87 34,537.5 73,328.31 17,901.63 38,790.81
PLAND (%) 5.17 10.73 22.78 5.56 12.05

PD 1.16 1.31 2.28 0.15 0.97
LPI 1.62 2.93 7.71 1.31 4.78

FRAC_AM 1.245 1.239 1.270 −0.006 0.031
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Figure 3. Urban land growth from 1990 to 2010. (IS: Impervious Surface).

To detect the spatial differences of urban landscape within the study area, we further
compute the metrics in each neighborhood to compare the evolution during the 1990s
and 2000s. The comparison reveals how the urban land area, patch size or density, and
patch regularity change and what spatial differences are presented. The spatial differences
disclose urban land growth patterns during various stages. In the maps (Appendix A,
Figure A2) with a static value of the metrics in different years, the city center with a stable
urban landscape is featured with a higher PLAND, lower PD, higher LPI, and lower FRAC.
It shows that the city center with the above features grew continuously while surrounding
the center expanded with fragmented urban land.

Changes in the value of landscape metrics present urban spatial pattern evolution.
Based on the literature [1,40,43], we describe urban land development using three main
categories: regeneration/redevelopment, infilling, and expansion. Urban land expansion
refers to edge expansion, urban fringe expansion, enclave expansion, and linear expan-
sion [5,23,50,51]. Redevelopment may decrease the urban land patch fragmentation while
increasing the regularities through human intervention, while it also could result in the
fragmented and scattered urban land patch distribution. Infilling and edge expansion
lead to the patch size increase and patch density decrease. Other types of expansion may
result in an increase or decrease in patch fragmentation or dispersion. Thus, we listed the
indication of value changes of urban land metrics (Table 3), which is the basis of further
discussions regarding the evolution of urban land patterns.

Figure 4 presents the spatial features of urban landscape changes, including PLAND
(a), PD (b), LPI (c), and FRAC (d). The shifts in PLAND and LPI show similar spatial
characteristics, with a decrease in the city center and an increase in the neighborhood with
significant urban land expansion. PLAND decreases throughout 1991 and 2011 in some
neighborhoods in the city center, within the expressway Ring II. In the 1990s, urban land
regeneration takes place mostly in the north of the Han River and west of Yangtze River,
with the famous commercial street redevelopment. In the 2000s, the decrease of urban land
in the city center is mainly a cause of the renewal of green and wetland along the Han
River and Yangtze River. The changes of LPI show similar features of spatial distribution.
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Table 3. Urban land development mode indicated by change of value of urban land metrics.

Decrease Increase

PLAND Urban land regeneration, redevelopment, occur mostly in the city center Urban land development (infill or expansion)

PD (Re)development, infilling, or edge expansion, less fragmented or
scattered, or less divided by other landscape

(Re)development, more fragmented or scattered, or more
divided by other landscape

LPI
Urban land (re)development with land use change or decrease of the

largest patch size with other landscape encroachment;
Urban land expansion such as sprawl, enclave expansion, and so on

Urban land coalescence with infilling or edge expansion

FRAC_AM Urban land (re)development, infilling development, or edge expansion Urban land (re)development, diffusion with more
fragmented or scattered distribution

Figure 4. Urban land metrics changes: (a) Changes of PLAND; (b) Changes of PD; (c) Changes of
LPI; (d) Changes of FRAC_AM.
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Shapes of patches represent urban land infilling or expansion, with a decrease or
increase in the value of FRAC_AM. In the 1990s, FRAC_AM decreases in most neighbor-
hoods of the city center (within expressway Ring II). Those with a significant increase of
FRAC_AM in the 1990s are located out of Ring II, and especially in some satellite towns out
of Ring III. At the same time, neighborhoods in the north and northeast of the Yangtze River
have a decreasing FRAC_AM. In the 2000s, the neighborhoods with decreasing FRAC_AM
expand from the city center to the east-west axis along the Han River and the main road
between the East Lake and the South Lake. Those with an increasing FRAC_AM distribute
in various directions, especially out of expressway Ring III. It indicates that in the city
center, urban land grows with an infilling pattern while diffusion occurs mostly in the
surrounding area. In the 1990s, the expansion in the outer area is outstanding in some
neighborhoods in the south of the UDZ while it extends to different directions.

