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Abstract: Scale effects are inherent in spatial analysis. Quantitative knowledge about them is
necessary for properly interpreting and scaling analysis results. The objective of this study was to
systematically model patch area scaling and the associated uncertainty. A hybrid approach was
taken to tackle the difficulty involved. Recognizing that patch’s size and shape play the key role
in shaping its scaling behavior, a function model of patch area scaling based on patch morphology
was first conceptually formulated. It was then substantiated by sampling and interpolating in the
scale-integrated domain of patch morphology, which is characterized by a one-dimensional size
index, namely the relative support range (RSR), and a compactness index, namely filling. The area
scaling model obtained unveils a simple consistent scaling pattern of all patches and an overall fading
range between 0.12 and 3.16 in terms of RSR. The uncertainty model built exhibits a filling-dependent
pattern of the variance of patch area, which can be as large as 0.67 (i.e., 67%) in terms of standard
deviation. The models were validated by using them to predict patch and class area scaling of the test
patches and landscapes. This study demonstrated the basic feasibility of analytically modeling scaling
behavior. It also revealed the uncertainty of scale effects is very significant due to the inevitable
randomness in rasterization.

Keywords: scale effect; spatial aggregation; scaling model; uncertainty; patch area; land use and
land cover; raster categorical data

1. Introduction

Scale effects refer to the phenomenon that changing the resolution of data used or
the extent of study results in varied analysis results [1]. With the increasing use of remote
sensing and geographic information system (GIS) for acquiring and analysing spatial data,
scale effects have become more and more aware of over decades. They have been encoun-
tered in the simple calculation of area or length of geometries [2,3], the straightforward
derivation of slope and slope aspect from digital elevation model [4], the modeling of
flooding area [5], normalized difference vegetation index (NDVI) [6], and biomass [7] etc.
For a relatively recent review, please refer to Sandel [8].

The scale dependence of spatial analysis makes the result of single-scale analysis no
longer reliable and needs to be properly interpreted and treated. Efforts have been made to
model scale effects for gaining insights [9–13] and for transforming (i.e., scaling) analysis
results obtained at certain scales to other scales [14]. Most of the efforts took an empirical
approach to modeling the scaling of a metric by fitting a function to the analysis results at
multiple scales. Those models were made valid for their respective study area and scale
range, but their applicability elsewhere is doubtful due to their lack of generality [15].
Rare research took an analytical approach so as to make the model built widely applicable.
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That was likely due to the complexity involved as illustrated in Turner et al. [1]. By means
of probabilistic modeling of landscape composition and configuration, they analytically
predicted for random landscapes the basic characteristics of the scaling behavior of three
landscape level metrics, namely diversity, dominance and contagion. But for realistic cases
with spatial autocorrelation, the analytical model became too complicated to formulate
and be usable. As can be seen, it is difficult to systematically model scale effects. In the
empirical approach, the difficulty lies in finding a way to explore the full variation space of
scale effects; while in the analytical approach, the model can be too complicated to build
and use.

This study aims to systematically and completely model patch area scaling with
resolution in aggregation of raster categorical data. Raster categorical data are classified
spatial data in raster data structure. They are often the results of classifying remotely
sensed images and widely used in spatial analysis. A typical kind of raster categorical
data is that of land use and land cover (LULC), which is indispensable for environmental
modeling [16–22]. A patch in raster categorical data is a group of contiguous cells of the
same class. The patch is thus the basic semantic unit in raster categorical data and usually
corresponds to an entity or a discernible area in real world. A patch’s area is one of its
most important properties and is of great concern to environmental modeling [23–29]. It is
common practice in spatial analysis to aggregate raster data to a needed resolution due to
limitations of data availability or computing resources [30–32]. However, the behavior of
patches in aggregation suffers from scale effects. Generally, those small may vanish while
larger ones may survive but with its geometry changed to various degree.

