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Abstract: The state of water quality of lakes is highly related to watershed processes which will be
responsible for the delivery of sediment, nutrients, and other pollutants to receiving water bodies. The
spatiotemporal variability of water quality parameters along with the seasonal changes were studied
for Lake Okeechobee, South Florida. The dynamics of selected four water quality parameters: total
phosphate (TP), total Kjeldahl nitrogen (TKN), total suspended solid (TSS), and chlorophyll-a (chl-a)
were analyzed using data from satellites and water quality monitoring stations. Statistical approaches
were used to establish correlation between reflectance and observed water quality records. Landsat
Thematic Mapper (TM) data (2000 and 2007) and Landsat Operational Land Imager (OLI) in 2015 in
dry and wet seasons were used in the analysis of water quality variability in Lake Okeechobee. Water
quality parameters were collected from twenty-six (26) monitoring stations for model development
and validation. In the regression model developed, individual bands, band ratios and various
combination of bands were used to establish correlation, and hence generate the models. A stepwise
multiple linear regression (MLR) approach was employed and the results showed that for the dry
season, higher coefficient of determination (R2) were found (R2 = 0.84 for chl-a and R2 = 0.67 for TSS)
between observed water quality data and the reflectance data from the remotely-sensed data. For the
wet season, the R2 values were moderate (R2 = 0.48 for chl-a and R2 = 0.60 for TSS). It was also found
that strong correlation was found for TP and TKN with chl-a, TSS, and selected band ratios. Total
phosphate and TKN were estimated using best-fit multiple linear regression models as a function of
reflectance data from Landsat TM and OLI, and ground data. This analysis showed a high coefficient
of determination in dry season (R2 = 0.92 for TP and R2 = 0.94 for TKN) and in wet season (R2 = 0.89
for TP and R2 = 0.93 for TKN). Based on the findings, the Multiple linear regression (MLR) model can
be a useful tool for monitoring large lakes like Lake Okeechobee and also predict the spatiotemporal
variability of both optically active (Chl-a and TSS) and inactive water (nutrients) quality parameters

Keywords: Lake Okeechobee; Landsat; multiple linear regression; chlorophyll-a; total suspended
solids; nutrients

1. Introduction

Water quality indicators including physical, chemical, and biological properties are
traditionally determined by analyzing water samples from the field. Although this method
offers accurate results, it has proven to be labor intensive, time-consuming, and expensive.
Analyses are limited to a single point in space and time, which is challenging when these
values are vital for watershed assessments and management practices. To bridge the gap
between accuracy and large-scale analyses, remote sensing technology has demonstrated
to be a great tool. Using remote sensing techniques outlying regions and waterbodies can
be monitored more effectively. Remotely sensed data in digital form is easily acquired
and processed and it has been used since the 1970s for water quality assessments in the
developed world [1–16].
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Advanced geostatistical techniques are gaining support among researchers for spa-
tiotemporal evaluation of surface water quality when space/time monitoring data are
sparse. However, data collection is an expensive and time-consuming process. Spatial
and temporal evaluation of surface water quality parameters (WQPs) and quantitative
study of changes can also be performed in a more effective and efficient manner using
remote sensing. As most studies focus on improving quantification methods for optically
active variables such as chlorophyll-a (chl-a), total suspended solids (TSS), and turbidity,
there is a growing need for quantifying variables with weak optical characteristics and low
signal noise ratio such as pH, total nitrogen (TN), ammonia (NH3-N), nitrate (NO3-N), and
dissolved phosphorus (DP). Although difficult to quantify, these parameters are important
for water quality assessments; therefore, any significant finding in this field will increase
the applicability of remote sensing technology. This study aims to quantify these variables
by establishing significant correlations between satellite data and in-situ measurements of
both optically strong and weak WQPs in a freshwater lake.

It is important to analyze both optically strong and weak parameters in the same study
in order to have a good reference from established methodology while also looking at new
possible correlations. The WQPs that are studied using remote sensing techniques are well
established in the lake ecology literature for water quality assessment. These parameters
include Chlorophyll-a (chl-a), total suspended solids, phosphorus, and nitrogen. The first
two are optically strong and the latter two are not well studied in the remote sensing
literature because they are optically weak, so they are not readily detected with current
satellite technology. Nevertheless, all of the parameters are needed for well-rounded water
quality assessments, so establishing correlations between them is important.

