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Abstract: In some cloudy and rainy regions, the cloud cover is high in moderate-high resolution
remote sensing images collected by satellites with a low revisit cycle, such as Landsat. This presents
an obstacle for classifying land cover in cloud-covered parts of the image. A decision fusion scheme
is proposed for improving land cover classification accuracy by integrating the complementary
information of MODIS (Moderate-resolution Imaging Spectroradiometer) time series data with
Landsat moderate-high spatial resolution data. The multilevel decision fusion method includes
two processes. First, MODIS and Landsat data are pre-classified by fuzzy classifiers. Second, the
pre-classified results are assembled according to their assessed performance. Thus, better pre-
classified results are retained and worse pre-classified results are restrained. For the purpose of
solving the resolution difference between MODIS and Landsat data, the proposed fusion scheme
employs an object-oriented weight assignment method. A decision rule based on a compromise
operator is applied to assemble pre-classified results. Three levels of data containing different
types of information are combined, namely the MODIS pixel-level and object-level data, and the
Landsat pixel-level data. The multilevel decision fusion scheme was tested on a site in northeast
Thailand. The fusion results were compared with the single data source classification results, showing
that the multilevel decision fusion results had a higher overall accuracy. The overall accuracy is
improved by more than 5 percent. The method was also compared to the two-level combination
results and a weighted sum decision rule-based approach. A comparison experiment showed that
the multilevel decision fusion rule had a higher overall accuracy than the weighted sum decision
rule-based approach and the low-level combination approach. A major limitation of the method
is that the accuracy of some of the land covers, where areas are small, are not as improved as the
overall accuracy.

Keywords: image classification; decision fusion; multi-temporal; remote sensing

1. Introduction

Land cover (LC) mapping plays an important role in monitoring LC changes for envi-
ronmental planning and management. In recent decades, remote sensing has developed
rapidly, efficiently producing LC maps in data and technology [1]. Numerous classification
methods have been developed to satisfy requirements and achieve higher accuracy of
LC mapping, including graphics technology, such as computer vision and geoscientific
knowledge (e.g., multilayer analysis based on object-oriented methods). The types of
remote sensing data also vary widely, from multi-resolution optical data to synthetic aper-
ture radar (SAR) data. However, neither the single classification methods nor data are
universally optimal for all situations [2]. Under some circumstances, multi-source data
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classification can show discrepancies in the results. It is thought that the disagreement
between the classification results of different remote sensing data sources is a reflection of
the complementariness between data [3].

Data fusion is a promising way to achieve complementary advantages of multi-source
data to improve the final classification accuracy. In the literature, three levels of data
fusion have been categorized, namely the pixel, feature, and decision level or symbol
level [4]. Image fusion at the pixel level means fusion of measured physical parameters are
obtained by the remote sensor. Fusion at the pixel level will generate images with pixel
values determined by a set of pixels from various sources. Fusion at the feature level first
extracts features, such as the texture or spectrum of images, and then fuses the extracted
features from various sources with higher confidence. Decision-level fusion is a symbol-
oriented approach widely used in the field of classifier combination. Decision fusion is the
highest level of data fusion, combining preliminary classified results by single classifiers or
classified data [5]. Fusion strategies, such as majority vote [6], weighted average (WA) [7],
Bayesian reasoning (BR) [8], and Dempster–Shafer evidence theory (DS) [9] are commonly
used decision rules in decision fusion. The flexible nature of decision-level fusion makes it
adaptable for multi-source data fusion [10].

MODIS data and Landsat data are widely used in land cover classification because
they have fine temporal and spatial resolution and are available for free. Although satellites
carrying high spatial resolution sensors, such as Planet and WV3, have a one-day revisit
period, the images are expensive. Most cost-free remote sensing images hardly achieve a
high revisit cycle frequency and high spatial resolution simultaneously [11]. Combining
high spatial and high temporal resolution data are very useful in improving LC classifica-
tion accuracy, especially in cloudy and rainy regions where high spatial resolution data
are usually contaminated with clouds, making it difficult to extract continuous surficial
information [12]. The application of high-frequency revisit cycle satellites, such as MODIS
(250 m data), can be prohibitive in local LC mapping because the pixel sizes of the data
are usually larger than the patch size of land cover, causing mixed pixels. To combine
the complementary advantage of the two data sources, spatial and temporal fusion algo-
rithms have been developed based on the pixel level including the STRAFM (Spatial and
Temporal Adaptive Reflectance Fusion Model) [13], STAARCH (Spatial Temporal Adap-
tive Algorithm for mapping Reflectance Change) [12], ESTRAFM (Enhanced Spatial and
Temporal Adaptive Reflectance Fusion Model) [11], and STDFM (Spatial Temporal Data
Fusion Model) [14]. Concentrating on pixel level fusion, the natures of these linear models
always have preconditions that have impeded their applications, such as getting at least
two Landsat scenes collected within short intervals. Rarely has research focused on the
combination of MODIS and Landsat LC information for decision fusion. Recently, Wang
et al. developed a decision fusion scheme combining MODIS time series data with Landsat
data based on evidential reasoning, where a weight and uncertainty were considered by
comparing the difference between the results produced by the two datasets [15].