For patch area and the related class area of LULC data in particular, earlier empirical
work found that scale effects on them did exhibit certain patterns [13] but no widely
applicable conclusions were reached at. More focused and systematic efforts were made
in recent years. Lechner et al. [33] studied the influence of patch size and length on
accurate mapping of small patches and provided valuable quantitative findings. However,
the patches used in their study were all simulated and rectangular in shape, while the
shape of real-world patches can be arbitrarily complex. Tan et al. [34] noticed the influence
of patch morphology on patch scaling and modeled the aggregation effect on patch area by
first classifying patches into different shape classes, and then modeling the aggregation
effects on each class separately. Their work demonstrated an interesting approach to
modeling patch level scale effects. However, there were some limitations in that work,
which mainly were: (1) only a small number of sample patches were used for building the
model of each class of patches; (2) the classification didn’t seem necessary and introduced
extra complication to the modeling; (3) the uncertainty of aggregation was not taken
into account.

The objective of this study was to build a quantitative model of patch area scaling that
can predict a patch’s area at a given aggregation resolution as well as the uncertainty of
the predicted area. The main hypothesis was that patch area scaling can be modeled as
a function of patch morphology and the resolution. The models were validated by using
them to predict patch and class area scaling of the test patches and landscapes. A hybrid
approach was taken in this study to tackling the difficulty involved. Recognizing the
critical role of patch morphology (i.e., its size and shape) in characterizing patch’s response
to rasterization, a conceptual analytical model was first formulated to capture its dominant
influence on the scaling behavior of patch area. Although the functional model was only
conceptual and had no concrete mathematical form, it provided a domain in which full
exploration of the variation of patch area scaling was made possible, i.e., the morphological
domain. The conceptual model was then substantiated by first densely sampling in the
domain of patch morphology and then using statistics to obtain a descriptive model.
With large enough and well distributed sample population, complete and detailed model
of patch area scaling was built, together with the associated uncertainty.
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The innovation of this study is that a complete patch area scaling model of raster
categorical data is built, which unveils a simple consistent pattern of scaling with RSR for
all patches and the filling-dependent fading range of different patches. Besides, it’s the first
time that the scaling behavior of a spatial analysis metric is systematically modeled for real
world situation.

The rest of the paper is organized as follows. Section 2 explains our methods of model-
ing and data processing. In particular, the conceptual model of patch area scaling based on
patch morphology is explained in Section 2.1. Two morphological metrics, namely relative
support range and filling, are proposed in Section 2.2. They define a resolution-integrated
(i.e., scale-integrated) two-dimensional morphological space in which the variation of patch
area with resolution can be fully explored, and thus turn the conceptually analytical model
into one that can be built with descriptive statistics. Section 2.3 describes the technical de-
tails of data processing for building the scaling model and its associated uncertainty model.
Section 3 presents the models built and the validation results. In particular, Section 3.1
shows and analyses the characteristics of the scaling model of patch area built as well as
the associated uncertainty model. In Section 3.2, the patch level models are tested with
patches other than those for model building. As a further validation and a demonstration
of its potential usage, the patch area scaling model is applied to predict class area scaling
in Section 3.3. Section 4 provides discussions on the models built. Section 5 draws some
conclusions and analyses the potential usage of the models and possible extensions to
this work.

2. Materials and Methods
2.1. Formulating Patch Area Scaling

As mentioned above, patches behave differently in the process of aggregation. A closer
look can reveal that the behavior of a patch undergoing pixel level aggregation is influenced
by both its geometry, i.e., its size and shape, and the aggregation parameters, i.e., the target
resolution and the patch’s alignment with raster cells. That is, both the scale of the object,
i.e., the patch’s size, and the scale of representation, i.e., the resolution of the raster, play a
role. Indeed, it is the interaction of these two ‘scales’ that largely shapes the behavior of a
patch undergoing aggregation, while some degree of randomness is inevitable due to the
random alignment of patches with respect to the grid of rasterization.

The above analysis can be illustrated with simple experiments. In Figure 1, for the
two patches of very similar shape but different size, it is apparent that their area scaling
behaviors were similar and the smaller one vanished sooner as expected. In Figure 2, for the
two patches of same area but different shape, one compact and one elongated, there was
a great difference between their area scaling behaviors. The elongated one gradually
diminished almost monotonically while the compact one undulated, lasted much longer,
and vanished suddenly. In fact, numerous examples can be found to show that patch area
scaling is largely determined by patch morphology, which in this paper refers to patch size
and patch shape collectively.