Chl-a is used as an indicator of a waterbody’s trophic state and is used as a proxy
for net primary production and algal blooms on surface water which are enhanced with
eutrophication. To quantify chl-a from satellite data, different spectral bands and various
combination and ratios are considered and tested. Spectral band ratios can reduce irradi-
ance and atmospheric and air-water surface influences in the signal [17,18]. There is good
evidence that Landsat visible bands are appropriate for detecting chlorophyll-a concentra-
tion in lake water. For example, Alparslan et al. [19] utilized all bands of Landsat-5 TM
to estimate the concentration of chl-a and figured out there were significant correlation
between different TM bands and chl-a concentrations. Landsat-8/OLI images were used
by Lim and Choi [20] and found that a significant correlation between chl-a concentration
and OLI bands and their ratios with obtained R values for bands 2, 3, 4 and band 5/band 3
equal to −0.66, −0.70, −0.64, and −0.64, respectively. OLI bands 1 through band 4 and their
ratios were also found correlated with chl-a concentration by another study implemented
by Zhang and Han [21]. Kim et al. [22] also used Band 2, 5, and a ratio of Band 2/Band 4 of
Landsat-8/OLI to investigate the concentration of chl-a.

TSS is the measure of particles in the water column that carry many of the pollutants
and sediment. By measuring TSS in a water body, managers can see how much of these
particles it carries. As suspended particles increase in a waterbody, light would be more
scattered and harder to travel through the water column, and therefore the water’s turbidity
index will be higher. TSS is responsible for most of the scattering and chl-a and colored
dissolved particles mainly control the absorption of light in surface waterbodies [23]. In
theory, the use of a single band should provide a robust and TSS-sensitive algorithm when
an appropriate band is chosen [24]. Curran et al. [25] and Novo et al. [26] showed that
single band algorithms may be adopted where TSS increases with increasing reflectance;
however, the complex substances in water change the reflectance of the water body and
therefore cause variation in colors, and thus, the use of different spectral bands can be more
appropriate [24,27,28]. Ritchie et al. [29] backed up by in-situ studies show that the most
useful range of spectrum for the determination of suspended particles in surface waters was
between 700 and 800 nm. In the Near-IR and Mid-IR regions, water increasingly absorbs
the light and makes it look darker, which varies based on water depth and wavelength.
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Total phosphorus (TP), which is an optically weak parameter to be monitored by
the application of remote sensing, is defined as the measurement of all forms of organic,
inorganic, and dissolved phosphorus and is typically found as Phosphates (PO4) in nature.
Total phosphate is related to Secchi disk transparency (SDT) with an exponential equation
which is consistent with Carlson’s finding [1,30–32]. They are considered as one of the
main nutrients required for plant growth, and their increase in waterbodies leads to
increase in the rapid growth of algae. Although total phosphorus is very unlikely to be
measured directly using remote sensing techniques. However, due to having a general
correlation with other water quality parameters, total phosphorus can be studied indirectly
by finding its relationship with other parameters. Landsat TM data have been widely used
to evaluate the spatial and temporal pattern of TP [30–32] and empirical estimations and
regression models were used to find the best correlations between TP concentration and
other water quality parameters, such as chl-a concentration and Secchi Disk Depth (SDD)
and Song et al. [33] found a good correlation of 0.62, 0.59, 0.55, and 0.51 between TP and
TM1 (TM Band 1), TM2, TM3, and TM4, respectively. A combination of TM1, TM3/TM2,
and TM1/TM3 data was used by Wu et al. [32] to correlate TP concentration with chl-a
and Secchi Disk. Further, in another study on Ömerli Dam, Turkey, the first four bands
of Landsat 7-ETM were used to estimate the concentration of TP by Alparslan et al. [1].
Alparslan et al. [19] later used Band1 to Band5, and Band7 of Landsat-5 TM to measure
the concentration of total phosphorus. Landsat-8/OLI bands 2 to Band 5 were used by
Lim and Choi [20] to build three different regression models testing single bands and their
ratios and significant coefficient of determination values were found and reported.

Another weakly optical detectable water quality indicator is Total Kjeldahl Nitrogen
(TKN) [34]. TKN is a measure of the amount of organic nitrogen and ammonia-N that due
to adding nitrogen to water can lead to increase in the levels of chl-a and algae. Regardless,
anthropogenic activities have greatly increased the availability of this nutrient in freshwater,
so it is important to monitor as well. The organic matter in agricultural fertilizer released
into waterbodies and its decomposition is reported to be the main source of TKN in most
studied watersheds [35]. Different types of agricultural areas in South Florida, for example,
generate non-point sources of pollution that have a high percentage of ammonia from
pesticides and fertilizers [36]. Most suspended solids are made up of inorganic materials,
though bacteria and algae can also contribute to the total solids’ concentration. Organic
particles from decomposing materials can also contribute to the TSS concentration.

