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Abstract: Land use and land cover (LULC) changes are regarded as one of the key drivers of
ecosystem services degradation, especially in mountain regions where they may provide various
ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats
extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the
Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however,
the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as
the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed
LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE)
and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which
decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal.
Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by
cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis
showed that the expansions of cropland were the major drivers of the forest cover change in the
KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment
existed in the KSL during the study period. The observed forest degradation directly influenced
the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in
2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by
1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the
loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the
LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.

Keywords: land use and land cover; ecosystem service value; Google Earth Engine (GEE); forest
fragmentation; transboundary landscape; Himalaya

1. Introduction

Ecosystem services can be defined as the benefits that humans gain from ecological
processes that contribute to human well-being [1–4]. However, global ecosystem services
have been altered by human activities over the past few centuries [5]. Anthropogenic
activities can be found in almost every corner of the globe after the onset of the Anthro-
pocene and have emerged as a global driver rapidly sculpturing the ecosystem [6–8].
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According to Costanza et al. [9], 60% of worldwide ecosystem services have degraded
over the past several decades. Land use and land cover (LULC) changes, mainly driven
by human activities [10], are considered to be one of the greatest and most immediate
threats affecting ecosystem services [11,12]. LULC changes have thus been considered
an important research topic with regard to global environmental change and sustainable
development [13–16]. Mountain ecosystems are rich sources of biodiversity [17] and host
high plant endemism [18]. They also provide diverse ecosystem services [19]. On the
other hand, mountain regions are fragile areas that are sensitive to external forces [20].
Human-driven LULC changes are considered to be among the greatest ecological pressures
in mountain regions [21].

As a typical mountain system, the Hindu Kush Himalayan (HKH) region extends ca.
four million square kilometers, encompassing eight countries: Afghanistan, Bangladesh,
Bhutan (all), China, India, Myanmar, Nepal (all), and Pakistan [22,23]. It is the source
of ten major river systems, which provide water, ecosystem services, and the basis for
livelihoods to a population of around 210.53 million people in the region [24]. Harboring
four of 36 global biodiversity hotspots [25], it provides habitats for numerous wild species
but is deeply threatened. The region is extremely fragile in terms of land cover diversity
and its association with variable terrain, climate, and sociodemographic interactions. The
HKH region is significantly rich in terms of biodiversity but is also one of the least studied
in the world [26,27]. The fourth and fifth reports of the Intergovernmental Panel on Climate
Change (IPCC) explicitly pointed to the HKH as a data deficient area [28,29].

Even though 39% of the HKH region’s land is divided into protected areas to support
better conservation [30], the effectiveness of protected areas still faces challenges [31,32].
Almost one-third of the protected areas are transboundary and in these areas, as elsewhere
in the HKH region, ecosystems and habitats extend across political boundaries [23]. When
conservation policies meet with the administrative and political borders in the territory, the
situation becomes more complex because of the nonconformity between natural ecological
boundaries and administrative borders [33]. This means that landscape-level planning is
necessary and management requires regional cooperation if the ecosystems or habitats are
transboundary in nature [34]. For better conservation, seven transboundary landscapes
have been identified across the HKH region—based on biodiversity significance, representa-
tion of ecoregions, cultural significance, and contiguity of ecosystems for conservation and
sustainable development of the region [35]—and are being used to develop transboundary
landscape-level planning and management approaches.

The Kailash Sacred Landscape (KSL) is one of the seven transboundary landscapes,
named after the Mount Kailash, which is seen as the holiest shrine for several religions [36].
Three of Asia’s great rivers have their sources in the landscape: the Indus, the Brahma-
putra, and the Ganges River, which provide essential transboundary ecosystem goods
and services, both locally and downstream [37]. However, increasingly frequent human
activities, together with climate change, have caused rapid land use and land cover changes
over the past decades. Uddin et al. [23] have shown the forest fragmentation in Nepal’s
Kailash Sacred Landscape from 1990 to 2009 and further predicted the future LULC in
2030. Duan et al. [38] assessed LULC changes in the Kailash Sacred Landscape of China
from 1990–2008 and quantified driving forces. Singh et al. [39] studied the LULC changes
in the Kailash Sacred Landscape of China from 1976–2011 and also pointed out forest
fragmentation in the Indian part. All of these studies assessed the LULC changes in three
countries using different data sources, study periods, classification systems, and meth-
ods. It is almost impossible to compare the differences in LULC changes among the three
countries. In short, LULC data covering the entire area are still unclear.

A detailed and accurate knowledge of land cover is crucial for many scientific and
operational applications and, as such, it has been identified as an Essential Climate Vari-
able [40]. The development of remote sensing provided an important tool to explore
historical and current land cover information at the local, national, regional, and global
levels [41]. The complicated process of processing satellite imagery and the high cost of
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computing power has limited the relevant research. Google Earth Engine (GEE) provides a
high-performance cloud-based platform and access for any researcher [42,43]. GEE houses
a massive imagery data collection, including Landsat, MODIS (Moderate Resolution Imag-
ing Spectroradiometer), and Sentinel that can be directly accessed using the JavaScript code
within minutes, allowing users to interactively test and develop algorithms and preview
results in real time without downloading any images [44]. Furthermore, GEE offers a pack-
aged algorithm for image preprocessing and machine learning classifiers. The efficiency of
GEE has been demonstrated by recent studies, including with regard to vegetation change
detection [45,46], urban area mapping [47,48], agricultural land mapping [49], grassland
monitoring [50,51], extraction of water bodies [52,53], and disaster monitoring [54].

Hence, we used satellite images and GEE to assess LULC changes and examine their
impacts on ecosystem service values (ESVs) in the KSL between 2000 and 2015. Our main
objectives were to explore: (1) the dynamics of LULC between 2000 and 2015; (2) the
ESV changes based on LULC; and (3) their implications for landscape conservation and
sustainable land use. This study is expected to provide insights into sacred landscape
conservation for future land management.