PD, the index for patch density, shows that the decrease is more outstanding in the
1990s than in the 2000s, with a concentration on the east-west axis (west along the Han
River and east along the main road), as well as along the Yangtze River at the east bank. In
the latter period, the decrease of PD in the city center continues with a slight degree. The
PD decrease in the city center indicates that infilling development from the aggregated
urban landscape with bigger-sized patches.

Combining the area, density, and shape indexes, we see that the city center is in a
regeneration stage between 1991 and 2011, though the city center expands dynamically.
The regeneration presents not only as infilling development of urban land but also as a
replacement of urban land with developing more green or wet space. The redevelopment
in the city center reshapes the urban land and permeable surface patches and provides an
improved micro-environment for communities.

With a focus on the city center, the improvement of the urban landscape takes place in
Hankou, the traditional commercial center during the earlier stage. In the latter stage, the
improvement expands to Hanyang, and Wuchang, with more concentration along the Han
River and the Yangtze River. During the 1990s, a slight increase of PLAND occurs within the
expressway Ring I and partially in Ring II, which combined with the FRAC_AM decrease
can be identified as infilling development. During the 2000s, a slight increase of PLAND
takes place in Ring II with a decrease of the FRAC_AM, for which coalescence dominates
the development. Outstanding expansion of urban land during the 1990s happen to
the east (axis along the main road constrained by rivers), west (dispersed distributed
expansion), and south (with the trigger of high increscent secondary industry zone) part,
with a combination of the decreased LPI (which indicates the higher fragmentation of
urban landscape patches) particularly in the east-west direction. Expansion in the 2000s
mainly occurs out of Ring II, for which the FRAC_AM presents an outstanding increase
(indicating the irregularity of urban landscape patches) in the surrounding neighborhoods,
which are in line with the expressway network.

3.2. Interpretation of Urban Landscape by Social Factors
3.2.1. Extraction of Social Factors

The numbers of urban social dimensions extracted according to eigenvalue greater
than 1 are 4, 4, and 5 in 1990, 2000, and 2010, respectively (Table 4). In 1990, the first
dimension (Factor 1) is employment in nonagricultural industries, the second one (Factor 2)
is the higher educated population, the third one (Factor 3) is the elderly population,
followed by the local population and inflow population (Factor 4). Unlike the first and
second dimensions, in 2000, the third and fourth dimensions change only slightly. In
2000, the first dimension is employment in the tertiary industry, among which the load
of higher educated population reflects its close relationship with employment in the
tertiary industry. The second dimension is employment in the secondary industry, which
is closely related to the population with a high school education. Employment in the
tertiary industry is still the first dimension in 2010, but education background closely
relates to changes from higher level in 2000 to high school in 2010. At the same time,
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higher education and the single population become the second dimension. The third
dimension is still the aging population. However, at this stage, the contribution of aging
population increased significantly compared with those in 1990 and 2000. Employment in
the secondary industry constitutes the fourth dimension, which is negatively correlated
with low-income occupations, reflecting the advantages of the optimization, and upgrading
of the secondary industry accompanied by employment income. During this period, the
floating population constituted the fifth dimension of urban society, reflecting its increased
contribution to urban development. Changes in social dimensions and their connotations
will be reflected in the physical landscape, with specific patterns.

Table 4. Social factors extracted, % of variance, and variable loadings.
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F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F5

% of variance (%) 45.55 16.30 16.22 13.10 37.45 19.50 14.61 9.79 21.17 17.28 16.99 12.36 8.85

Urbanization
Nonagricultural
population 0.956 0.786 0.835

Local population 0.886 0.748 0.854

Migration
Intra-provincial
immigrants −0.909 −0.783 0.569

Inter-provincial
immigrants −0.524 0.826

Age Minor dependent −0.913 −0.822 0.703

Elders 0.955 0.910 0.842

Marital status
Married population −0.853 −0.806 0.876

Divorced or widowed
population 0.938 0.865 0.759

Education
background

High school educated
population 0.964 0.647 0.802

Highly educated
population 0.803 0.923 −0.803

Employment
Secondary industry
employment 0.860 0.864 0.743

Tertiary industry
employment 0.776 0.887

Occupation by
income

High-income-
occupation
population

0.789 0.903 0.513

Low-income-
occupation
population

−0.984 −0.696 −0.794

Note: Secondary/tertiary industry employment represents the population who work in the secondary/tertiary industry. Occupation
by income refers to the population divided by different income-levels and occupation, which is concentrated to the population with
occupations. It reveals the transformation of relationships between occupation and income.
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3.2.2. Regression Results