There are not many studies that can clearly prove the application of remote sensing
in measuring the concentration of nitrogen in waterbodies. However, Hood et al. [37]
found that the nitrogen concentration is highly correlated to absorption and fluorescence
characteristics of chlorophyll-a (chl-a). Another study by Hanson et al. [38] reported that
chl-a fluorescence is influenced by TN and TP. Edwards et al. [39] showed that colored
dissolved organic matters (CDOM), chl-a, and suspended sediment concentration (SSC)
are strongly correlated with the level of nutrients in waterbodies. Hyperspectral remote
sensing technique was applied by Gong et al. [40] to measure different concentrations of
TN and TP reflectance spectra in the laboratory and under pure water condition to discover
their special features. Results showed reflectance peaks at 404 and 477 nm for nitrogen,
and reflectance peaks at 350 nm for phosphorus, and derived retrieval models for the
measurement of nitrogen and phosphorus concentrations. Landsat 7/ETM+ data was used
to study the concentration of nitrite nitrogen (NO2-N) and nitrate nitrogen (NO3-N) in
Mersin Bay, Turkey [41], and MLR models were used to select the best bands to measure
these water quality parameters.

Monitoring these contaminants in a lake environment with satellite technology is
useful and important for the management of freshwater systems. Lake Okeechobee, in
the Florida peninsula, has become a eutrophic system because of high nutrient loads
from numerous sources including various types of agriculture, dairy and cattle pastures,
sugarcane plantations, orange groves, and other plantations. The quality of water that
flows into the lake will eventually make its way into the freshwater Everglades or its coastal
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estuaries; thus, control of nutrient loading to Lake Okeechobee is a pivotal issue. In this
study, the spatiotemporal changes of the four previously mentioned WQPs, including chl-a,
total phosphate (TP), total suspended solids (TSS), and TKN, were studied using remote
sensing, water quality monitoring stations’ data, and statistical models. 26 monitoring
stations’ data were used to develop correlation analysis between optical bands from blue
to near infrared and different band ratios, and also for the validation of the resulted
regression models.

2. Materials and Methods
2.1. Study Area

South Florida is the only part of the United States with a subtropical climate, and Lake
Okeechobee is the largest freshwater lake in Florida, United States. Figure 1 shows the
location of the study area, Lake Okeechobee, and the selected water quality monitoring sites.
It is a dynamic and productive system with various water inputs including the Kissimmee
River in the north, a system of pumping stations on its south shore, and seasonal rains.
During the wet periods various pumps divert untreated, surplus water from the Everglades
agricultural area from the south into the lake. The Lake’s watershed’s main land uses are
agriculture and urban which have high nutrient loading potential. The average annual
temperature ranges from 19.2 ◦C to 28.7 ◦C and the annual rainfall in the entire area of
South Florida is generally about 55 inches (1400 mm). Considering the subtropical climate
of South Florida, the average rainfall is still considerable in the dry season. In addition,
during El Niño phenomenon, Florida sees greater rainfall between November and March
(dry season).
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2.2. Datasets
2.2.1. Limnological Data

Twenty-six (26) water quality monitoring stations located on Lake Okeechobee were
downloaded from GIS data catalog of the South Florida Water Management District
(SFWMD: https://data-swfwmd.opendata.arcgis.com/). These stations were selected
on the basis of data continuity, distribution and availability of the selected parameters for
the period of the study. Concentrations of chl-a, total phosphate, total suspended solids,
and TKN were obtained from these stations for dates matching the imagery acquisition.
Since TSS, SDT, and TP has been reported to be correlated [42–45], this study will explore
to use a similar approach in developing a relationship between TP and SDT and TSS.

https://data-swfwmd.opendata.arcgis.com/
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Availability of sampling data was considered in choosing satellite images, which also
were chosen based on the two wet and dry seasons of South Florida. In this region, 15 May
to 15 October is considered as wet season and from 16 October to 14 May is known as
dry season. Using a random split, 75% of the in-situ data were used for the development
of statistical model and their correlation with optical bands of imagery and 25% of data
was used for the validation of the models. Data analysis was performed using SPSS 16.0
software package. The descriptive statistics of the four considered limnological parameters
in this study are summarized in Table 1.