2. Materials and Methods
2.1. Study Area

The Kailash Sacred Landscape is located between 79◦40′ E–82◦30′ E and 29◦10′ N–
31◦20′ N (Figure 1). Mount Kailash, which is considered by multiple religions as the center
of the universe, and Lake Manasarovar are the most prominent features in the KSL. There
are two sacred lakes near Mount Kailash, Lake Manasarovar and Lake Rakshastal. The
region covers an area of over 31,000 km2, including parts of far-western Nepal, northern
India, and Purang County, Tibet Autonomous Region of China [23,38,39]. The elevation
drop from the highest mountain, Naimona’nyi, to the southern parts is over 7000 m. This
loss in elevation causes abundant vegetation types, ranging from tropical broadleaved
forest to alpine steppe. Diverse ecosystems provide habitats with rich biodiversity. The
landscape is also home to 93 mammal species, 497 bird species, and 134 fish species, among
other fauna, making it one of the ecologically richest areas in the western Himalayas [37].

Over a million people live within the landscape and most of this population resides in
India and Nepal, with very few persons inhabiting the sparsely populated high-elevation
areas on the Tibetan Plateau [37]. Local people rely heavily on the natural resources of this
region. In KSL-China, grazing is the primary mode of utilization of grassland, often exert-
ing pressures on fragile ecosystems. Agriculture accounts for a relatively small proportion
of land use. In KSL-Nepal and KSL-India, forests cover large parts of these two regions
and offer livelihoods to the local people while simultaneously supporting biodiversity con-
servation. Deforestation and fragmentation because of cropland expansion, infrastructure
construction, and illegal timber harvesting have been reported in these regions. Forest
cover loss and fragmentation are regarded as main causes of global ecosystem degrada-
tion [56]. Accordingly, human activities pose a serious threat to the fragile ecosystems in
the KSL.



Land 2021, 10, 173 4 of 20
Land 2021, 10, x FOR PEER REVIEW 4 of 21 
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laya (HKH) boundary was obtained from https://rds.icimod.org/home/datadetail?metadataid=3924 and the Tibetan Plat-
eau boundary from Zhang et al. 2014 [55]. 
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Figure 1. Map showing the location and topographic features of Kailash Sacred Landscape (KSL).
The Hindu Kush Himalaya (HKH) boundary was obtained from https://rds.icimod.org/home/
datadetail?metadataid=3924 (accessed on 8 February 2021) and the Tibetan Plateau boundary from
Zhang et al. 2014 [55].

2.2. Classification System and Training Data Collection

Land cover classification systems have been defined separately in KSL-China, KSL-
Nepal, and KSL-India. Duan et al. [38] classified land cover in KSL-China into ten types:
barren land, cropland, desert, glacier, wetland, water bodies, built-up land, low coverage
rangeland, medium coverage rangeland, and high coverage rangeland. Uddin et al. [23]
divided the land cover in the KSL-Nepal into seven types: forest, shrub land, grassland,
cropland, barren area, water bodies, and snow/glacier. Singh et al. [39] classified the
land cover system for KSL-India into seven types: forest, settlement, water, agriculture,
grassland, scrubland, and snow. The landscape in KSL-China differs from that in KSL-
Nepal and KSL-India, thus resulting in different land cover systems. Even though there is
a certain resemblance in landscape between KSL-Nepal and KSL-India, differences exist
in the classification systems. Following previous frameworks [57–59], we defined our
land cover classification system as shown in Table 1. Land cover classes were defined
through visual interpretation of high-resolution imagery available from Google Earth,
using Landsat images as a reference. Visual interpretation of reference imagery was based
on elements that help identify land cover features such as location, size, shape, tone/color,
shadow, texture, and pattern [60]. Furthermore, considering the time intervals defined
in this study, the training points that were stable during the study period were selected.
Finally, we obtained all the defined land cover types and training points shown in Table 1
and Figure S1.

Table 1. Classification system and list of training points.

Land Cover Code Land Cover Type Number of the Training Points

1 Water bodies 165
2 Snow/glacier 255
3 Forest 182
4 Built-up area 80
5 Shrub land 113
6 Cropland 194
7 Grassland 439
8 Barren land 285
9 Wetland 89

https://rds.icimod.org/home/datadetail?metadataid=3924
https://rds.icimod.org/home/datadetail?metadataid=3924
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2.3. Preprocessing of the Landsat Images

The Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper Plus
(ETM+), and Landsat-8 Operational Land Imager (OLI) top-of-atmosphere (TOA) re-
flectance products were used for land cover change analysis (available online: https:
//earthengine.google.com (accessed on 8 February 2021)). The Landsat datasets cover-
ing our study area were then imported as image collections into GEE, a cloud-based
geospatial analysis platform, for subsequent preprocessing tasks. Preprocessing meth-
ods presented by Alban et al. (2018) [61] were modified and applied in this study. The
main preprocessing functions, including cloud masking, shadow masking, adding spec-
tral index, etc., were packaged together. Using pixel-based image compositing methods,
the best available observations from multiple Landsat images were selected to gener-
ate high-quality Landsat image composites for 2000 and 2015 [62–65]. Users can de-
fine parameters according to their own requirements, including location of the study
area, composite years, cloud cover threshold, etc. The detailed parameters used in this
study can be found in the supplementary materials. The quality of the image always
suffers from high cloud cover, resulting in empty pixels or scenes. To solve this prob-
lem, we combined two strategies. First, we set the combine year parameter to three
years to obtain as many images as possible; then we applied the focal_mean function
offered by GEE (available at: https://developers.google.com/earth-engine (accessed on
8 February 2021)), a morphological mean filter, to each band of an image using a cus-
tom kernel (Figure S2). The detailed parameters used in this study can be found here:
https://code.earthengine.google.com/17f98d1e3fe5b7c0e6b432480a65dc9b (accessed on
8 February 2021).