We therefore assume that a patch’s area at a representation resolution is a function of
its morphology and the representation resolution, or in formula as:

Patch Areaat the resolution = f(patch morphology, representation resolution) (1)

When inspecting patch area change with resolution, obviously rather than the absolute
size it is the relative size of the patch with respect to the representation resolution that
matters and plays the primary role. For patches of comparable sizes, the compactness
exhibits a significant influence. In addition, to be free from units, patch area at a resolution
can be represented by its ratio to the initial value, i.e., area ratio (AR). Formula (1) can thus
be transformed to:

Patch Area Ratioat the resolution = f(patch relative size, patch compactness) (2)
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(a) 

 

(b) 
 

Figure 1. The area scaling behaviors of a pair of similar patches of different area. (a) The area scaling of the smaller patch;
(b) The area scaling of the bigger patch. The initial patch at 30 m resolution (a) was extracted from the year-2010 Globeland30
data, and the initial patch in (b) was generated by magnifying that of (a) four times. For other resolutions, the patches were
obtained by aggregating the initial patches.
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Figure 2. The area scaling behaviors of a pair of dissimilar patches of the same area. (a) The area scaling of an elongated
patch; (b) The area scaling of a compact patch. The initial patches at 30 m resolution in (a,b) were extracted from the
year-2010 Globeland30 data. For other resolutions, the patches were obtained by aggregating the initial patches.

With the above conception and formulation, we model patch area scaling by simply
describing the changing of patch area ratio over the patch morphology domain of relative
size and compactness with statistics. The overall process of building the patch area scaling
model is then as follows: (1) we first find the metrics to quantitatively characterize patch’s
relative size and compactness in the next Subsection; (2) and then collect and process
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sample dataset to statistically describe the patch area scaling and the associated uncer-
tainty. The dataset and its processing methods are described in Section 2.3 together with a
processing flow chart.

2.2. Characterizing Patch Morphology

A number of metrics exist that quantify the size and shape of patches [35]. They how-
ever are not very suitable for our study of patch scaling. Especially, effective metrics that
reflect the resistance of a patch to the discretization effect of representation resolution
are still lacking. We therefore propose such a one, namely relative support range, and a
supplementary metric of compactness, namely filling, to make the model concise and
readily comprehensible. Their definitions, properties and relationship with existing metrics
are explained below.

We first define support range (SR) of a patch with Equation (3):

SR =
P −

√
P2 − 16A
4

(3)

where A is the patch area and P is the patch perimeter.
SR is in fact the width (length of the short side) of a rectangle which has the same

A and P as the patch. Therefore, SR essentially indicates the average width of a patch,
thus the name support range, when its shape is deemed as a strip that may convolute or
branch freely. Regarding SR, it can be observed that: (1) SR is a one-dimensional metric of
patch size in the sense that area scales squarely with SR for any shape; (2) for patches of
the same shape, the greater SR is, the larger the patch is; (3) for patches of the same area,
the larger SR is, the more compact the patch is; (4) SR is a kind of approximation and its
performance as a measure of average width will deteriorate when the patch shape goes
more and more complicated.

We then define relative support range (RSR) of a patch with Equation (4):

RSR =
SR
R

(4)

where SR is the support range defined above and R is the representation resolution.
As can be seen, RSR is simply the SR-resolution ratio. Regarding RSR, it can be ob-

served that: (1) RSR measures the one-dimensional size of a patch relative to the resolution
and is thus particularly indicative for modeling patch scaling with resolution; (2) if SR can
be thought as the width of a patch, RSR can be thought as that width in terms of cell size.
Using RSR instead of absolute size metrics for scaling behavior modeling makes compatible
the patches with similar shape but different size, and therefore makes the relevant findings
independent of the resolution of the sample patches used, i.e., even though the models
were built with data of 30 m resolution as explained in the next subsection, they should
nevertheless be applicable to data of other resolutions.

As analyzed above, RSR not only is a one-dimensional size metric of a patch but also
measures the important narrowness characteristics of patch shape. However, patch shape
can be arbitrarily complex. Patches that are indicated by RSR to be narrow and long don’t
necessarily extend long and be incompact if they convolute or branch a lot. We therefore
supplement RSR with the filling metric so as to better characterize a patch’s compactness,
which is considered as the second most important factor that strongly influences patch
scaling behavior.