Table 1. Descriptive statistics of observed water quality parameters from the 26 stations of Lake
Okeechobee. The dates correspond to the satellite imagery acquisition.

Chl-a
(mg/m3)

TSS
(mg/L)

TP
(mg/L)

TKN
(mg/L)

Dry Season

29/02/2000

Min 3.30 8.0 0.107 1.03
Max 67.7 53.0 0.192 1.96

Mean 17.8 29.5 0.156 1.31
STD 14.8 13.0 0.021 0.21

31/01/2007

Min 1.0 8.0 0.085 0.88
Max 27.5 162.0 0.299 2.04

Mean 12.9 41.2 0.158 1.22
STD 7.1 36.0 0.050 0.30

06/02/2015

Min 1.86 5.0 0.0821 0.821
Max 43.2 92.0 0.203 1.85

Mean 14.08 31.04 0.143 1.09
STD 8.38 21.54 0.033 0.22

Wet Season

06/07/2000

Min 6.20 3.0 0.036 0.95
Max 106.5 70.0 0.238 2.89

Mean 27.7 20.6 0.101 1.38
STD 23.4 15.3 0.044 0.48

22/08/2007

Min 3.50 4.0 0.016 0.87
Max 76.5 22.0 0.280 2.61

Mean 16.1 11.3 0.092 1.35
STD 16.0 7.0 0.064 0.37

15/09/2015

Min 4.80 3.0 0.023 0.77
Max 76.0 39.0 0.295 2.93

Mean 18.4 13.7 0.084 1.57
STD 16.8 9.3 0.047 0.34

Prior to the statistical analyses, different required data pre-treatment methods includ-
ing missing data treatment, non-informative variables elimination, and outliers detection
and required adjustment were carried out. Boxplot were built to explore the outliers. The
values above or below the upper or lower fences that represent values more and less than
75th and 25th percentiles (3rd and 1st quartiles), respectively, were detected and removed.

2.2.2. Satellite Data

Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager OLI data
in three dates of year 2000, 2007, and 2015 downloaded from United States Geological
Survey (USGS) website. The Landsat data were geometrically corrected raw digital number
with Level 1 correction. Thematic Mapper (TM) data from two dates (29 February 2000
and 31 January 2007), and Landsat Operational Land Imager (OLI) data in one date
(6 February 2015) were obtained for dry season. TM data from two dates of (6 July 2000 and
11 August 2007), and OLI data from one date (15 September 2015) were obtained for wet
season of South Florida to evaluate the temporal and spatial patterns of considered water
quality parameters in Lake Okeechobee. Pre-processing of the Landsat data consisted of
radiometric calibration and atmospheric correction which is necessary for quantitative
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studies [46,47]. Pre-processing is especially important in the case of surfaces such as lake
waters where the reflected light is small [48] resulting in a reflectance of less than 10% on
average, and often lower than 1%. Digital number values of images were converted to
unitless planetary reflectance to eliminate the effects of high local variability on remote
sensing observation values, and separate methodologies were utilized for the atmospheric
correction and radiometric calibration of TM and OLI data, which are described in detail
in the methodology section. Image processing was performed using ERDAS IMAGINE
version 2014 and ESRI ArcGIS version 10.0.

2.3. Methodology
2.3.1. Data Preprocessing: Landsat-5/TM

To remove the voltage bias and gains from the satellite sensor, the digital number (DN)
values converted to radiance values for each band as follows:

Lλ =
(Lmaxλ− Lminλ)

(QCALmax − QCALmin)
× (QCAL − QCALmin) + Lminλ (1)

where Lλ = spectral radiance at the sensor’s aperture in watts/(meter squared × ster × µm),
Lminλ = the spectral radiance that is scaled to QCALmin in watts/(meter squared × ster × µm),
Lmaxλ = the spectral radiance that is scaled to QCALmax in watts/(meter squared × ster × µm),
QCALmin = the minimum quantized calibrated pixel value (corresponding to Lminλ) in
DN, and QCALmax = and the maximum quantized calibrated pixel value (corresponding
to Lmaxλ) in DN.