We computed the urban landscape metrics regarding the area, density, shape regularity,
and aggregation at neighborhood level to match the format of the explanatory variables
and used them as dependent variables. The social factors represent the social subsystem
with the transforming dimensions. Since PLAND is associated with LPI, and FRAC_AM
is closely related to TA (Appendix C, Table A2), we used PLAND, PD, and FRAC_AM to
conduct the regression simulation. The stepwise OLS regression determines the appropriate
combination of significant explanatory variables, which provided a basis for constructing
the GWR model. Based on the goodness-of-fit for regression model and standard residual
spatial autocorrelation (Table 5), the GWR results for PLAND and FRAC_AM are more
representative. In other words, the R2 adjusted of GWR for PD is moderately low in 2000
and 2010, and the p-value of Moran’s I is insignificant. The lower R2 adjusted the lower the
model fits. A significant p-value of Moran’s I test is expected for the non-randomly spatial
distribution of the standard residuals of regression models, vice versa.

Table 5. Parameters of geographically weighted regression (GWR) results.

1990 2000 2010 1990 2000 2010 1990 2000 2010

Dependent
variable PLAND PLAND PLAND PD PD PD FRAC_AM FRAC_AM FRAC_AM

Explanatory
social variables

Factor 1 * Factor 1 * Factor 1 * Factor 1 * Factor 1 Factor 1 * Factor 1 * Factor 1 * Factor 1 *
Factor 2 Factor 2 * Factor 2 Factor 2 * Factor 2 * Factor 2 Factor 2 Factor 2 * Factor 2 *

Factor 3 * Factor 3 * Factor 3 * Factor 3 * Factor 3 * Factor 3 Factor 3 * Factor 3 * Factor 3 *
Factor 4 * Factor 4 * Factor 4 Factor 4 Factor 4 Factor 4 * Factor 4 Factor 4 Factor 4 *

Factor 5 Factor 5 Factor 5

GWR parameters

Bandwidth 629,966 629,966 22,435 629,966 629,966 620,964 11,791 11,791 18,911
Residual squares 43936 53279 60448 723 411 505 0.1981 0.1645 0.2013
Effective number 4.01 5.01 9.56 4.01 3.01 3.01 22.86 28.31 17.38

Sigma 18.60 20.81 21.95 2.39 1.81 1.96 0.0428 0.0406 0.0414
AICc 1144.05 1147.96 1224.58 606.05 520.75 569.53 −437.64 −435.58 −463.98

R2 0.6916 0.6081 0.5413 0.4024 0.0777 0.0956 0.4963 0.4693 0.4905
A2 adjusted 0.6843 0.5953 0.5100 0.3882 0.0629 0.0818 0.3945 0.3239 0.4195

Global Moran’s I of standard residuals of GWR

Index 0.2120 0.1814 0.1112 0.0211 0.0234 −0.0180 −0.0065 0.0137 0.0558
ZScore 9.2705 8.6915 5.2575 1.2307 1.4402 −0.4698 0.0524 0.9911 2.8029
PValue 0.0000 ** 0.0000 ** 0.0000 ** 0.2184 0.1498 0.6385 0.9582 0.3216 0.0051 **

Note: *, ** indicants significance level p < 0.05, and <0.01, respectively. Kenel type for GWR: Fixed; Bandwidth method: AICc. Binary
strategies are for spatial weight metrics computation (i.e., a feature is either a neighbor (1) or not (0)).

The GWR models for the urban land area (PLAND) show that it is highly explained by
the explanatory social variables, with R2 adjusted of 0.6843 (1990), 0.5953 (2000), and 0.5100
(2010) (Table 5). From 1990 to 2010, the nonagricultural industrial employed population has
presented significant associations with urban land growth (PLAND), with the transition
from a mixture of tertiary and secondary industry in 1990 to a split of the nonagricul-
tural industry as tertiary and secondary become defined as a different dimension in 2000
and 2010. In 2010, the link between the tertiary industry and urban space is significant,
different from that of the secondary industry. The higher educated population has not
significantly associations with the urban land area in 1990 but grew significantly since
then. Secondary industrial employment associates with urban land areas significantly in
2000, but insignificantly in 2010. In 2010, only two social dimensions including tertiary
industrial employment, local population and aging population significantly link with
urban land areas.