Generally, combining multi-sensor data by decision fusion includes two steps. In the
first, each sensor’s images are classified using prior classifiers. In the second, the outputs
of each prior classifier are assembled by another combination function. The combination
can be a classifier or a decision rule. Selection of the prior classifiers can be very flexible,
and the traditional supervised classification methods—SVM (Support Vector Machine),
decision tree, neural network—often use prior classification of multi-sensor images [16].
Most studies regarding the decision fusion of multi-source data have focused on the
development of appropriate combination functions for combining outputs of the prior
classifiers. In fact, most decision fusion rules can be applied to multi-source data despite
the sensor type because of the flexibility of decision-level fusion. Many combination
functions have been considered for the combination of multi-resolution or multi-source
remote sensing data for classification. Benediktsson et al. developed a fusion scheme
ensemble for multi-source remote sensing data based on a neural network [17]. Waske
et al. applied the SVM as a decision classifier to integrate multi-spectral optical imagery
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with multi-temporal SAR images [18]. Fauvel et al. [2] developed a classifier aggregation
scheme considering pointwise accuracy and global accuracy for each algorithm, where the
pointwise accuracy was derived from the fuzziness of each fuzzy result of the classifiers.
The method can automatically adapt to the local context by favoring the most reliable
source. Mitrakis et al. [19] proposed a multilayered neuro-fuzzy classifier. The fusion
scheme is organized in a parent-descendent way. Giacinto and Roli [20] proposed the
concept of “Meta-classification”, treating each classification result by multiple classifiers
as new “features”, then inputting the new “features” into a new metaclassifier. Recently,
Löw et al. [3] also used a meta-classification approach for decision fusion; in the meta-
classification process, the uncertainty of each non-parametric base classifier algorithm was
considered and less reliable inputs were excluded.

Considering the flexibility of decision-level fusion, MODIS and Landsat data can be
fused on the decision level. However, because of the mixture of information in MODIS data,
a special fusion scheme should be designed for the fusion of MODIS and Landsat data.
In this paper, we propose a novel multilayer decision fusion scheme to combine MODIS
and Landsat dataset information. The model consists of three layers, namely the 30 m
Landsat pixel layer, the object layer, and the 250 m MODIS pixel layer. The object layer is
generated by multi-resolution segmentation of the Landsat pixels, and the segmentation
is restricted in MODIS pixels. Each layer provides a membership degree for each of the
classes considered. A weighted measure considering the local confidence, as well as the
global confidence mechanism, is considered to combine each layer, and the core class
decision method adopts the compromise combination developed By Fauvel et al. [2]

This three-layer combination decision fusion works at the MODIS pixel–object layer
and at the object–Landsat pixel layer. It achieves better classification accuracy than the
direct coarse-to-fine resolution data combination. Our model was tested on a site in Thai-
land within the Mekong River Basin. The classification results of our fusion scheme were
compared with the single classification accuracy of each dataset, commonly used decision
fusion schemes, and a two-layer combination of the fusion scheme used in this study.

2. Study Area and Materials
2.1. Brief Introduction to the Study Site

The test site is in the northeast region of Thailand within the Mekong River-Basin, as
shown in Figure 1. The location of the site is about 15◦00′ N and 103◦00′ E, extending to
5843 km2 and including a total of 3000 × 3150 Landsat pixels. The area features a humid
tropical monsoon climate with an annual temperature of 18 ◦C or greater, and an average
annual precipitation of 1300–1500 mm. Crops are cultivated and harvested two or three
times per year in many areas due to the suitable hydrothermal conditions. The spectral
characteristics for crops can vary at different times and locations since the planting period
is not limited by a fixed growing season. We created the reference land cover map by
manually interpreting Google Earth high-resolution remote sensing images. The collection
period of the Google Earth images ranged from January 2015 to February 2016.

Ten types of land cover were identified on the satellite data at the test site, including
Artificial Forest, Deciduous Forest, Dry Land, Evergreen Forest, Grass Land, Paddy Rice,
Urban & Construction Land, Water, Wet Land, and “Others”. The site is suitable for the
study for the plentiful of land cover types.
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Figure 1. Location of the test site.

2.2. Satellite Data

The study mainly used the MODIS time series data and Landsat 8 operational land
imager (OLI) data for data fusion. The MODIS data product was retrieved from the online
data pool, courtesy of the NASA (National Aeronautics and Space Administration) Land
Processes Distributed Active Archive Center (LP DAAC) and the United States Geological
Survey (USGS)/Earth Resources Observation and Science (EROS) Center. Specifically,
the MOD09Q1 dataset for 2015 was used. MOD09Q1 provides MODIS band 1–2 surface
reflectance at 250 m resolution. It is a level 3 composite of MOD09GQ. Each MOD09Q1
pixel contained the best possible L2G observation during an 8-day period as selected on
the basis of high observation coverage, low view angle, the absence of clouds or cloud
shadow, and aerosol loading. We obtained the two bands of the MOD09Q1 data for
Normalized Difference Vegetation Index (NDVI) calculation. In addition, the quality
assessment (QA) of MOD09Q1 data was also acquired by the Land Data Operational
Products Evaluation (LDOPE) tool courtesy of LP DAAC and EROS, Sioux Falls, South
Dakota (https://lpdaac.usgs.gov/tools/ldope_tools (accessed on 16 February 2021)). The
2015 MOD09Q1 contains 46 images in total.