We define filling with Equation (5):

filling =
A

π ∗ r2 (5)

where A is still the patch area and r is the radius of the smallest circumscribing circle of
the patch.
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Although filling equals one minus the shape metric known as related circumscribing
circle, we have it so named to indicate that it stands for the ratio to which a patch fills
its smallest circumscribing circle and thus reflects a patch’s overall compactness very
well. Apparently, for patches that are indicated narrow and long by RSR, filling can help
differentiate the ones that are overall clumpy due to convolution or branching from those
that indeed extend long. For calculation simplicity, the smallest circumscribing circle of the
minimum bounding box (MBR) of the patch is used instead. So, the theoretical value range
of filling is 0~2/π.

2.3. Data and Their Processing

With the patch area scaling model formulated in 2.1 and the needed metrics defined
above, we substantiated the model by simply describing the changing of patch area ratio
over the RSR-filling domain with statistics. For RSR, its logarithm, Log10(RSR), is used
because: (1) while RSR ranges from 0 to positive infinity, its range of main concern is within
(0.1~10) as patches of RSR less than 0.1 cannot be represented in general and those with
RSR larger than 10 is generally not significantly subject to scale effects; (2) for RSR range of
(0.1~10), Log10(RSR) ranges between (−1~1), which is compatible with (0~2/π) of filling.
The actual modeling range of Log10(RSR) was set to (−1.56~1.20), which corresponds to
(0.03~15.84) of RSR. The actual modeling range of filling was set to its full range, (0~2/π).

Figure 3 shows the flow chart of data processing for building the models. First,
initial sample patches were collected. In order to ensure the reliability of modeling results,
the number of initial sample patches needs to be large on the one hand, and on the other
hand their distribution needs to cover the modeling domain as much as possible. Hence,
a huge number of candidate sample patches of 30 m resolution, totalling 1.60 × 107 in
number, were extracted from the year-2010 Globeland30 land cover dataset within the
geographic extent (72 E–144 E, 20 N–50 N). Globeland30 [36] is the 30-m resolution global
land cover data product developed by National Geomatics Center of China (NGCC) and
could be downloaded from http://www.globallandcover.com (accessed on 2 December
2020). A subset of the candidate sample patches was then chosen according to their
Log10(RSR) and filling to generate the set of initial sample patches. See below for more
details of choosing initial sample patches.
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Next, the initial sample patches were scaled up by aggregation to a series of coarser
resolutions to produce scaled sample patches, and their patch area ratios at each resolution
were computed. Fifty resolutions from 90 m to 3030 m with the interval of 60 m were
used. Aggregation by majority was adopted to scale initial patches. Each patch was put in
a homogenous blank background and aggregated alone. Aggregation was always from
the initial patch. Due to the sensitivity of aggregation to start position, each initial patch
was aggregated at all possible start positions that make a difference. For scaled patches,
RSR was calculated with the initial SR and the current resolution, and filling remained the
same because we always aggregate from the initial patch.

As the number of initial and scaled patches was large, patches of very close mor-
phology were grouped to simplify statistical analysis. Grouping was regularly performed
with constant intervals over the (Log10(RSR), filling) domain resulting in a grid of sample
groups. The Log10(RSR)-filling domain was gridded into cells of size 0.01*0.01 for grouping
sample patches. Sample patches whose Log10(RSR) and filling were within the same cell
were taken as a group. For grid cells with more than thirty candidate sample patches,
a random subset of thirty was chosen to reduce the sample size. The final distribution of
number of sample patches in the Log10(RSR)-filling grid was shown in Figure 4. Each sam-
ple group were averaged to generate a pseudo sample point, whose (Log10(RSR), filling)
was the centroid of the (Log10(RSR), filling) pairs of the group, area ratio (AR) was the
average of the patch area ratios in the group, and AR uncertainty was measured by the
standard deviation of the patch area ratios in the group.
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Finally, the AR-s and the standard deviations of the pseudo sample points were
resampled using ordinary kriging interpolation to produce the grid model of patch area
scaling and the associated uncertainty.

3. Results
3.1. The Pair of Models Built

The grid model of patch area scaling built is shown in Figure 5 and that of the
uncertainty of patch area scaling is shown in Figure 6. Before making sense of what
they tell about patch area scaling, it is worth noting that the models built are complete
and detailed in the sense that: (1) they cover the full morphological extent of interest;
(2) the scaling model is accompanied by the uncertainty model; (3) they are independent of
representation resolution and thus applicable to data of any resolution; (4) they are of high
morphological resolution.
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dimensional view of the uncertainty model; (b) A three-dimensional view of the uncertainty model.