2.4. Classification Features Input and Classifier

Multiple spectral indices have been developed to establish the relationship between
the spectral and radiometric responses measured by remote sensors and the presence
of various land covers, especially vegetation [66]. Huang et al. [67] used the B2–B7 and
nominalized difference vegetation index (NDVI) bands as predicting bands for mapping
land cover changes in Beijing; Teluguntla et al. [68] used the B2–B7 and NDVI bands as
the classification features to map the 30-m cropland extent in Australia and China; and
Xiong et al. [69] used B2–B4, B8, and NDVI bands as the predicting bands to acquire a 30-m
resolution cropland extent map of continental Africa. Tsai et al. [44] mapped the LULC in
Fanjingshan National Nature Reserve using the Landsat spectral band together with the
NDVI, normalized difference blue and red (NDBR), normalized difference green and red
(NDGR), normalized difference shortwave infrared and near-infrared (NDII), modified
soil-adjusted vegetation index (MSAVI), and spectral variability vegetation index (SVVI).

To obtain the most suitable predicting bands, we added spectral bands as below: the
B2–B7 and temp bands were selected as the main classification feature inputs, together
with 15 spectral indices derived from the Landsat data, including the NDVI [70], the land
surface water index (LSWI) [71], the nominalized difference snow index (NDSI) [72], the en-
hanced vegetation index (EVI) [73], the normalized difference tillage index (NDTI) [74], the
normalized difference moisture index (NDMI) [75], the normalized burn ratio (NBR) [76],
the vegetation index green (VIG) [77], tasseled cap transformation [78], and other spectral
index (SI). These indices were defined as follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

LSWI =
ρNIR − ρSWIR1
ρNIR + ρSWIR1

(2)

NDSI =
ρGreen − ρSWIR1
ρGreen + ρSWIR1

(3)

https://earthengine.google.com
https://earthengine.google.com
https://developers.google.com/earth-engine
https://code.earthengine.google.com/17f98d1e3fe5b7c0e6b432480a65dc9b
https://code.earthengine.google.com/17f98d1e3fe5b7c0e6b432480a65dc9b


Land 2021, 10, 173 6 of 20

EVI =
ρNIR − ρRed

ρNIR + 6× ρRed− 7.5× ρBlue + 1
(4)

NDTI =
ρSWIR1 − ρSWIR2
ρSWIR1 + ρSWIR2

(5)

NDMI =
ρNIR − ρSWIR1
ρNIR + ρSWIR1

(6)

NBR =
ρNIR − ρSWIR2
ρNIR + ρSWIR2

(7)

VIG =
ρGreen − ρRed
ρGreen + ρRed

(8)

SI =
ρRed − ρBlue
ρRed + ρBlue

(9)

where ρNIR, ρRed, ρGreen, ρSWIR1, ρSWIR2, and ρBlue represent the surface reflectance
values of the near-infrared band (0.76–0.9 µm), the red band (0.63–0.69 µm), the green
band (0.52–0.6 µm), the shortwave infrared band 1 (1.55–1.750 µm), the shortwave infrared
band 2 (2.11–2.29 µm), and the blue band (0.45–0.52 µm) for a given pixel, respectively.
Furthermore, we also took the topographical factors (slope, elevation, and aspects, avail-
able at: https://developers.google.com/earth-engine/datasets/catalog (available in EE
as USGS/SRTMGL1_003) (accessed on 8 February 2021)) and nighttime data (available
at: https://developers.google.com/earth-engine/datasets/catlog/NOAA_VIIRS_DNB_
MONTHLY_V1_VCMSLCFG (accessed on 8 February 2021)) into consideration to better
depict cropland and urban areas. We obtained a total of 24 features.

GEE provides 21 classifiers of which random forest (RF) is one of the most widely
used as it yields higher classification accuracies, requires less model training time, and is
less sensitive to training sample qualities compared to support vector machine (SVM) and
artificial neural network (ANN) classifiers [79,80]. In this study, the RF classifier in GEE
was trained using 70% of the training data randomly selected and extracted from the sets of
image stacks, with the remaining 30% of the training data used for the model validation. A
confusion matrix was implemented to assess the accuracy of the classified image with the
independent set of ground truth points [81]. The overall accuracy was calculated in GEE,
together with the producer’s accuracy (PA) and user’s accuracy (UA) of each land cover
type. A previous study indicated that that the accuracy of a LULC map should higher than
85% for optimal interpretation and identification [82]. To deal with salt and pepper noise,
classified images were postprocessed with a majority filter to smooth isolated pixels [83,84].
The overall levels of accuracy for 2000 and 2015 were 88.6% and 89.42%, respectively. The
RF classifier produced overall acceptable levels of accuracy for the four classification points
in time and the defined LULC types (Tables S1 and S2).

2.5. Detection of LULC Changes and Estimation of ESVs

The LULC changes can be calculated using Equation (10). To identify the main
conversion directions and highlight the dominant dynamic events in land use/cover
changes, we used ArcGIS (version 10.4) to generate the transfer matrix for each period
and visualized the transfer process with a Sankey Diagram (available online at: https:
//sankey.csaladen.es (accessed on 8 February 2021)) [85,86]. The calculation is as follows:

R =
Lt − Lt−1

Lt−1 ∗ ∆t
× 100% (10)

where R represents the LULC change rate, Lt represents land cover type in year t, Lt−1
represent land cover in the most recent time interval, and ∆t denotes the time interval
(15 in this study).

To better understand the consequences of the conversion from forest to other LULC
types, we further assessed the forest fragmentation of the KSL in 2000 and 2015 following

https://developers.google.com/earth-engine/datasets/catalog
https://developers.google.com/earth-engine/datasets/catlog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMSLCFG
https://developers.google.com/earth-engine/datasets/catlog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMSLCFG
https://sankey.csaladen.es
https://sankey.csaladen.es
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the method described by Vogt et al. [87]. The forest LULC type was divided into six classes,
patch, edge, perforated, small core (SC) (<250 acres), medium core (MC) (250–500 acres),
and large core (LC) (>500 acres), by computing the distance from forest pixels to non-forest
pixels. We defined the edge width as 100 m in reference to previous studies [23].