As the sun angle varies in different latitude, time of day, season, and also due to
different distances between the earth and sun, the radiance values should be converted to
at-satellite reflectance values. Equation (2) shows the final reflectance determined using a
simplified model of atmosphere effects [49]:

ρp =
π × Lλ × d2

ESUNλ × cos θs
(2)

where ρp = unitless planetary reflectance, Lλ = spectral radiance at the sensor’s aper-
ture, d = the Earth − Sun distance in astronomical units, ESUNλ = the mean solar exo-
atmospheric irradiance, and θs = the solar zenith angle in degrees.

2.3.2. Data Preprocessing: Landsat-8/OLI

For each band of Landsat-8/OLI data, the digital number (DN) values were also
converted to reflectance values using the improved cosine of the solar zenith angle (COST)
method proposed by Moran et al. [50] as follows:

Pλ =
π (Lλsensor − Lλhaze)d

2

ESUNλ cos
(

π
180θs

) (3)

where Pλ = the dimensionless spectral reflectance value of surface water, π = a constant
(3.14159265), Lλsensor = the spectral radiance value, Lλhaze = the path radiance or upwelling
atmospheric spectral radiance, d = the distance between the earth and the sun in astronom-
ical units, θs = the solar zenith angle (◦), and ESUNλ = the solar spectral irradiance at to
the top of atmosphere (TOA).

The spectral radiance value (Lλsensor) at the satellite sensor’s aperture (Wm − 2sr −
1 µm − 1) is calculated as follows:

Lλsensor = (Mλ × Qcal) + Aλ (4)

where Mλ = the band-specific multiplicative rescaling factor, Aλ = the band-specific additive
rescaling factor, and Qcal = the minimum quantized and calibrated standard product pixel
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value. Both Mλ and Aλ are provided in the Landsat 8 metadata file (MTL file). The path
radiance (i.e., the upwelling atmospheric spectral radiance scattered in the direction of the
sensor entrance pupil and within the sensor’s field of view), Lλhaze, is calculated as follows:

Lλhaze = Lλmin − Lλ,1% (5)

where Lλhaze = the path radiance or upwelling atmospheric spectral radiance scattered in
the direction of the sensor entrance pupil and within the sensor’s field of view, Lλmin = the
minimum spectral radiance, and Lλ,1% = the spectral radiance value of the darkest object
on each band of the Landsat 8 and is given by

Lλ, 1% =
0.01 × ESUNλ × cos(θ)2

π × d2 (6)

Assuming that dark objects have 1% or smaller reflectance, the theoretical radiance of
these object was then computed, accordingly [33,50].

2.3.3. Statistical Analyses

Commonly used statistical techniques were employed to determine the relationship
between electromagnetic energy and water quality parameters [1,20,51–55]. The chosen
parameters for analysis were Chl-a, TSS, total phosphorus, and TKN.

Studies have shown that there is a significant correlation between the visible bands
and water transparency and chl-a concentration [51–53,55–58] and also between the visible
bands of Landsat and total suspended matters [57,59–61].

Thus, Pearson’s correlation analysis was used in this study to find the existing lin-
ear relationships and associated correlation values between chl-a, TSS, total phosphate,
and TKN and visible TM and OLI bands at the 26 selected stations in Lake Okeechobee.
Equation (7) represents the basic form of Pearson’s correlation as follows:

R =
∑ (Xband − Xband)(YWQP − YWQP)√
(Xband − Xband)

2
+ (YWQP − YWQP)

2
(7)

Xband = the value of corrected reflectance, Xband = the mean value of the corrected reflectance,
YWQP = WQPs data from monitoring stations, and YWQP = the mean value of the in

situ WQP.
Data from monitoring stations.
A linear multiple regression analysis for all four WQPs conducted and a general

formula for each index obtained as follows:

WQP = a + (b × Xk,1) + (c × Xk,2) + (d × Xk,3) + (e × Xk,4) (8)

In this equation, WQP is the dependent variable representing chl-a, TSS, total phos-
phate and TKN at each monitoring station of k, and X represents the independent re-
flectance variable calculated from above-mentioned equations for Landsat-5/TM or Landsat-
8/OLI data at each monitoring station of k. The numbers indicated the band number for
each sensor and a, b, c, d, and e are the model coefficients based on the least square
algorithm using both measured WQP value at each station and the known pixel re-
flectance values.

3. Results and Discussion
3.1. Chlorophyll-a and TSS

The observed electromagnetic properties of chl-a and TSS for this study were in
accordance with those previously established in the literature. The prominent scattering-
absorption features for chl-a is strong absorption between 450 and 475 nm (blue) and
at 670 nm (red), and reflectance peaks at 550 nm (green) and near 700 nm (NIR). This
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reflectance peak near 700 nm and its ratio to the reflectance at 670 nm have been used in
other studies to develop algorithms and was present in this analysis.