Landsat 8 OLI images of the test site with cloud cover less than 10% were obtained
from the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/
(accessed on 16 February 2021)). Landsat 8 carried the operational land imager (OLI), in-
cluding nine bands, among which eight were multi-spectral bands with a resolution of 30 m,
and another 15 m panchromatic band with an imaging width of 185 km × 185 km [21].

2.3. Data Preprocessing
2.3.1. NDVI Curve Noise Reduction

The study used an NDVI time series similarity measure from MODIS data for a
preliminary fuzzy classification. NDVI gives an indication of the photosynthetic activity
of the vegetation and is calculated as the difference between the near-infrared and visible
reflectance divided by the sum of the two [22]. Reflectance values in band 1 and band 2

https://lpdaac.usgs.gov/tools/ldope_tools
https://earthexplorer.usgs.gov/
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of MOD09A1 and band 5 and band 4 of Landsat 8 were used to calculate separate NDVI
values for each product, as shown in Equation (1):

NDVI =
(ρnir − ρred)

(ρnir + ρred)
(1)

where ρnir is the reflectance value of the NIR red band of the MOD09Q1 data and Landsat 8
data, and ρred is the reflectance value of the red band.

Atmospheric conditions, geometric errors of the sensors, sub-resolution changes, and
other factors may cause noise in the satellite time series [23]. It is necessary to reduce the
noise, and a number of satellite time series noise reduction methods have been compared
in the literature [24,25]. In this study, we used the adaptive Savitzky–Golay (S–G) filter in
TIMESAT software [26] to reduce noise in the MODIS NDVI time series data. The Adaptive
Savitzky–Golay filtering replaces each data value yi, i = 1, . . . , N by a linear combination
of nearby values in a window:

n

∑
j=−n

cjyi+j (2)

where cj is the weight of the ith NDVI value of the filter, which is replaced by a weighted
QA value of the NDVI. The data value yi is replaced by the average of the values in the
window. The window width n of the filter size is the half-width of the smoothing window.
The index j is the running index of the original ordinate data table.

For better noise filtering, TIMESAT employed QA data decoded from the original
HDF (Hierarchical Data Format) MODIS data by the LDOPE tools. Specifically, bit 2-3, the
“cloud state”, was used as the reference of the weight in Equation (2) for TIMESAT S–G
filtering. The clear data (Bit Comb. 00) was weighted to 1, the cloudy data (Bit Comb. 01)
was weighted to 0.5, and the mixed and unset data (Bit Comb. 10 and 11) were weighted to
0.1 in the study. We used a window size of 4 for the filter, adaption strength was set as 2,
and the number of envelope iterations was set to 3.

2.3.2. Image Registration

The Landsat 8 OLI image was a Level 1T product. We conducted radiometric calibra-
tion and a FLAASH model atmospheric correction with ENVI 5.0 SP3 software. Then, the
Landsat 8 OLI data were resampled to 25 m with the nearest resampling technique. Finally,
MODIS data were registered by the Landsat 8 image.

3. Method
3.1. Overall Fusion Scheme

Overall workflow of multilevel decision fusion is shown in Figure 2.
The fusion scheme can be described as two phases, namely the fuzzy classification

process and the decision fusion process. First, fuzzy classification was performed on
the MODIS data based on a time series similarity measure method, while the Landsat
data fuzzy classification were based on a nearest neighbor classifier. The Landsat data
were also classified based on an object-oriented classification. Second, after obtaining
the memberships of the three-level data, confidence was evaluated on both local and
global scales. Local confidence reflects the spatial distribution of uncertainty and global
confidence reflects the performance of the fuzzy classifiers. Third, memberships of the
three-level data, local confidence, and global confidence were combined by a decision
fusion rule.
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After the decision fusion, fuzzy classification results of the three-level data were
combined on the basis of the performance of a single classifier. Classifiers with better
performance were weighted more in the fusion phase so that the final result preserved
better classification results; thus, improving the classification accuracy. The detailed process
and parameter acquisition procedure are as follows.

3.2. Fuzzy Classification and Operation

Unlike many traditional classification models, the so-called soft classification gives
belongingness or likelihood to several categories rather than the rough Yes or No set [27].
There are many approaches to using a soft classifier, including the fuzzy set theory or D
–S theory. There are also many algorithms to “soften” hard classifiers, such as maximum
likelihood classifiers [28]. The degree to which an object belongs, or is likely to be a category,
is called membership in the fuzzy set theory. In this section, we first introduce the concept
of fuzzy classification, or so-called soft classification, and state the relationship between
memberships with the fuzzy sets and some definitions and operations on fuzzy set theory.
Then, we will illustrate the specific fuzzy classification method to get the membership
value of the Landsat pixel, image object, and MODIS pixel.