The GWR models for FRAC_AM, to a great extent, indicate how close the urban land
patch regularity associates to human interventions, with R2 adjusted 0.3945 in 1990, 0.3239
in 2000, and 0.4195 in 2010. The models reveal the spatial differences of coefficients in
each neighborhood, indicating that the sensitivity of urban land patch shape regularities
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to social factors is different. The social factors significantly associated with FRAC_AM
are the nonagricultural industrial employment (Factor 1) and higher-educated population
(Factor 2) in 1990, which transited to the tertiary industrial workers (Factor 1), higher
educated population (Factor 2), aging population (Factor 3), and secondary industrial
population (Factor 4) in 2010. The significant factors in 2000 are similar to those in 1990,
apart from the nonagricultural industries. The study demonstrated that urban land shape
irregularity is significantly associated with the social landscape at neighborhood level.
Regarding the standard residuals of the GWR models, Global Moran’s I test shows that the
p-values of 1990 and 2000 are insignificant, while in 2010 they are significant.

The GWR coefficient surface (Figure 5) reveals the spatial variations in the association
of explanatory variables with urban land metrics and helps to better understand how hu-
mans intervene in the urban land patch shapes and growth spatial patterns. The transitions
provide information for policies and local planning at various scales. In PLAND’s GWR
model, the coefficients of social variables differ little in space. Therefore, we focus on
analyzing and interpreting the coefficient surface of the patch shape index FRAC_AM.

The coefficient surface for GWR in 1990 indicates that the associations of nonagri-
cultural employment (Factor 1) and the elderly population (Factor 3) with the degree of
regularity of urban land patch shapes present a pattern of concentric circles outward from
the city center. The coefficients of factor 1 and factor 3 are opposite, and their associa-
tions (expressed as the absolute value of the coefficient) with the irregularity of urban
patches show a downward trend from the city center to the outskirts. The coefficient
of Factor 1 is positive, revealing that the nonagricultural industry development has an
increased relationship with the shape index of urban land patches. The lower the value of
the shape index, the simpler the shape. Further, the growth of the nonagricultural industry
increases the irregularity of urban land patch shapes. The land patch shape index in the
urban center is sensitive to the nonagricultural industry and the coefficients decrease with
growing distance from the city center. Factor 3 is the elderly population, which is strongly
associated with big-sized families (Pearson R = 0.615, p < 0.01). This factor, therefore,
not only represents the elderly but also provides information on family size. Contrary to
Factor 1, the regression coefficient of the elderly to the urban land patch shape regularity is
negative. The absolute values of the coefficients also decrease from the city center to the
periphery. In 1990, both the sensitivities of Factor 1 and Factor 3 (the absolute values of the
coefficients) showed a decrease from the city center outwards. This was closely related to
the concentration of urban social and economic development during this period and the
aggregation of the city center.

In 2000, employment in the tertiary industry (Factor 1), employment in the secondary
industry (Factor 2), and the elderly (big-size families) (Factor 3) had significant relationships
with the regularity of urban land patch shapes. The regression coefficients of Factor 1 and
Factor 2 are mostly positive, and those of Factor 3 are predominately negative. The
coefficients of Factor 1 show a low-to-high trend from southwest to northeast, and those
of Factor 2 show a low-to-high trend from southeast to northwest. Factor 3 has greater
coefficients in the city center, along the Han River, and in the southeast. The spatial pattern
of coefficient surfaces of nonagricultural industrial employments (factor 1 and factor 2) has
transited from concentric circles in 1990 to sectoral differences separated by the main axis
in 2000. The links of population aging (with decreased association with big-size families,
Pearson R = 0.473, p < 0.01) are manifested as concentric circles extending westward and
southeastward. The east-west axis is composed of the Han River and the eastward main
road, reflecting the links of employment in the tertiary industry; while the north-south
axis is formed by the Yangtze River, which reflects the association of employment in the
secondary industry.