The patch area scaling model shown in Figure 5a,b clearly displays a very simple
overall pattern of patch area scaling, i.e., patch area ratio changes in a consistent way for all
patches in the RSR-filling domain. More specifically, RSR dominates patch area ratio change
while filling exhibits the influence of compactness. In fact, the image in Figure 5a suggests
that by rotating the axes of RSR and filling, we can even obtain a one-variant model of
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area ratio scaling for patches of filling greater than 0.2. Given that patch morphology can
be arbitrarily complex and different, the existence of such a simple consistent pattern can
be surprising. It also indicates the RSR metric indeed characterizes patch area scaling
to a great extent while filling is a very good supplement to it, and thus validated our
assumptions made in Section 2.1 to some degree.

Some more observations are worth mentioning. Firstly, a range of RSR can be identified
with the interval (0.12, 3.16), i.e., (−0.9, 0.5) of Log10(RSR), in which patches diminish
gradually till vanishing due to resolution coarsening (the range is called fading range
below for brevity). That also means generally patches with RSR larger than 3.16 are not
significantly affected (expected AR > 0.98) by the current resolution, and patches with RSR
smaller than 0.12 are invisible (expected AR = 0) at the current resolution, and the rest will
distort to various extent. In the fading range, the expected patch area decreases almost
monotonically with RSR. Secondly, patch compactness significantly influences patch area
scaling. Less compact patches are in general more resistant to resolution coarsening in
the sense that their area change lags along the RSR axis with respect to compact patches.
In addition, compact patches have a much wider fading range than extending ones and
vanish much more abruptly than extending ones even though the latter has a much
narrower fading range.

While the area scaling model shows a smooth change of the expectation of area ratio
in the fading range, the associated uncertainty model reveals the great uncertainty of area
ratio, which can be as large as 0.67 (i.e., 67%) in terms of standard deviation. The overall
pattern of uncertainty distribution in the fading range is still simple and looks like a
mountain in shape as shown in Figure 6b. There is an apparent ridge line in the mountain-
shaped uncertainty distribution as indicated by the color change in Figure 6a and by the
surface shape in Figure 6b. The ridge line has its highest value of about 0.67 at the highest
filling and its lowest value of about 0.15 when filling approaches zero. That means compact
patches has much larger uncertainty than extending ones in the fading range. In addition,
for compact patches of filling larger than 0.2, the uncertainty to the right of the ridge line
decreases slowly while that to the left decreases quickly. Yet, for extending patches of filling
less than 0.2, the uncertainty distribution becomes more and more symmetric around the
ridge line as filling decreases to zero.

Again, some details of the uncertainty model are worth noting. When a patch’s RSR is
< 0.05 or > 6.31 (i.e., Log10(RSR) < −1.2 or > 0.8 correspondingly), the standard deviation of
the patch’s AR is less than 0.02, that is, the patch area scaling has little uncertainty in these
RSR ranges. When a patch’s RSR is between 0.05 and 6.31, the standard deviation of patch’s
AR varies significantly between 0.02 and 0.67. For the most compact patches, when its RSR
is about 0.71 (Log10(RSR) about −0.15 correspondingly), in other words the patch width
is 0.71 of the representation resolution, the uncertainty of patch area scaling reaches the
maximum. That is because in such situation the representability of a patch is extremely
sensitive to its position relative to the cells. For less compact patches, such phenomenon
also exists but the peak value shifts leftwards. That is likely due to that RSR is only an
assumed average width of patches and its validity deteriorates gradually when patch
morphology goes more and more complex.

3.2. Verifying the Models by Predicting Patch Area Scaling

As the models built are complete and detailed, they should then be able to tell in
advance the area scaling behavior of any patch reasonably well. Fourteen representative
patches of very different morphology were selected to demonstrate the usage and verify the
models. They are shown in Figure 7 and numbered from P1 to P14. Their morphological
metrics are listed in Table 1. As can be seen from Figure 7 and Table 1, the patches are in
general getting more compact and less complex with the increase of filling from P1 to P14.
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Table 1. The morphological metrics of the representative test patches.