Costanza et al. [1] presented a model to estimate global ecosystem service value.
However, this estimation method is best suited for Western countries; Xie et al. [88]
therefore grouped the ESVs into four types and nine subtypes specific to China on this
basis and using data from [5]. Costanza et al. [9] further presented a new method for the
estimation of global ESVs and found that the ESVs of certain land cover types increased (e.g.,
the ESVs of forest land cover increased by 2462 USD per hectare per year from 1997–2011)
while the remaining land cover types remained stable. In this study, we adopted the same
equivalent value as that used by Song et al. [89] (Table 2). The equations used to evaluate
the KSL’s ESVs and their changes are as follow:

ESVt =
n

∑
i=1

Areai × ESVi (11)

C∆t =
Eend − Estart

EStart
× 100% (12)

where ESVt denotes the total ESV at time t (2000, 2005, 2010, 2015); Areai represents the area
of land cover i, ESVi represents the ESV of land cover I, and n denotes the total number of
land cover types (seven types after reclassification in this study). Ct represents the changes
in ESV within a time interval (e.g., 2000–2005) and Eend and Estart denote the ESVs at the
end and start of the time interval, respectively.

Table 2. Ecosystem service values (ESVs) of land cover types defined in this study.

Land Cover Defined in This Study Equivalent Biome
(Song et al. 2017) [89]

ESVs Per Unit Area
($/hm2/year)

Water bodies
Water areas 2607.77Snow/glacier

Forest Forestry areas 1616.99Shrub land
Grassland Grassland 671.06
Cropland Cultivated land 454.28

Built-up area Built-up areas 0
Barren land Unused land 79.93

Wetland Wetland 3149.45

2.6. Elasticity of ESV Changes in Response to LULC Changes

For the purpose of investigating the relation between LULC and ESVs, elasticity as
defined by Song et al. [89] was applied in this study. The concept of elasticity is used to
measure the sensitivity of a variable to change in another variable. Here, elasticity was
used to measure the percentage change in ESV in relation to the percentage change in
LULC, and thus can be described as follows:

EEl =

∣∣∣∣ (Eend − Estart)/Estart × 100%
LCP

∣∣∣∣ (13)

LCP =
∑7

i=1 ∆LUTi

∑7
i=1 LUTi

(14)

where EEI represents the elasticity of ESV change in response to changes in LULC, Eend
is the ESV at the end of the study period, Estart is the ESV at the beginning of the study
period, LCP is the conversion percentage of land (which reveals both speed and degree of
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LULC conversion), ∆LUTi is the converted area of the i type of LULC, LUTi is the area of
the i type of LULC, and T is the time gap (in years) of the study period.

3. Results
3.1. The Spatial Distribution of LULC and Its Changes

As shown in Figure 2, there was a significant difference in land cover between the
Himalayan northern slopes (China side) and southern slopes (Nepal and India side).
Statistical results indicated that most land in the KSL was covered by grassland (23.98% in
2000, 25.74% in 2015) followed by barren land (21.34% in 2000, 21.98% in 2015), and forest
(17.45% in 2000, 16.04% in 2015) (Table 3). Grassland was mainly distributed in KSL-China
and widely distributed on the Tibetan Plateau (55.73% in 2000, 52.84% in 2015). Over 60%
of barren land was distributed in KSL-China and forest land cover was mainly distributed
in KSL-Nepal and KSL-India (60.69% and 39.31% in 2000, respectively). Snow/glacier
accounted for more than 15.16% of the total area and over 53% of snow/glacier was
distributed in KSL-Nepal (54.14% in 2000, 53.61% in 2015). Cropland and built-up areas
were the main land cover types closely relevant to human activities and these were mainly
distributed in KSL-Nepal and KSL-India.
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Table 3. Land use and land cover (LULC) in the KSL during the period 2000–2015.

Land Cover Area in 2000 (km2) % Area in 2015 (km2) % Changed Area
(2000–2015)

Change Rate
(2000–2015)

Water bodies 990.27 3.17 994.71 3.19 4.43 0.03
Snow/glacier 4728.51 15.16 4687.55 15.03 −40.96 −0.06

Forest 5443.20 17.45 5003.37 16.04 −439.82 −0.54
Built-up area 65.59 0.21 66.05 0.21 0.46 0.05
Shrub land 2917.78 9.35 2528.17 8.11 −389.61 −0.89
Cropland 1910.59 6.13 2257.50 7.24 346.90 1.21
Grassland 7479.89 23.98 8028.35 25.74 548.46 0.49

Barren land 6655.26 21.34 6854.46 21.98 199.20 0.20
Wetland 1000.04 3.21 770.98 2.47 −229.07 −1.53

Total 31,191.13 100 31,191.13 100

Between 2000 and2015, four land cover types showed decreasing trends and the other
five land cover types showed increasing trends (Table 3). The greatest loss was found for
forest: a total of 439.82 km

2
forest cover loss was observed in the KSL. The decrease of forest

cover in KSL-Nepal contributed 89.68% of the total forest loss during the research period.
Shrub land also showed an obvious decreasing trend, with a total loss of 389.61 km2 during
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the research period, decreasing at a rate of 0.89% per year. The decrease of shrub land in
KSL-Nepal and KSL-India contributed 65.55% and 34.3%, respectively, to the total shrub
land loss. During the research period, wetland and snow/glacier decreased by 229.07 km2

and 40.96 km2, respectively. Among the land cover types with increasing trends, the biggest
gains were found in grassland: grassland increased by 548.46 km

2
during the research

period. The increase in grassland in KSL-Nepal and KSL-India contributed 58.32% and
28.22% to the total gains in grassland in the KSL, respectively. From 2000–2015, cropland
increased by 346.90 km2 and at a rate of 1.21% per year. The biggest increase was observed
in KSL-Nepal, where cropland increased by 247.94km2 from 2000–2015. Barren land was
found to increase from 6655.26 km

2
to 6854.46 km

2
between 2000 and 2015 and at a rate

of 0.2% per year. Changes in water bodies and built-up areas were not obvious and only
increased by 4.43 km

2
and 0.46km

2
, respectively, during the research period. The results

indicate that the area of land types with higher ecosystem service values (e.g., forest, shrub
land, and wetland) decreased.