The coefficients of the 2010 GWR model show that employment in the tertiary industry
(Factor 1), higher educated population (Factor 2), and the aging population (associated
with small-size family) (Factor 3) have a negative association with the degree of urban
land patch shape regularity. The links with secondary industry employment (Factor 4) are
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positive. That is to say, the more developed the secondary industry, the higher the shape
index value, and the more irregular the land patch shape. Those neighborhoods are in the
developing stage. Conversely, the more developed the tertiary industry, the simpler the
shape of the urban land patch, the denser the highly educated and the elderly, the simpler
the shape of the urban land patch. Such neighborhoods are relatively mature and have the
most human intervention in the urban landscape. In terms of spatial characteristics, the
coefficients of the employment in the secondary industry, higher educated population, and
the elderly with urban land patch shape regularity are in a sectoral form, while the links
of the employment-population in the tertiary industry and patch shape regularity are in
the form of concentric circles. The neighborhoods with high coefficients of the secondary
industrial employment are mainly located in Hankou, north of the Han River and west of
the Yangtze River. Those with high coefficients of the tertiary industrial employment are
mainly located in the city center. The neighborhoods most linked with the higher educated
population are mainly located in the southeast region. The higher educated population in
this area is dense, due to the aggregated distribution of research institutes and universities.
Those with high coefficient of the elderly (small-scale households) are distributed in the
northeastern region. This area is led by the port industry and the chemical industry.

Figure 5. Coefficient of GWR interpreting FRAC_AM in 1990, 2000, and 2010. (a) Coefficient of
Factor 1 in 1990; (b) Coefficient of Factor 3 in 1990; (c) Coefficient of Factor 1 in 2000; (d) Coefficient
of Factor 2 in 2000; (e) Coefficient of Factor 3 in 2000; (f) Coefficient of Factor 1 in 2010; (g) Coefficient
of Factor 2 in 2010; (h) Coefficient of Factor 3 in 2010; (i) Coefficient of Factor 4 in 2010.



Land 2021, 10, 348 15 of 23

4. Discussion
4.1. Urban Land Growth Pattern

Rapid urbanization reshapes the social and physical landscape within urban areas.
With the aggregation of tertiary industry and the improvement of the environment, the city
center evolves with the increase or decrease of impervious surface and the more regular
patch shapes. Infilling and edge expansion result in more regularity of shape as well as
larger size urban land patches. Meanwhile, the city outskirts brought by expansion imply
a higher fragmentation and dispersion. The urban land growth generates a compact and
aggregated center and a more fragmented outskirt. The fragmentation of urban land does
not present an outstanding degradation with the distance to the city center, due to biased
development along the road and river axis as well as different socio-economic clusters.
However, focusing on the development axis, the degradation of urban land aggregation
and increased fragmentation followed by the distance is still the common phenomena with
those in other cities [17,19].

Urban spatial growth patterns vary depending on the socio-economic stage. Since
the 1990s, the second-tier city has been in a transition stage, which is defined by rapid
population agglomeration and economic growth, resulting in the continued growth of
urban land, with small areas of infilling or redevelopment in the city center. During the
latter decade, the scope of infilling in urban centers has expanded, and the fringe areas
demonstrate multidirectional expansion. This is different from the development in the
earlier decade when the urban growth relied on existing built-up areas and along the
river and transportation axis. Overall, the urban center has been expanding, which is
dominated by redevelopment, infilling development, or patch-edge expansion, while the
outer areas are dominated by varieties of expansion, such as fringe expansion, enclave
expansion, and industrial park clustered expansion. Industrial upgrading and removal
guided by technological progress put forward requirements for optimal land use within
corresponding construction space provision. Therefore, the accompanying development of
urban expansion and infill is the main theme of China’s urban growth in a certain period
in the future.

Redevelopment in the city center has taken place during the two decades, which is
outstanding in the latter decade. It has been promoted through the reconstruction of the
old city center and the relocation of polluting industries. The redevelopment gave more
focus to improving vegetation areas or renewal of wetland, which presents by a decrease
of impervious surface area. The shrinkage of urban land in some neighborhoods of the city
center reflects urban environmental upgrading. The redevelopment is based on traditional
secondary industrial removal. Thus, it marks not only environmental improvement but
also economic upgrading.