3.2.1. Fuzzy Aggregation Operators

If an object or class is fuzzy, the fuzzy concept can be introduced to classification. The
fuzziness of an object may be caused by many factors, such as mixed pixels, limited feature
space, or the spectral similarity between intra-classes [29,30].

To better understand the max–min combination operator, we first introduce some
basic notions of fuzzy sets and common aggregation operators used in contextual literature.

A fuzzy set F in a reference set U is characterized by a membership function µF where
µF : U→ [0, 1] . µF = 0 means that µ is definitely not a member of F, and 0 < µF < 1
means that µ is partially a member of A. F and G are two fuzzy sets in U with membership
functions µF and µG [31]. Several operators can be used for spatial data fusion, such as
tnorms, tconorms [32], and mean-like operators, such as the Choquet integral and Ordered
Weighted Averaging (OWA) operators [33,34]. The fusion operators including the decision
operator, combination operator, and cut operator are based on the classical fuzzy set
operations. These operations will serve at the fusion scheme in this paper.

Based on the conflict between sources, the compromise combination operation is
defined as:

C(µF(x),µG(x)) = sup
x

min(µF(x),µG(x)) (3)
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More flexible combination operators adapted to the context have been proposed, such
as the prioritized fusion operator [2,35]:

µ(x) = min(µF(x), max(µG(x), 1−C(µF(x),µG(x))) (4)

µ(x) = max(µF(x), mix(µG(x), C(µF(x),µG(x))) (5)

3.2.2. Nearest Neighbor Classification

The nearest neighbor (NN) classifier is the most commonly used fuzzy classification
method among supervised classification methods. We chose the NN classifier rather than
other fuzzy classifiers for the classification of Landsat data because of the convenience to
perform multi-resolution segmentation with eCognition Developer software at the same
time. To apply NN classification to Landsat pixel classification and object classification,
any other fuzzy classifiers can be operated as pre-classifiers for Landsat pixel and object
layer classifiers. The same applies to the time series data. We focused on the improvement
of the pre-classifiers rather than the pre-classifiers themselves. The NN classification is
based on minimum distance in a NN feature space where the training data are constructed
by spectral, shape, or texture feature values. The distance in the NN feature space is
decided by a simple Euclidean distance (ED) function. The distance function is shown in
Equation (6):

d(x, y) =

(
m

∑
i=1

(xi − yi)
2

)1/2

(6)

where d(x, y) is the ED of samples to be classified in the NN feature space. The data are
more similar to the samples when the ED is smaller. The Euclidean distances provide a
chance to range the feature values into fuzzy membership values between 0 and 1.

3.2.3. Image Object Classification

The goal of the middle level in the fusion scheme is to connect the MODIS pixel with
the Landsat pixel by the segmented image objects. The advantage of including an object
level decision is that the object features contain more information, such as neighborhood
information and texture information, for the fuzzy classification. In addition, the object
level contains a stack of homogenous pixels that are more reasonable for fusing with the
MODIS pixels.

The image segmentation is based on multi-resolution segmentation (MRS) performed
on the eCognition platform. The segmentation is confined to MODIS pixels, as illustrated
in Figure 2. The MRS in the eCognition platform uses five parameters to control the seg-
mentation result, namely the scale, shape, color, compactness, and smoothness parameters.
The segmentation scale, which controls the size of resultant polygons, is the most critical
parameter. A good segmentation will produce a balance between polygon size and the
homogeneity within an object and heterogeneity between objects. The shape and color
parameters define the weight that the shape and color criteria should have when segment-
ing the image. The higher the value of the shape, the lower the influence of color on the
segmentation process. For the compactness and smoothness criteria, the higher the weight
value, the more compact image objects may be. We set the value of the scale parameter to
40, shape value to 0.3, and compactness value to 0.5, according to an experiment on the
test site. Note that different test sites should have different segmentation parameter values.
The operation of the image segmentation guaranteed the registration among three layers,
as shown in Figure 3:
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After the segmentation, the objects were classified via sample points. The fuzzy classi-
fication process was also performed in the eCognition software. The object information,
including the spectral, texture, shape, and difference with neighbor objects were input in a
NN feature space for the training of samples. Figure 4 shows the distribution of sample
points collected on the reference map to perform the NN classification for the Landsat
object level and Landsat pixels.
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Finally, the fuzzy classification was performed via the NN classifier, producing mem-
berships of each class.