Forest, barren land and grassland were significantly converted to other land cover
types in the period from 2000–2015 (Table 4 and Figure 3). A total of 857.81 km

2
of forest

were converted to other land cover types, including 59.18% that were converted to shrub
land and 34.19% that were converted to cropland. This indicates the forest fragmentation
occurred between 2000 and 2015. About 1125.07 km

2
of barren land were converted into

other land cover types during the research period, 39.96% of which were converted to
snow/glacier. Snow/glacier mainly converted to barren land during the research period:
a total of 526.78 km2 of snow/glacier were converted to barren land. About 1150.91 km2

of grassland were converted to other land cover types with 61.17% converted to barren
land. During the study period, shrub land contributed most to the expansion of cropland: a
total of 425.48 km2 of shrub land was converted to cropland. Meanwhile, cropland mainly
converted to shrub land and forest between 2000 and 2015: a total of 288.38 km2 and
170.74 km2 of cropland converted to shrub land and forest, respectively. The expansion of
built-up areas was mainly at the cost of cropland. The results indicate that deforestation
and cropland abandonment occurred in KSL-Nepal and KSL-India simultaneously.

Table 4. Transition matrix of different LULC types in the KSL during the period 2000–2015.

2015

2000

Water
Bodies

Snow/
Glacier Forest Built-up

Area
Shrub
Land Cropland Grassland Barren

Land Wetland

Water bodies 832.23 61.02 19.24 4.54 4.40 0.91 32.87 35.5 0.00
Snow/glacier 48.92 4068.60 2.66 2.43 3.55 0.27 76.05 526.78 0.70

Forest 7.87 0.09 4586.69 8.21 507.66 293.25 39.95 0.79 0.00
Built-up area 7.74 0.06 6.49 23.11 1.40 25.02 1.39 0.49 0.00
Shrub land 16.12 31.59 203.00 0.85 1641.12 425.48 588.14 11.69 0.00
Cropland 1.59 0.02 170.74 10.41 288.38 1420.75 17.31 1.62 0.24
Grassland 29.40 77.80 13.99 8.32 79.91 75.55 6329.91 704.02 161.93

Barren land 51.32 449.60 1.83 8.22 1.94 3.48 555.73 5531.32 52.95
Wetland 0.00 0.32 0.00 0.03 0.00 13.31 387.99 43.23 555.29
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3.2. Forest Fragmentation in the KSL

A conversion of forest to other land cover types indicating forest fragmentation
occurred in the KSL during the research period (Table 5). The distribution of and changes
in forest fragmentation in 2000 and 2015 are depicted in Figure 4. During the study
period, the forest fragmentation changed significantly. In 2000, core forest (>500 acres)
covered 34.24% of the forest area, followed by edge forest covering 30.39%, perforated
forest covering 18.44%, core forest (<250 acres) covering 7.72%, patch forest covering 5.95%,
and core forest (250–500 acres) covering 2.89%. In 2015, edge forest covered 33.67% of the
forest area, followed by core forest (>500 acres) covering 28.1%, perforated forest covering
17.22%, patch forest covering 8.69%, core forest (<250 acres) covering 8.53%, and core
forest (250–500 acres) covering 3.79%. Core forest (>500 acres) decreased from 1883.90 km

2

to 1406.05 km
2
, with a change rate of 25.36%. Meanwhile, patch forest increased from

323.81 km
2

to 434.83 km
2
, with a change rate of 34.29%.

Table 5. Forest fragmentation and change in KSL between 2000 and 2015.

Type of Patches 2000
(km2)

2015
(km2)

2000–2015
(km2)

Change Rate
(%)

Patch 323.81 434.83 111.02 34.29
Edge 1654.24 1684.39 30.15 1.82

Perforated 1003.80 861.59 −142.21 −14.17
Core (<250 acres) 420.12 426.81 6.69 1.59

Core (250–500 acres) 157.33 189.71 32.37 20.58
Core (>500 acres) 1883.90 1406.05 −477.85 −25.36

https://sankey.csaladen.es/
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Forest land cover was mainly distributed in KSL-Nepal; this also true for the core
forest (>500 acres), covering 57.68% of the total core forest (>500 acres) in KSL. In 2000, core
forest (>500 acres) covered 32.90% of the forest area in KSL-Nepal, followed by edge forest
covering 31.23%, perforated forest covering 18.28%, core forest (<250 acres) covering 8.24%,
patch forest covering 6.12%, and core forest (250–500 acres) covering 3.23%. During the
research period, core forest (>500 acres) decreased by 31.97% and patch forest increased by
38.62%. The rest of the forest land cover was distributed in KSL-India. In 2000, core forest
(>500 acres) covered 37.25% of the forest area in KSL-India, followed by edge forest covering
29.09%, perforated forest covering 18.70%, core forest (<250 acres) covering 6.91%, patch
forest covering 5.68%, and core forest (250–500 acres) covering 2.36%. From 2000–2015,
core forest (>500 acres) decreased by 16.36% and core forest (250–500acrs) increased by
56.59%. The results suggest that deforestation and forest fragmentation occurred in KSL,
especially in KSL-Nepal, during the research period.