Name Area (m2) Filling SRS (m) Name Area (m2) Filling SRS (m)

P1 6,930,000 0.01 307.39 P8 5,108,400 0.35 1330.31
P2 1,449,900 0.05 356.68 P9 2,479,500 0.40 1224.44
P3 3,710,700 0.10 612.33 P10 1,053,000 0.45 650.00
P4 8,761,500 0.15 975.13 P11 617,400 0.50 663.87
P5 8,414,100 0.20 1048.49 P12 198,900 0.55 401.82
P6 15,228,900 0.25 1377.56 P13 252,000 0.60 494.12
P7 14,400,900 0.30 2222.36 P14 152,100 0.64 390.00

In Figure 8, plotted at a series of resolutions are their real area ratio (RAR), predicted
area ratio (PAR) and PAR ± 3σ. The PAR values were obtained by looking up in the patch
area scaling model, and σ, the standard deviation of PAR, were obtained by looking up in
the uncertainty model. Patch’s RAR was obtained at a random start position of aggregation
at each resolution. As can be seen, the overall tendency of RAR and PAR matches well for
all the patches and their difference are within 3σ in most cases. In addition, the difference
between RAR and PAR varies synchronously with σ along the resolution axis. Therefore,
these cases demonstrated that both the scaling and the uncertainty models are valid.

Land 2021, 10, x FOR PEER REVIEW 12 of 21 
 

 

Figure 7. The representative test patches. 

Table 1. The morphological metrics of the representative test patches. 

Name Area (m2) Filling SRS (m) Name Area (m2) Filling SRS (m) 

P1 6,930,000 0.01 307.39 P8 5,108,400 0.35 1330.31 

P2 1,449,900 0.05 356.68 P9 2,479,500 0.40 1224.44 

P3 3,710,700 0.10 612.33 P10 1,053,000 0.45 650.00 

P4 8,761,500 0.15 975.13 P11 617,400 0.50 663.87 

P5 8,414,100 0.20 1048.49 P12 198,900 0.55 401.82 

P6 15,228,900 0.25 1377.56 P13 252,000 0.60 494.12 

P7 14,400,900 0.30 2222.36 P14 152,100 0.64 390.00 

In Figure 8, plotted at a series of resolutions are their real area ratio (RAR), predicted 

area ratio (PAR) and PAR ± 3σ. The PAR values were obtained by looking up in the patch 

area scaling model, and σ, the standard deviation of PAR, were obtained by looking up in 

the uncertainty model. Patch’s RAR was obtained at a random start position of aggrega-

tion at each resolution. As can be seen, the overall tendency of RAR and PAR matches 

well for all the patches and their difference are within 3σ in most cases. In addition, the 

difference between RAR and PAR varies synchronously with σ along the resolution axis. 

Therefore, these cases demonstrated that both the scaling and the uncertainty models are 

valid. 

  

(a) (b) 

Figure 8. Cont.



Land 2021, 10, 262 13 of 21
Land 2021, 10, x FOR PEER REVIEW 13 of 21 
 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 8. Cont.



Land 2021, 10, 262 14 of 21
Land 2021, 10, x FOR PEER REVIEW 14 of 21 
 

  

(i) (j) 

  

(k) (l) 

  

(m) (n) 

Figure 8. The predicted and real area scaling behaviors of the test patches (RAR stands for real area ratio. PAR stands for 

predicted area ratio. σ stands for the standard deviation of PAR given by the uncertainty model.). (a) P1; (b) P2;(c) P3; (d) 

P4; (e) P5; (f) P6; (g) P7; (h) P8; (i) P9; (j) P10; (k) P11; (l) P12; (m) P13; (n) P14. 

3.3. Applying the Patch Area Scaling Model to Predict Class Area Scaling 

As reviewed in the Introduction, it has long been desired to uncover the scaling be-

havior of the area of a certain LULC class in environmental analysis. As a further verifica-

tion of the patch area scaling model built and a demonstration of its potential usage, we 

show here the basic feasibility to use it to predict class area scaling. 

Figure 8. The predicted and real area scaling behaviors of the test patches (RAR stands for real area ratio. PAR stands for
predicted area ratio. σ stands for the standard deviation of PAR given by the uncertainty model). (a) P1; (b) P2;(c) P3; (d) P4;
(e) P5; (f) P6; (g) P7; (h) P8; (i) P9; (j) P10; (k) P11; (l) P12; (m) P13; (n) P14.