3.2.4. Time series Similarity

Temporal trajectory analysis is able to exploit temporal patterns in multi-temporal
sequences, and time series similarity is an important measure in temporal trajectory analy-
sis [36]. Vegetation usually shows a seasonal temporal trajectory driven by plant phenol-
ogy [37]. The vegetation index (VI) derived from satellite data has proven vital in detecting
vegetation growth conditions. Apart from detecting vegetation, other LC types have also
proved to be distinguishable via VI [38]. Hence, the VI time series similarity measure is
a powerful method for land cover classification. The ED method time series similarity
algorithm has proved to be a simple but effective method to measure time series similarity,
and in this article, the ED method was used for the NDVI time series similarity measure.
According to the Linear Spectral Unmixing theory, the VI time series is likely to present the
dominant LC types. When the landscape is heterogeneous, the VI time series is similar to
the average of the LC type VI time series. Membership of MODIS data can be determined
by the similarity between each pixel’s VI time series and the reference LC VI time series.

The first step is to build the MODIS NDVI time series. Assume there are N pixels in an
image and M layers of MODIS NDVI imagery obtained over a year in chronological order
beginning with the first day of the year. Each pixel has two attributes, its coordinates (x, y)
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and an NDVI sequence defined as: Sm =
{((

xq, yq

)
, VIl

q

)
, q = 1, . . . , N; l = 1, . . . , M

}
,

where
(

xq, yq

)
are the coordinates of each pixel; VIl

q are the NDVI values in each layer of
MODIS time series data. Usually, the 8-day composite MODIS data have 46 layers, and
the value M equals 46. Second, pick the reference time series of each land cover. Because
of differences in reflectance, LC types have different VI time series shapes. The standard
VI time series is derived from the pure pixels in satellite images or the ground truth data.
The standard VI time series serves as a reference curve and compares the similarity with
each pixel’s VI time series by ED. Third, calculate similarity between pixels’ VI time series
and the reference VI time series, according to the principle of ED, which is the cumulative
distance of the corresponding pointwise values on two curves (Equation (7)):

ED =
M

∑
l=1

abs
(

VIl
1 −VIl

2

)
(7)

where ED is the Euclidean distance between curve VIl
1 and VIl

2, and M is the number of
points on the curves. Finally, the normalized memberships are obtained using the ED. The
smaller the ED value is, the more similar the two curves are. To constrain the value to [0,1],
the Euclidean distance of each pixel to a certain land feature’s standard NDVI time series
was normalized according to Equation (6) as the normalized Euclidean distance (NED).
Finally, the memberships of MODIS data were obtained by the value 1-NED. Equation (8)
is the calculation of NED.

NED = (ED−minED)/(maxED −minED) (8)

3.3. Uncertainty & Decision
3.3.1. Pointwise Global

The core class decision method adopts the compromise combination developed in [2]
by Fauvel and Benediktsson. We will briefly review the method and explain its usage
in the three-layer fusion scheme of this paper. It was assumed that when a membership
is “reliable”, it has low fuzziness because a reliable fuzzy set should have a membership
significantly higher than the others. On the contrary, when the membership values in a
membership are close to each other, the classifier is “unreliable”. The pointwise accuracy
can be measured by the fuzziness of a membership (fuzzy set).

Here, we take the research result in [39] as the measurement of fuzziness, which is
similar to the description in [3] of a fuzzy set F defined by:

HαQE(µF) =
1

n2−2α

n

∑
i=1
µF(xi)

α(1− µF(xi))
α (9)

where the parameter α is 0.5 in the paper by Löw et al. [3]. We took this parameter as well.
To normalize the effect of weights on different fuzzy sets, in the next step, each fuzzy

set was weighted by: 
ωi =

∑m
k=0,k 6=i HαQE(µF)

(m−1)∑m
k=0 HαQE(µF)

m
∑

i=0
ωi = 1

(10)

where Ev(µk(µi)) is the degree of fuzziness of source k and m is the number of sources.
The value ofωi is close to 1 when a source has a low degree of fuzziness.

3.3.2. Global Accuracy

The local context of uncertainty of the membership can be adopted as one hand of
the uncertainty measure. Most decision fusion schemes take the “global accuracy” of the
membership as fusion weights. The global accuracy means the classification accuracy by
each classifier on the whole image. The global accuracy can be a priori knowledge, but
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is usually obtained from a posteriori accuracy from the confusion matrix. The class-wise
measure of accuracy (CAi) can be defined by Equation (11):

CAi =
2 ∗ pri ∗ tpi

pri + tpi
(11)

where tpi is the true positive rate (TPR), which gives the proportion of samples classified
into class i among all samples, which truly have class i, and pri the precision, which gives
the proportion of samples that truly have class i among all samples classified as class i.

Because the MODIS data classification accuracy is highly related to the area proportion, the
global accuracy of MODIS data should be added with an area factor (Ap |p = 1, 2, 3, . . . , 10),
which is the accuracy of the graded area proportion, the proportion of which is (10, 20, 30,
. . . , 100)1. Thus, Equation (11) is rewritten as:

CAp
i =

(
Ap

i ∗CAi ∗ 10
)

/
10

∑
p=1

Ap
i (12)

3.3.3. Decision Rule

Following the fuzzy sets operation introduced in Section 3.2.1, the decision fusion
is given by adapting the local context based on the contextual dependent compromise
combination. It was proved that the fusion favors the most reliable source by adapting to
the local context:

µ
j
f (x) = max

(
min

(
ωiµ

j
i(x), f j

i (x)
)

, i ∈ [1, m]
)

(13)

where f j
i (x) is the global confidence of source (classifier) i for class j, ωi is the local context

defined in Equation (8), µ
j
i is an element of the membership, which denotes a membership

value to class j, and m is 2 in our scheme. Here, the average class-wise accuracy (CAi and
CAp

i ) introduced in the last paragraph will be used as f j
i (x).