4.2. Heterogeneity of Interpretation from Social Perspective

Cities are important carriers of social-economic development. The urban spatial
form is significantly associated with socio-economic growth. The formation of China’s
second-tier cities is still in its coalescence stage, coinciding with population and economic
agglomeration, which presents as infilling and expansion of urban land. The evolution
of the urban social landscape has a significant association with land growth. Different
social clusters and their intervention in urban growth form spatial differences in urban
landscapes. The links of social evolution with the urban landscape were in the form of
concentric circles in 1990, changed to a sectoral form with an outstanding axis in 2000, and
further developed into a combination of concentric circles and sectoral form in 2010. This
also reflects the social-spatial features formed under the mechanism of policy.

From 1990 to 2010, the spatial differentiation of nonagricultural industries closely
linked with the urban spatial landscape. In 1990, the first social dimension nonagricultural
employment was mostly in the central area of the city. In 2000, nonagricultural employment
was divided into employment in the tertiary industry and employment in the secondary
industry, and the sectoral form was characterized by axial separation along the river and
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the main road. In 2010, employment in the tertiary industry was concentrated in urban
centers, while the secondary industry showed sectoral spatial characteristics. In the 1990s,
the transformation of traditional industries was in its infancy, and its association with urban
landscape spatial heterogeneity was relatively low. In the 2000s, the effect of industrial
restructuring was remarkable. At this stage, the socialist market economy was promoted in
an all-around way, and the dual-track development of planned industrial restructuring and
market-oriented industrial clusters promoted the rapid construction of industrial parks.
The industrial park attracts capital and employment concentration, which further promotes
the development of urban space. While transforming traditional secondary industries into
high-tech and high-value-added ones, they have also shifted from being dispersed in the
center of the city to being concentrated in the periphery of the city. This has an impact on
the formation of a sectoral pattern of urban land. The transformation and spatial transfer
of the secondary industry are accompanied by the expansion of the tertiary industry in the
urban center.

The elderly population is also a significant factor related to the growth of urban space.
This factor reflects the family size closely related to it. The weight of big-size households
was higher in the 1990s, while that of small households increased significantly in the 2000s.

In contrast to 1990, the population with a higher-income occupation became a signifi-
cant factor associating with urban land growth in the 2000s. In 1990, the nonagricultural
industry workers had a high school education background, and the contribution of the
population with a higher education background was relatively low. In 2000, the population
with higher education backgrounds was linked to tertiary industry employment. With the
expansion of higher education in the 2000s, the contribution of this population to the urban
growth pattern was outstanding.

Urban spatial patterns reflect social and economic policies on the physical landscape.
For example, the industrial upgrading policy explains the relocation of traditional indus-
tries as well as the cluster of industrial parks. The higher educated population is, on the
one hand, the product of China’s higher education reform, while it is also the result of
Wuhan’s local higher educated talent attraction as a city where high-tech industries and
universities are gathered. Further, the elderly population and reduced family size are a
manifestation of the long-term implementation of China’s population policy.

Compared with 1990 and 2000, the floating population, a key part of urban society,
became a social dimension with a higher contribution in 2010. However, its intervention
in urban land use is not significant. From a comparative perspective, the links between
influx population and urban patch irregularity are much weaker in the second-tier city
than in the first-tier ones. From 1990 to 2000, the influence of social factors in China’s
second-tier cities on the shape of urban land use does not reflect the spatial heterogeneity
at the neighborhood level. The spatial nonstationary in second-tier cities only manifested
in 2010.

4.3. Illustration on Urban Growth Simulation and Management

By portraying how the physical landscape relates to social factors through spatial and
longitudinal perspectives, the urban reshaping process is disclosed.

The population in the urban area has been agglomerating during the two decades,
though the city center became less dense due to the diversification of the social and
economic division and the market-oriented development, as well as the specialization of
urban spatial functional zoning. As policies unlock to attract people in big cities, like the
loosening of household registration and the attraction of a higher-educated population,
the urban growth is expected to present a continuous agglomeration. On the other hand,
although the population density in the central areas of the second-tier city is declining,
land infill development continues, which is linked with the agglomeration of the tertiary
industry. The population density is in the growing stage among the peripheral areas of
the city center. This social and economic agglomeration explains the differences between
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spatial growth patterns. Multi-mode development needs to be considered concurrently to
respond to socio-economic development to better serve people.

Social factors’ interpretations toward urban landscape metrics offer a potentially
powerful approach to forecast urban spatial patterns. Thus, a following up with social
landscape transformations is essential for introducing the social dimensions as important
predictors to simulate urban space. The study also provides a reference for urban managers
considering different socio-economic policies’ scenarios when configuring urban landscape.
For example, policies related to the household registration system, real estate market, and
large projects that orient industrial clustering should be considered.