3.3. Applying the Patch Area Scaling Model to Predict Class Area Scaling

As reviewed in the Introduction, it has long been desired to uncover the scaling
behavior of the area of a certain LULC class in environmental analysis. As a further
verification of the patch area scaling model built and a demonstration of its potential usage,
we show here the basic feasibility to use it to predict class area scaling.
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At the landscape level, however, the class composition and spatial configuration
factors will manifest themselves in aggregation [37] and their working mechanisms demand
separate studies. We therefore consider only the single-class landscape in this study and
assume that patches are so apart from each other that their interaction in aggregation can
be neglected. Under such simplification, class area scaling can be predicted by simply
summing up patch area scaling.

Eight single-class landscapes of different spatial patterns were selected to evaluate the
feasibility and performance of predicting class area scaling. The test landscapes are shown
in Figure 9 and numbered from C1 to C8. They are all real-world landscapes extracted
from GlobalLand30 of 50 km × 50 km extent. Statistics of them are listed in Table 2. As can
be seen from Figure 9, patches are gradually getting larger and closer to each other from C1
to C8. Therefore, it is anticipated that our simple method of predicting class area scaling
should work for some of the landscapes and fail for others.
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Figure 9. Eight single-class landscapes for test. (a) C1; (b) C2; (c) C3; (d) C4; (e) C5; (f) C6; (g) C7; (h) C8.

Table 2. Statistics of the single-class landscapes for test.

Name Land Cover Class Number of Patches Average Area
(×10,000 m2) Average Filling

C1 Waterbody 208 6.11 0.41
C2 Grassland 1597 9.72 0.386
C3 Wetland 292 33.22 0.30
C4 Grassland 1645 9.022 0.40
C5 Forest 1332 18.73 0.39
C6 Wetland 172 103.27 0.291
C7 Artificial surface 523 77.02 0.337
C8 Cultivated land 599 195.61 0.35

The test landscapes were constantly scaled up until their real class areas ratio (RCAR)
and/or predicted class area ratio (PCAR) became zero. Their predicted and real area
scaling behaviors are plotted in Figure 10, in which the Log10(RSR) value was the average
of all patches in the landscape at a certain resolution. As can be seen, for C1 to C6,
class area scaling was predicted quite well as the assumption of dispersive distribution
of patches held approximately. That was especially true for C1-C4. Generally, the better
the assumption held, the better the prediction was. The prediction error was less than 0.1
(i.e., 10%) in most cases and almost always less than 0.2 in terms of the ratio to initial class
area. For the exceptional cases of C7 and C8, it is apparent that our assumption about patch



Land 2021, 10, 262 16 of 21

distribution was seriously violated. It can thus be concluded that it is basically possible
to predict class area scaling by synthesizing patch area scaling although further study is
required to take into account the effects of landscape configuration and composition.
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4. Discussions

In the process of building the models, it was found that alternative choices of patch
morphological metrics may be used. In addition, the modeled uncertainty included the
influence of incomplete characterization of patch morphology with the metrics. We give
some discussions on these issues for possible improvement in future study.

4.1. Selection of Metrics for Charactering Patches’ Morphology

Quantifying patch morphology plays a key role in building the patch area scaling
model and its uncertainty model. Up to now, there have been many metrics for describing
patch morphology [35], mainly including radius of gyration (GYRATE), perimeter-area
ratio (PARA), area-perimeter ratio (RAPA), shape index (SHAPE), compactness index
(COMPACT), related circumscribing circle (RCC), fractal dimension index (FRAC). In order
to select suitable metrics for describing patch morphology from existing and our proposed
metrics, i.e., support range (SR) and filling, a correlation analysis and a principal component
analysis were conducted [38]. It was found that the combination of GYRATE and SR as
the most significant component had a slightly higher variance contribution than that of SR
and filling, meaning they may capture more morphological information than the pair we
used. Given the close statistic performance of the two pairs, we took into account of model
interpretability in making the choice. As we know, two basic elements of patch morphology
are the size and the shape. However, both GYRATE and SR are inclined to describe patch
size, leaving patch shape less covered. That made us use filling, a patch shape metric,
to pair RSR in place of GYRATE in this study. Nevertheless, in future research, GYRATE
and SR still can be considered for building the models.