3.3. The LULC Changes in KSL-China, KSL-Nepal, and KSL-India

In 2015, most land in the three countries was covered by different land cover types
(Table 6). In KSL-China, barren land accounted for the largest proportion of land cover.
During the research period, no evident changes were observed in barren land (increase of
2.43 km2). As the second largest land cover type, grassland increased from 4168.41 km2 to
4242.24 km2 during the research period. Between 2000 and 2015, snow/glacier increased
from 756.58 km2 to 815.46 km2, an increasing trend opposite to the broader picture for KSL
snow/glacier. A great increase was observed in cropland, which increased by 73.07 km2

between 2000 and 2015. Wetland, water bodies and shrub land showed decreasing trends
during the research period, while the largest decrease was found in wetland (decreased
by 203.29 km2). In KSL-Nepal, grassland, cropland, and barren land contributed most
to land cover increases. During the research period, the greatest gains were found in
grassland, which increased by 319.87km2, followed by cropland, which contributed the
most to the cropland expansion in the KSL (increase of 247.94 km2, accounting for over
70% of the total increase). Forest in KSL-Nepal decreased from 3303.37 km2 to 2908.90 km2

during the research period. Between 2000 and 2015, shrub land decreased by 255.43 km2,
second only to the loss of forest. Snow/glacier showed a decreasing trend and decreased
by 47.31 km2 during the research period. In KSL-India, the greatest gains were found for
grassland, which increased by 154.76 km2 between 2000 and 2015. Changes in cropland
were not evident, with an increase from 796.86 km2 to 822.83 km2. Shrub land decreased
from 905.79 km2 to 772.13 km2 during the research period. The most significant changes
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were observed for cropland expansion and forest loss, which were mainly distributed in
KSL-Nepal.

Table 6. Dynamic changes in LULC types between 2000–2015.

Land Cover

KSL-China KSL-Nepal KSL-India

2000
(km2)

2015
(km2)

Change
Area
(km2)

Change
Rate
(%)

2000
(km2)

2015
(km2)

Change
Area
(km2)

Change
Rate
(%)

2000
(km2)

2015
(km2)

Change
Area
(km2)

Change
Rate
(%)

Water
bodies 754.55 748.52 −6.03 −0.05 136.44 150.07 13.64 0.67 99.45 96.30 −3.15 −0.21

Snow/glacier 756.58 815.46 58.89 0.52 2560.67 2513.36 −47.31 −0.12 1412.07 1359.45 −52.63 −0.25
Forest 0.00 0.00 0.00 0.00 3303.37 2908.90 −394.47 −0.80 2140.04 2094.67 −45.38 −0.14

Built-up
area 0.15 1.83 1.69 75.37 32.92 32.26 −0.67 −0.14 32.60 32.04 −0.56 −0.11

Shrub land 0.63 0.05 −0.58 −6.17 2011.52 1756.09 −255.43 −0.85 905.79 772.13 −133.66 −0.98
Cropland 13.61 86.67 73.07 35.80 1100.41 1348.35 247.94 1.50 796.86 822.83 25.97 0.22
Grassland 4168.41 4242.24 73.83 0.12 2358.69 2678.55 319.87 0.90 952.65 1107.41 154.76 1.08

Barren land 4227.39 4229.81 2.43 0.00 1659.08 1801.75 142.67 0.57 767.51 821.74 54.23 0.47
Wetland 898.35 695.06 −203.29 −1.51 97.66 71.42 −26.24 −1.79 4.08 4.49 0.41 0.68

3.4. The Spatial Distribution of ESVs and Their Response to LULC Changes

The ESVs of the KSL in 2000 and 2015 were estimated (Figure 5 and Table 7). The total
ESV of the KSL in 2000 was 36.53 × 108 USD y−1. During the research period, the total ESV
decreased by 1.17 × 108 USD y−1. In general, water areas and forestry areas contributed
most to the total ESV, accounting for about 77.83% in 2000 and 76.38% in 2015. In 2000, water
areas contributed about 40.82% of the total ESV in the KSL and 41.91% in 2015. Forestry
areas contributed the second most to the total ESV and decreased from 13.52 × 108 USD y−1

in 2000 to 12.18 × 108 USD y−1 in 2015. The ESVs of grassland, cultivated land, and
unused land showed an increasing trend. The greatest gains were found in grassland:
the ESV of grassland increased from 5.42 × 108 USD y−1 to 5.67 × 108 USD y−1 during
the research period. With the expansion of cropland, the ESV of cropland increased by
0.16 × 108 USD y−1 from 2000–2015. Although wetland accounted for a small area in the
KSL, the high ESV of wetland enlarged its influence on the total ESV. During the research
period, the ESV of wetland decreased by 0.16 × 108 USD y−1, which offset the increase
of ESV of cropland. Since the ESV of built-up areas was zero, this kind of land cover
contributed no ESV.
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Figure 5. The distribution of ESVs in the KSL in 2000 and 2015.
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Table 7. The ESVs of 11 LULC types in 2000 and 2015.

Land Cover
Value

(108 USD y−1)
Change Value
(108 USD y−1)

Change Rate
(%)

2000 2015 2000–2015 2000–2015

Water areas 14.91 14.82 −0.09 −0.6
Forestry area 13.52 12.18 −1.34 −9.91

Grassland 5.42 5.67 0.25 4.61
Cultivated land 0.87 1.03 0.16 18.39
Built-up areas 0 0 0 0
Unused land 0.53 0.55 0.02 3.77