Different scenario-based social dimensions and social landscapes are expected to
result in different urban land growth patterns. In most urban areas, impervious surface
expansion dominates the spatial growth, though based on ecological-friendly people-
centered development mode, redevelopment and improvement have been outstanding in
the city center. The expansion of the urban center accelerated in the second-tier city during
the 2000s but compared with first-tier cities, it lags in stages [12]. Given the prohibitive cost
of the reversion from impervious surfaces to permeable ones, governmental dominance
is very essential during the process rather than the market hand. The improvement
is accompanying traditional industry removal or community upgrading, which further
benefit residents with a better environment.

5. Conclusions

The study takes a major step in identifying urban land growth patterns and the re-
lationships with social factors, from spatial and longitudinal perspectives. We conclude
that urban land growth is the physical manifestation of a set of interrelated socioeconomic
factors. It provides a social perspective for urban land growth, through the social dimen-
sions’ interpretation of physical landscape distribution and evolution. The examination
of this relationship provides a social perspective for understanding the process of urban
growth. At the same time, the social attributes of the physical landscape are expressed
through visualization of the relationships.

In this case, urban land patterns are significantly associated with the nonagricultural
industry, the highly educated, and the aging population. Industrial removal and upgrading
present a crucial association with urban land growth patterns, with which education
background levelling up is accompanied. The aging is reflected in the urban land growth
with the implication of big-size families during the former decade and small-size families
in the latter. From a spatial pattern perspective, the social links with the urban land growth
are conceptualized as a concentric form in 1990, a sectoral form along the river and road
axis in 2000 and a mixed pattern with concentric and sectoral in 2010.

The relationships portray that China’s second-tier city’s improvement of the urban
landscape is with industry upgrading and ecological environment bettering. While the
government’s strategies do signal ecologically friendly redevelopments, cities are still being
challenged with the negative ecological impacts brought by the cost of vegetation area and
wetland. The social-physical links implicate that social dynamics should be emphasized in
the configuration of urban land as well as the permeable surface.
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Appendix A

Figure A1. Population density changes. (a) Change of population density between 1990 and 2000; (b) Change of population
density between 2000 and 2010; (c) Change of tertiary industry employment between 1990 and 2000; (d) Change of tertiary
industry employment between 2000 and 2010; (e) Change of secondary industry employment between 1990 and 2000;
(f) Change of secondary industry employment between 2000 and 2010. The population density is decreasing in the city
center (a,b). The industrial upgrading has significantly reshaped the urban center. The employment of the tertiary industry
increased significantly in the urban center in the 1990s (c), and in the periphery of the urban center in the 2000s (d). The
employment of the secondary industry shows a continuous decline in the urban center (e) and a significant increase in the
periphery of the urban center in the 2000s (f).
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Figure A2. Urban land metrics maps. (a) Maps of PLAND; (b) Maps of PD; (c) Maps of LPI; (d) Maps of FRAC_AM. The
dynamics of the urban land distribution present that the urban land first expands along rivers and the main road axis, then
toward others. The expansion is mostly defined by outward and multidirectional characteristics. In the 1990s, the urban
space expansion concentrated in the southwest and the east. During the 2000s, however, impervious surfaces expanded to
the west and the northeast to the Yangtze River. In 2011, urban land presents distributions in various directions.

Appendix B. Process of Urban Land Extraction

In this study, land cover is extracted based on the I–V–W (Impervious surface–
vegetated area–water area) urban model. Surface reflectance images, top-of-atmosphere
reflectance (TOA) images, and bright temperature (BT) images converted from the thermal
band are collected, to better fit the requirement of band math further used for the band
math is employed for the extraction. The water area was first masked using the modified
normalized difference water index (MNDWI) [37].
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To extract impervious surfaces, we proposed a Modified Biophysical Composition
Index (MBCI), based on the Biophysical Composition Index (BCI) [38]. The BCI is for
better distinguishing urban land and bare soil. It is computed based on Tasseled Cap
Transformation (TCT), particularly relying on the first three components, which represent
brightness, greenness, and wetness. MBCI introduces bright temperatures (converted
from the thermal band) into the BCI equation. To ensure that MBCI is more accurate in
identifying impervious surfaces, we compared the separability of MBCI and BCI based on
training samples, for which we selected 207 pixels for urban lands (impervious surface)
and 611 for the permeable surface in 2011, 207 and 661 in 2000, and 207 and 661 in 1991.
The comparison shows that MBCI has more significant separability than BCI. Based on
the training samples, the threshold value for impervious is determined as −0.05, −0.25,
and −0.25 for 1991, 2000, and 2011, respectively. The impervious surfaces are then drawn
according to the MBCI threshold.