Before beginning the fusion operation, the image segmentation presented in Section 3.2.3
was performed to produce the object layer. Then, classifying the MODIS data by the
time series similarity measure presented in Section 3.2.4 obtained the membership µj

m.
Classifying the Object and Landsat pixel data by the nearest neighbor classifier presented
in Sections 3.2.2 and 3.2.3 with sampling points obtained the memberships µj

o and µj
l.

Calculating the pointwise accuracy of the classified data with Equation (12) yielded the
MODIS data global classification accuracy f j

m(x). The object layer’s global classification
accuracy f j

o(x) and the Landsat pixel layer’s global classification accuracy f j
l (x) were

obtained by Equation (11) with sampling points.
In the fusing phase, the local confidence was first obtained by Equation (9) and

Equation (10). The local confidence of MODIS membership, object membership and
Landsat membership were denoted as ωm, ωo, and ωl . The final fusion method is shown
in Equation (14):

µ
j
mol(x) = max

(
min

(
ωmµ

j
m(x), f j

m(x)
)

, min
(

ωoµ
j
o(x), f j

o(x)
)

, min
(

ωlµ
j
l(x), f j

l (x)
))

(14)

4. Result

Following the fusion schemes and the detailed steps, we tested our fusion method
in the test site. Sample points were collected to train the nearest neighbor classification
samples and a standard NDVI time series was obtained. The true classification map was

1 Example: the class-wise accuracy of LC type A is 0.37. Ap
i = {0.54, 0.58, 0.57, 0.59, 0.64, 0.73, 0.76, 0.83, 0.83, 0.89}. Then, the area of an object

occupies 32.2% in a MODIS pixel. Then CAp
i = 0.57∗0.37∗10

14.4 = 0.146. This means that when the object occupies 32.2%, the classification accuracy of
LC type A is 0.146.
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obtained by manually interpreting Google Earth high-resolution remote sensing images
of the region (dated from January 2015 to February 2016). The classification accuracy was
compared with (1) classification results of using the MODIS and Landsat data without
decision fusion; (2) decision fusion results using the MODIS and Landsat data by the fusion
rule of our scheme; and (3) the selected results of decision fusion, weighted sum fusion [7],
and fuzzy classification result of Landsat and MODIS data.

4.1. Reference NDVI Time Series

The land cover types have different VI time series shapes due to the differences in
reflectance. The standard VI time series was derived from the reference map (Figure 5).
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annual NDVI curve; (c) is the deciduous forest annual NDVI curve; and (d) is the evergreen forest annual NDVI curve.

4.2. Membership Value

The Euclidean distance-based similarity measure was applied to classify the MODIS
data. Using the nearest neighbor classifier for the classification of Landsat 8 OLI data, we
obtained the membership values of the 10 typical land features for the MODIS and Landsat
satellite data, as shown in Figure 6. For succinctness, we only illustrate the membership of
paddy rice.
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Figure 6. Possibility maps: (a) shows the membership values for the paddy rice class given by the
Euclidean-based similarity measure from the MODIS NDVI time series while (b,c) show the class
probability of the paddy rice class obtained by the nearest neighbor-based fuzzy classification of
Landsat data at the object level and the pixel level, respectively.

4.3. Weighting Factor

Although the MODIS data classification accuracy was generally lower than the clas-
sification results of the object or the Landsat pixels, the classification accuracy was high
relative to landscape heterogeneity. Using Equation (9) and Equation (10) to calculate the
global accuracy of MODIS data, as shown in Table 1, the accuracy generally increased
when the image object was larger, which denotes more homogeneity in the landscape. The
classification accuracy of the MODIS-classified LC classes was lower than the Landsat
data. However, the accuracy of MODIS-classified data was more reliable when the area
occupation of the image objects was larger.

4.4. Land Cover Mapping and Accuracy Assessment

Figure 7 shows the Landsat pixel, object, and MODIS time series classification results
by NN and ED classifiers; the real classification image by auto-manual interpretation; and
the fused classification image.
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Table 1. Graded area’s global accuracy of MODIS data.