Wetland 1.28 1.12 −0.16 −12.50
Total 36.53 35.35 −1.17 −3.20

In KSL-China, the total ESV was 8.44 × 108 USD y−1 in 2000, lower than the ESVs
in KSL-Nepal (18.07× 108 USD y−1) and KSL-India (10.03 × 108 USD y−1). Water bodies
contributed most to the total ESV in China, accounting for almost half of the total ESV
in KSL-China, followed by Grassland (3.20 × 108 USD y−1). From 2000–2015, the total
ESV in KSL-China increased by 0.06 ×108 USD y−1. The increase of water bodies by
0.13 × 108 USD y−1 contributed most to the increase of the total ESV in KSL-China. The
decrease of the ESV of grassland was the main cause for the decrease of total ESV in the KSL.
The ESV of wetland decreased from 0.95 × 108 USD y−1 in 2000 to 0.93 × 108 USD y−1

in 2015. In KSL-Nepal, the total ESV accounted for about 50% of the total ESV in the
KSL. During the research period, ESV in KSL-Nepal decreased by 0.88 × 108 USD y−1;
the decrease of the ESVs of forestry areas was the main cause of the loss of total ESV in
KSL-Nepal. In 2000, the ESVs of forestry areas accounted for 47.54% of the total ESV in KSL-
Nepal. However, this number decreased to 43.87% in 2015. From 2000–2015, the ESV of
forestry areas decreased by 1.05 × 108 USD y−1. The ESVs of cultivated land and grassland
increased by 0.11 × 108 USD y−1 and 0.21 × 108 USD y−1, respectively, and offset a small
part of the ESV loss. In KSL-India, the total ESV decreased from 10.03 × 108 USD y−1 in
2000 to 9.67 × 108 USD y−1 in 2015. The ESV of forestry areas contributed most to the
total ESV in KSL-India, similar to KSL-Nepal, followed by water areas. The greatest loss
was observed in forestry areas: the ESV of forestry areas decreased by 0.29 × 108 USD y−1.
From 2000 to 2015, the ESV of water areas decreased by 0.15 × 108 USD y−1, second only to
the loss in ESV of forestry areas. The greatest gains in ESV were found for grassland, which
increased by 0.12 during the research period. The small changes of cropland in KSL-India
made a relevant but small contribution to the changes in ESV in KSL-India.

The elasticity of ESV change with respect to LULC changes during the research period
was 2.33, which indicates that a conversion of 1% of land area would result in an average
change of 2.33% in the ESV. The elasticity of the ESVs in the three countries was further
calculated. The results show that KSL-China had the highest elasticity at 5.27, indicating
that a conversion of 1% of land area would result in an average change of 5.27% in the ESV.
In KSL-Nepal, the elasticity was 4.34, higher than that of KSL-India (1.57).

4. Discussion
4.1. LULC Changes across the KSL

Detailed LULC research is of great significance for managing natural resource effec-
tively [23]. In this study, we applied an RF algorithm to classify the LULC in the KSL
in 2000 and 2015 using GEE. For a solution to the problem of the low-quality imagery
caused by the high cloud cover in this region, we adopted a pixel-based image composite
algorithm and filled the blank pixels using the focal_mean function. Furthermore, the
spectral index, terrain factors, and nighttime light data were used to improve the accuracy
of the classification. The entire process of LULC classification, except where otherwise
noted, was accomplished in GEE. The overall accuracies of the LULC classification in 2000
and 2015 were 87.69% and 85.73%, respectively, indicating the good performance of our
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methods. Based on the LULC, we further estimated the ESVs of the KSL and qualified the
responses of ESVs to LULC changes.

During the research period, the greatest land cover loss was found for forest cover,
which decreased by 439.82 km2. Forest area in Nepal and India decreased from 3303.37 km2

to 2908.90 km
2

and from 2140.04 km
2

to 2094.67 km
2
, respectively. The same phenomenon

of forest cover decrease has also been found in other Himalayan regions [90,91]. The second
greatest land cover loss was found for shrub land, which decreased by 389.61 km2 between
2000 and 2015. These decreasing vegetated areas, especially the forest cover loss, may
pose a threat to biodiversity conservation and livelihood [92,93]. Meanwhile, grassland
and cropland areas significantly increased during the research period, which is consistent
with the findings of Uddin et al.’s [23] and Singh et al. [39]. Cropland increased from
1910.59 km

2
to 2257.50 km

2
, with a change rate of 1.21% per year. The three countries

showed the same increasing trend. The largest growth was found in Nepal, where cropland
increased by 247.94 km2. Results from the transfer matrix show that expansions of cropland
were mainly derived from forest and shrub land in KSL-India and KSL-Nepal. It has been
previously shown that expansion of cropland is one of the major drivers of deforestation in
the Himalayas [94]. Through statistical analysis of the LULC changes along the elevation,
we further found that the increase of cropland was mainly distributed between 1000 and
2500 m in the KSL, accounting for 79.63% of the total increase (Figure S3). The largest
growth was found at 1500–2000 m, accounting for 35.01%. The decrease of forest was
mainly distributed between 1000 and 3500 m, accounting for 99.28% of the total loss. The
most passive change of forest cover was between 1500 and 2000 m. An earlier study
has shown that, in the final three decades of the 20th century, forest degradation mainly
occurred in temperate oak forests at elevations of 1800–2800 m, with some forests also
lost at lower elevations [95]. Lowland areas are considered more favorable for supporting
human livelihood and thus result in more intense LULC changes [96].

The forest in the KSL is undergoing a process of fragmentation under the drivers
of cropland expansion and illegal timber extraction [23,39]. As an important habitat for
countless wild species, the decrease in forest cover along with forest fragmentation put
wild life in danger. Sarker et al. (2018) assessed the habitat suitability and connectivity of
the common leopard (Panthera pardus) in Kailash Sacred Landscape [97]. Their results
show that the best forest connectivity for leopards lies between large forest patches situated
at the middle elevational range of the landscape, associated with moderate to medium
slopes and a high density of rivers and streams. The decrease in core forest cover may
threaten the habitat of the common leopard. Increasing human activities (expansion of
cropland and built-up areas) [98,99], together with climate change [100], have resulted in
rapid changes in the Himalayan ecosystem [101]. Invasive species are another important
issue to consider. Research has shown that species, including invasive species, tend to
move to higher elevation regions in global warming contexts [102,103].