4.2. Inherent Uncertainty of Patch Area Scaling and That Resulting from Modeling Approximation

In Section 3.1, the uncertainty model of patch area scaling model was presented.
It should be noted that there were two sources of uncertainty in our modeling. One resulted
from the inherent randomness of grid-patch alignment due to rasterization, and the other
from the approximation of using the two metrics, i.e., RSR and filling, to characterize patch
morphology. In order to clarify their contribution to the observed uncertainty, we estimated
them separately. For each sample patch in each of the morphology grid cell specified in
Section 2.3, the average and the standard deviation of the area ratios obtained at different
start positions of aggregation were first calculated. Then, for each cell, the standard
deviation of the area ratios of different patches were averaged (denoted by a_sd_ar for short)
as the estimation of the uncertainty resulting from random rasterization, which is plotted
in Figure 11a. Similarly, the standard deviation of the averages of area ratios of different
patches (denoted by sd_a_ar for short) was calculated as the estimation of the uncertainty
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resulting from modeling approximation, which is plotted in Figure 11b. By comparing
them, it can be found that for patches of filling greater than 0.3, a_sd_ar is much larger than
sd_a_ar, and, for patches of filling less than 0.3, a_sd_ar gradually decreases and becomes
roughly equal to sd_a_ar when filling is less than 0.2. That means the uncertainty shown
in Figure 6 resulted largely from the inherent randomness in rasterization although the
approximation made in our modeling did have a share.
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5. Conclusions

A complete patch area scaling model was built in this study, which demonstrates
the existence of a simple consistent pattern of scaling with RSR for all patches, and the
filling-dependent fading range of different patches. This is, to our knowledge, the first
time that the scaling behavior of a spatial analysis metric was systematically modeled.
That was made possible through an analytics and descriptive statistics-combined approach.
The analytical part first conceptually formulated the functional relation between resolution-
dependent patch area and patch morphology, the latter of which was quantitatively mea-
sured by the proposed metrics of relative support range and filling. The descriptive
statistics part substantiated the functional relation as a gridded surface with a vast number
of sample patches that almost fully covered the scaling domain of concern.

This study made an important distinction between the certain and the uncertain
components of what was indistinctively called scale effect in the literature and provided
an uncertainty model accompanying the scaling model. The certain part represents the
trend and can largely be predictable when the resolution becomes coarser, and thus seems
to be what we want to mean by the term of scale effect. In contrast, the uncertain part is
largely due to the randomness in discretization and not predictable, and thus may be more
properly called scale uncertainty. Unfortunately, as can be seen from the model built and
the cases studied, the uncertain part can often be larger than or comparable with the certain
part in magnitude. That warns us to clarify the cause before taking scale effects as certain.

The models built are readily usable for a number of purposes. The scaling model as
demonstrated can serve as a lookup table to know in advance the area scaling behavior of
any patch of any resolution. It can also be used to scale up patch areas when comparing
results of different resolutions. The fading range indicates that a patch is almost free from
scale effect only when its RSR is larger than 6.31 and thus provides a basis for choosing a
proper data resolution for a study. Correspondingly, the uncertainty model as demonstrated
can serve as a lookup table to know in advance the area uncertainty of any patch of any
resolution. Another important use of the uncertainty model could be, when interpreting
scale effects on patch areas, to help us make sure it is the certain part of scale effects when
the corresponding uncertainty is small enough. Maybe, the most important use of the
models is for predicting class area scaling by analytical synthetization. To demonstrate
that idea, a simple method of summarizing patches’ behavior was proposed to synthesize
class area scaling under the dispersive distribution assumption for single-class landscapes,
and applied to eight cases. It turned out to perform reasonably well when the assumption
held to a reasonable extent.

Extension to this works is considered possible and promising. On the one hand,
the hybrid approach to modeling patch area scaling is thought applicable to modeling
other patch level metrics, such as perimeter, radius of gyration, and largely those based on
patch area and perimeter. With more and more patch level metrics modeled, patch scaling
can be decrypted. On the other hand, the synthesizing approach to studying class and
landscape levels’ scale effects on raster categorical data can be extended by taking into
account the influence of landscape composition and configuration [1,37], thereby making
higher level scaling behavior analytically modeled in a bottom-up way. It is considered
feasible given the intensive researches done on class and landscape level metrics [39,40].
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