In detail, the formulas for MNDWI and MBCI are as follows.

MNDWI = (Green − MIR)/(Green + MIR) (A1)

Surface reflectance data is used for MNDWI computation, where Green and MIR
represent the green band (Band 2) and the middle infrared band (Band 5), respectively.

BCI = [(B + W)/2 − G]/[(B + W)/2 + G] (A2)

for which TOA images are used for the computation and where B, W, and G stand for
[0, 1] standardized brightness, wetness, and greenness are calculated using the equations
based on the first, second, and third principal components of Tasseled Cap Transformation
(TCT), respectively.

B = (TC1 − TCmin)/(TC1max − TC1min) (A3)

G = (TC2 − TC2min)/(TC2max − TC2min) (A4)

W = (TC3 − TC3min)/(TC3max − TC3min) (A5)

where TC1, TC2, TC3 are the first three TC components; TCimin and TCimax are the min-
imum and maximum values of the ith (i = 1, 2, 3) TC components, respectively. The
brightness, greenness, and wetness surfaces area computation using the TCT coefficients of
Landsat 5 TM data are proposed by Crist et al. (1986) [39] (Table A1).

Table A1. Landsat-5 TM Tasseled Cap Coefficients [39].

Feature

Band
TM1 TM2 TM3 TM4 TM5 TM7

Brightness 0.2909 0.2493 0.4806 0.5568 0.4438 0.1706

Greenness −0.2728 −0.2174 −0.5508 0.7221 0.0733 −0.1648

Wetness 0.1446 0.1761 0.3322 0.3396 −0.6210 −0.4186

MBCI = [(BT + B + W)/3 − G]/[(BT + B + W)/3 + G) (A6)

TOA and BT images are used for MBCI computation, where BT is [0, 1] standardized
bright temperature extracted from the thermal band, which is computed as:

BT = (BT0 − BTmin)/(BTmax − BTmin) (7)

where BT0, BTmin, BTmax are the observed, minimum, and maximum values of the bright
temperature, respectively.
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Appendix C

Table A2. Coefficient of Pearson correlation between different metrics (example in 2010).

TA PLAND PD LPI TE ED

TA 1 −0.258 ** 0.087 −0.317 ** 0.854 ** 0.205 *
PLAND −0.258 ** 1 −0.405 ** 0.987 ** −0.563 ** 0.024

PD 0.087 −0.405 ** 1 −0.475 ** 0.288 ** 0.601 **
LPI −0.317 ** 0.987 ** −0.475 ** 1 −0.610 ** −0.064

FRAC_AM 0.653 ** −0.252** 0.326 ** −0.317 ** 0.533 ** 0.660 **

LSI FRAC_AM PARA_AM CONTIG_AM COHESION AI

CA 0.647 ** 0.653 ** −0.042 0.042 −0.168 −0.059
PLAND −0.757 ** −0.252 ** −0.739 ** 0.744 ** 0.423 ** 0.791 **

PD 0.416 ** 0.326 ** 0.433 ** −0.436 ** −0.232 ** −0.435 **
LPI −0.797 ** −0.317 ** −0.714 ** 0.719 ** 0.425 ** 0.775 **

FRAC_AM 0.521 ** 1 −0.013 0.011 −0.309 ** −0.107
Note: *, ** indicates p < 0.10, <0.05, <0.01, respectively. TA: Total (Class) Area, PLAND: Percentage of Landscape,
PD: Patch Density, LPI: Largest Patch Index, TE: Total Edge, ED: Edge Density, LSI: Landscape Shap Index, FRAC:
Fractal Dimension Index, PARA: Perimeter-Area Ratio Distribution, CONTIG: Contiguity Index Distribution,
COHESION: Patch Cohesion Index, AI: Aggregation Index. _AM: Area weighted mean.
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