The conversion of cropland to forest and shrub land indicates that farmland abandon-
ment occurred in the KSL. Between 2000 and 2015, 288.38 km2 of cropland were converted
to shrub land. A noticeable increasing trend in farmland abandonment has been reported
all around the world, especially in mountain regions [104,105]. According to a previous
study, the hill and mountain regions of the Nepal Himalayas are more prone to farmland
abandonment because of labor migration [106–108]. Singh et al. (2015) also found that, in
KSL-India, continuous migration forced the conversion of high-altitude agricultural lands
into grasslands and scrublands [39]. From the perspective of ecosystems service, farmland
abandonment itself has positive effects [109]; however, it also poses a threat to the food
security of local livelihoods [107].

4.2. ESV Changes in Response to LULC Changes

LULC changes are generally accepted as one of the critical drivers of global change [110].
During the studied 15-year period, the total ESV of the KSL decreased from 36.53 × 108 USD y−1

to 35.35× 108 USD y−1, decreasing at a rate of 0.21%/year. The decrease of forestry areas was
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the primary cause for the loss of ESV. The largest ESVs were observed in KSL-Nepal, due
to the large forestry areas, whereas KSL-China was responsible for the smallest propor-
tion of the ESV. However, the ESVs in KSL-China showed an inverse trend compared to
KSL-Nepal and KSL-India. Between 2000 and 2015, the total ESV of KSL-China increased
by 0.06 × 108 USD y−1 thanks to the increase in water areas. On a global scale, the global
terrestrial ESV decreased at a rate of 2.06%/year from 1997 to 2011 [9]. Hence, changes
in ESVs in the KSL were more modest than those globally. On a national scale, the terres-
trial ESVs in China decreased at a rate of 0.03% per year from 1988–2008. This indicates
that the decreases in ESVs in KSL were much more rapid. However, there are large gaps
in other Himalayan regions. Bhaskar et al. [111] assessed the ESVs in the Transbound-
ary Karnali River Basin (KRB), Central Himalayas, and showed that they increased by
1.59 × 108 USD y−1 from 2000–2017. Increase of shrub/grassland contributed the most to
the increase of ESVs in this region, followed by bare land. Raju et al. [112] estimated the
ESVs in the Transboundary Gandaki River Basin (GRB), Central Himalayas, indicating
that there was a 1.68 × 108 USD y−1 increase in ESVs from 1990–2015 due to the increase
of cropland and forest cover. Zhao et al. [113] assessed the LULC changes and ESVs in
the Koshi River Basin (KRB) and found that the latter decreased by 2.05 × 108 USD y−1

from 1990–2010 because of the decrease in forest and glacier cover. Even though large
knowledge gaps are still present for different regions, the importance of forest land cover
is obvious and changes to it directly affect regional ESVs.

With regard to the elasticity in the KSL, a result of 2.33 indicates that that the conver-
sion of 1% of land area would result in average changes of 2.33% in ESVs. The region where
changes in ESVs had the highest elasticity in relation to LULC changes was KSL-China,
where the high elasticity of ESV change in relation to LULC changes was attributable to
the concentrations of unused land, wetland, and water bodies, the LULC types with the
highest and the lowest ESVs. In KSL-Nepal, deforestation was the main cause of the high
elasticity. Forest cover in KSL-Nepal accounted for the largest proportion of this type of
land cover in the KSL and decreased by 394.47 km2 during the studied 15-year period.
The elasticity in KSL-India was relatively small, mainly due to the small decrease of forest
cover. High elasticity indicates that even small LULC changes would have serious effects
on ESVs.

4.3. Uncertainty and Limitations of This Study

In this study, we failed to accurately extract the built-up areas in the KSL because of
the limited resolution of Landsat images and relevant small buildings in the KSL mountain
regions. To resolve this problem, we tried adding nighttime light data to improve accuracy
for built-up areas. However, this approach only works in regions with night lights, such
as Pithoragarh (Figure S4). Therefore, the changes to built-up areas in KSL-Nepal and
KSL-India showed a slightly decreasing trend. Even so, LULC and ESV changes were
not strongly affected due to the small proportion of built-up areas and their ESVs of zero.
Long time-series LULC change monitoring can reveal more details behind these changes.
Given the available images, we only studied the LULC changes from 2000–2015, and
thus LULC change fluctuations may have been hidden. In this study, we adopted the
benefit/value transfer method presented by Song et al. [89], though many critiques of the
benefit/value transfer method remain unanswered. Biophysical models might be more
helpful for analyzing complex ecological systems and their impacts.

5. Conclusions

In this study, we extended an LULC study to the entire KSL and further assessed the
changes in ESVs between 2000 and 2015. During the study period, the KSL experienced
significant LULC changes: forest and shrub land decreased by 439.82km2 and 389.61km2,
respectively, whereas grassland and cropland increased by 548.46km2 and 346.90km2,
respectively. The conversion of forestry areas to cropland was the main cause of cropland
expansion. Meanwhile, the conversion of cropland to shrub land indicates that there
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was farmland abandonment in the KSL. The decrease of forestry areas may pose a threat
to biodiversity and livelihoods there. During the studied 15-year period, the large core
(>500 acre) forest type decreased by 25.36% and patch forest increased by 34.29%. Severe
forest fragmentation was observed in the KSL, mainly distributed in KSL-Nepal, leading to
a decrease in ESVs in the KSL. Between 2000 and 2015, the total ESV in the KSL decreased
by 1.17 × 108 USD y−1 and the ESV of forestry areas decreased by 1.34 × 108 USD y−1.
The decrease of ESV in forestry areas contributed most to the loss of total ESV and also to
the high elasticity. This study revealed that even small LULC changes can cause relevant
high ESV changes in the KSL.
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focal_mean function (right); Table S1. The confusion matrix in 2000; Table S2. The confusion matrix
in 2015; Figure S3. The LULC changes along the elevation in KSL from 2000–2015; Figure S4. Built-up
areas of Pithoragarh in 2000 and 2015.
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