Area Grade Accuracy/LC Types GS 1 EF 2 AL 3 DL 4 DF 5 OT 6 AF 7 WL 8 WT 9 PR 10

Accuracy/graded area 8.3 29.2 9.5 54.4 36.7 10.4 18.2 21.7 24.3 73.2

1 40.5 6.2 21.9 7.1 40.9 27.6 7.8 13.7 16.3 18.3 55.0
2 41.9 6.5 22.7 7.4 42.3 28.5 8.1 14.1 16.9 18.9 56.9
3 42.6 6.6 23.1 7.5 43.0 29.0 8.2 14.4 17.1 19.2 57.8
4 51.3 7.9 27.8 9.0 51.8 34.9 9.9 17.3 20.6 23.1 69.7
5 47.9 7.4 25.9 8.4 48.3 32.6 9.2 16.2 19.3 21.6 65.0
6 59.9 9.2 32.4 10.6 60.4 40.8 11.6 20.2 24.1 27.0 81.3
7 62.3 9.6 33.7 11.0 62.9 42.4 12.0 21.0 25.1 28.1 84.6
8 58.3 9.0 31.6 10.3 58.8 39.7 11.2 19.7 23.5 26.3 79.2
9 63.4 9.8 34.3 11.2 64.0 43.2 12.2 21.4 25.5 28.6 86.1

10 71.0 10.9 38.5 12.5 71.6 48.3 13.7 24.0 28.6 32.0 96.4
1 GS—Grass Land. 2 EF—Evergreen Forest. 3 AL—Urban and Construction Land (Artificial Land). 4 DL—Dry Land. 5 DF—Deciduous
Forest. 6 OT—Others. 7 AF—Artificial Forest. 8 WL—Wetland. 9 WT—Water. 10 PR—Paddy Rice.
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Following the fusion scheme, the MODIS data were first classified using the ED fuzzy
classifier. The image objects (Obj.) produced by segmentation and the Landsat pixel
(LP) was classified using the NN classifier and expressed as NNO and NNP. The final
classification results were compared with the fuzzy classification results from mono-source
data, namely the MODIS classification results, the Landsat pixel based fuzzy classification,
and the image object-based fuzzy classification. The result was also compared with the
weighted sum (WS) fusion results. We will refer to our fusion scheme as the three-layer
decision fusion (TLDF) for clarity. Indicators included the class-wise accuracy produced by
the confusion matrix as well as the overall accuracy (OA) produced by each classification
result. We used CAi in Equation (11) to evaluate the classification accuracy of each class
type. The comparison results are shown in Table 2.

Table 2. Test accuracy of CAi and overall accuracy.

Classification Method/LC Type ED NNO NNP WS MODIS-Object TLDF

GS 1 8.3 5.7 5.3 6.5 4.7 5.9
EF 2 29.2 48.2 53.7 42.1 40.3 41.2
AL 3 9.5 16.3 22.6 8.7 10.3 9.5
DL 4 54.4 36.2 31.7 56.6 55.6 56.8
DF 5 36.7 58.1 42.5 15.0 20.3 22.7
OT 6 10.4 7.9 6.3 0.0 0.0 10.1
AF 7 18.2 3.2.0 6.2 0.0 0.0 5.2
WL 8 21.7 8.4 8.1 18.2 12.7 13.3
WT 9 24.3 29.7 22.5 26.1 26.8 28.6
PR 10 73.2 74.5 73.7 76.9 77.3 77.6

O.A. 11 49.2 52.7 51.4 54.6 55.2 57.3
1 GS—Grass Land. 2 EF—Evergreen Forest. 3 AL—Urban and Construction Land (Artificial Land). 4 DL—Dry Land. 5 DF—Deciduous
Forest. 6 OT—Others. 7 AF—Artificial Forest. 8 WL—Wetland. 9 WT—Water. 10 PR—Paddy Rice. 11 O.A. —Overall Accuracy.

The weighted sum approach fuses multi-source data by weighted average of the
membership values using Equation (15):

µ
j
mol(x) =

(
ωmµ

j
m(x) ∗ f j

m(x) + ωoµ
j
o(x) ∗ f j

o(x) + ωlµ
j
l(x) ∗ f j

l (x)
)

/3 (15)

As shown in Table 2, the three-layer decision fusion obtained the highest overall
classification accuracy. It improved the MODIS data classification accuracy by 8% and
improved the Landsat classification accuracy by more than 5%. The LC types that are highly
related to phenology patterns, such as Paddy Rice and Dry Land, had higher accuracy after
fusion than the Water, Artificial Land, and Others. The accuracy was close to the highest
accuracy of mono- or multi-source classifications. Finally, the classes of Water and Artificial
Land had higher classification accuracy after the fusion scheme of our method because of
its ability to preserve detailed information.

The results of the first test site illustrate the better performance of the three-layer fusion
scheme. Although the best classification accuracy was not obtained by the three-layer
fusion scheme for every LC type, it was able to balance the area proportions of the LC
types with multi-source classification accuracy.

5. Discussion

Several fusion algorithms have been proposed in previous research to improve the
spatial resolution of MODIS data by combining Landsat data at the pixel level. In contrast,
the key point in the framework presented in this paper lies in combining the useful informa-
tion from different data by fusing them at the “decision-level.” There are studies focusing
on the fusion of MODIS and Landsat data in the decision-level [40,41]. The difference
between our work and others is that we used spatial distribution of the uncertainty in the
fusion scheme. In our previous work, we analyzed MODIS 8-day NDVI data classification
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accuracy with respect to land heterogeneity and showed that MODIS 8-day NDVI data
achieve a higher classification accuracy when the land cover is more homogenous [42].
Consequently, when the land cover within a MODIS pixel is homogenous, the information
extracted with MODIS 8-day NDVI data are more reliable. Although MODIS is useless
for small imaged objects, information extracted from Landsat data can be combined with
the reliable parts of the MODIS data. With this method, the Landsat data complement the
MODIS data and, thus, using both together improves classification accuracy. However,
the previous study [42] encountered the problem of detailed information loss. This article
improved the fusion result by adding a Landsat-pixel level, which helps preserve the
detailed information of the medium-high resolution data. We also compared the result
of a multilevel decision rule with the fusion result of our previous method. The study
proves that the multilevel decision fusion rule is superior for fusing spatiotemporal remote
sensing data.

This study adopted a simple weighted sum membership function combination rule
for decision fusion. The main limitation for the weighted sum combination rule is that
the production of the membership values with the weighting factor generated by the
classification accuracy of MODIS and Landsat data merges locally reliable values with
globally reliable values. This combination rule leads to some unsatisfactory results, such
as incorrect classifications obtained by fusing two correct classifications of MODIS data
and Landsat data. Although imperfect, this combination rule was capable of improving
classification accuracy and achieving good performance with the object-based weighting
factor the first time we introduced it in the combination of MODIS and Landsat data at
the decision level. We chose the weighted sum combination rule because it is simple and
easily understood. We suggest introducing the object-based weighting factor to other
decision fusion rules to improve classification accuracy, as introduced in [16], in which the
authors were able to separate the local uncertainty from the global accuracy. Moreover, the
object-based weighting factor that considers land heterogeneity could be introduced into
many other combination rules that involve weighting factors.

Theoretically, one precondition of this method is the assumption that the classification
accuracy, for some land cover types from Landsat data, is higher than the classification
accuracy for imaged objects that occur at lower proportions in a MODIS pixel (Mcq).
Moreover, in turn, this method assumes that MODIS classification accuracy with higher
proportions is greater than that from the equivalent Landsat classification data. How-
ever, during the accuracy assessments for these experiments, we found that the nearest
neighbor-based fuzzy classifications of Landsat data were sometimes affected similarly
across the spectrum and that the membership values were similar between some land
cover types. Consequently, the MODIS 8-day NDVI data could act as a reference correction
to the Landsat image classification results—even when neither of the fuzzy classification
accuracies from the MODIS or Landsat data were higher than the other. As illustrated
in Figure 6, the memberships produced from NN classification were distributed mainly
from 0.8 to 1, which is relatively high. Specifically, for most objects, the memberships of
two classes were always higher than others and their numerical values were very close, as
shown in Figure 6b. In such cases, MODIS acts as auxiliary information as illustrated in
Figure 6a, where a final decision could be obtained for paddy rice.

This study uses a decision fusion method to classify land cover. To take advantage of
both the high temporal resolution of MODIS data and the moderately-high spatial resolu-
tion of Landsat data, we developed a systematic approach based on fuzzy classification
and a decision fusion method to integrate these two-remote sensing products. We applied
the method to a test site within the Mekong River Basin. The overall classification accuracy
from the fused data is higher than the classification results achievable from Landsat images
or MODIS images alone, yielding accuracies of 57.3%, 49.2%, and 51.4%, respectively.
About 7% of the incorrectly classified classes were rectified by the decision fusion method.
This study shows the proposed fusion scheme is promising for improving classification
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accuracy, particularly for areas where it is difficult to obtain high-quality, high-to-moderate
spatial resolution images.

6. Conclusions

This article applied a decision fusion algorithm developed to combine classifiers for
the fusion of MODIS and Landsat data to improve classification accuracy. The decision
fusion algorithm was developed based on the fuzzy set theory. The fuzzy classification
result, presented as memberships to each class, is operated via a compromise combination
operation. We applied this fusion scheme to combine the MODIS time series derived classi-
fication information with the Landsat data derived classification information. The object
layer also derived fuzzy classification information and connected the coarse resolution
MODIS data with the fine resolution Landsat data. An improved global accuracy for the
MODIS time series data is proposed by adding an area factor to the accuracy.

This approach proved to be useful in combining the complementary information
provided by MODIS and Landsat. A test site located in the Mekong River Basin was
selected to verify the approach. The overall accuracy of the test improved by about 7%. It
was also proven that the three-layer decision fusion accuracy was greater than the MODIS-
object two-layer decision fusion accuracy. Comparisons with another fusion scheme,
the weighted sum fusion, was also conducted. The fuzzy set theory-based compromise
combination method gained a slightly higher classification accuracy than the weighted
sum fusion method, but the weighting also considered the pointwise and global accuracies.

Future work can consider the mixed pixel problem between the MODIS and Landsat
data. For example, the relationship between membership values that also denote the
combined proportion of endmembers in the coarse resolution data.
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