Pearson’s correlation was carried out to detect the existence of significant relationships
between Landsat bands with chl-a and TSS in-situ concentrations. The independent
variables were all the visible bands and their ratios presented in Table 2. Variables with
p > 0.10 were removed from the analysis.

Table 2. Pearson’s R correlation between limnological data and Landsat bands and ratios.

Bands/Band
Ratios

Dry Season Wet Season

Chl-a (mg/m3) TSS (mg/L) Chl-a (mg/m3) TSS (mg/L)

Blue (B) −0.70 ** −0.29 −0.45 ** −0.55 **
Green (G) −0.60 ** −0.27 −0.31 ** −0.35 **

Red (R) −0.80 ** −0.07 −0.42 ** −0.41 **
Near Infrared

(NIR) −0.63 ** 0.20 −0.24 −0.32 **

B/G 0.26 −0.27 −0.23 −0.15
B/R 0.78 ** −0.36 ** 0.20 0.05

B/NIR 0.60 −0.47 ** −0.30 ** −0.36 **
G/B −0.25 0.25 0.14 0.06
G/R 0.82 ** −0.22 0.76 ** 0.64 **

G/NIR 0.54 −0.46 ** −0.12 0.49 **
R/B −0.76 ** 0.32 −0.28 −0.29
R/G −0.81 ** 0.22 −0.76 ** −0.68 **

R/NIR −0.06 −0.49 ** −0.43 ** −0.62 **
NIR/B −0.56 0.43 ** −0.01 −0.06
NIR/G −0.51 0.46 ** −0.01 −0.01
NIR/R 0.08 0.50 ** 0.29 0.08

(**): significant correlation for p < 0.05.

There is a high dynamic range in the correlation analysis between Landsat bands and
chl-a and TSS concentration. The two highest values of coefficient of correlation for Chl-a
was found in Red/Green ratio (−0.81) and also Green/ Red ratio (0.82) in dry season, and
Red/Green (−0.76) and also Green/ Red ratio (0.76) in wet season at a significance level of
p < 0.05.

Similarly, the two notable correlation between the Landsat bands and TSS was found
in Red/NIR ratio (−0.49) and also in NIR/Red ratio (0.50) in dry season, and Red/Green
ratio with a coefficient of correlation (R) value of −0.68 and also Green/Red band ratio
with a coefficient of correlation value of 0.64 in wet season. In wet season, the strongest
correlation between TSS values and single Blue band was −0.55 and at a significance level
of p < 0.05 was obtained.

Multiple regression models were constructed for chl-a and TSS through band and
band ratios that indicated a good correlation (Table 2). The bands and band ratios of B,
B/R, G/R, R/B, and R/G were selected for the estimation of chl-a in dry season, and band
R, G/R, R/G, and R/NIR ratios selected for wet season. Equations (9) and (10) represent
the resulted models for chl-a estimation.

Chl − a in dry season = a + (b × B) + (c × Blue
Red

) + (d × Green
Red

) + (e × Red
Blue

) + (f × Red
Green

) (9)

Chl − a in wet season = a + (b × R) + (c × Green
Red

) + (d × Red
Green

) + (e × Red
NIR

) (10)

For the variability of TSS in the dry season, the chosen bands and band ratios were
B/NIR, G/R, R/B, and R/G. For the wet season they were B, R, G/R, R/G, and R/NIR. The
chosen bands showed significant relationships with observed values in the dry (R2 = 0.67)
and wet season (R2 = 0.60). Another criteria in selecting variables for the MLR model
development was the Durbin–Watson which needs to fall between the two critical values
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of 1.5 < d < 2.5, and therefore, there is no first order linear auto-correlation in our multiple
linear regression data. The Durbin–Watson values of 2.249 and 1.650 were obtained in dry
and wet seasons, respectively, which fall between the two critical values of 1.5 < d < 2.5,
and therefore, there is no first order linear auto-correlation in our multiple linear regression
data. The functional models for TSS are

TSS in dry season = a + (b × Blue
NIR ) + (c × Green

NIR ) + (d × Red
NIR ) + (e × NIR

Blue ) + (f × NIR
Green ) + (g × NIR

Red ) (11)

TSS in wet season = a + (b × B) + (c × R) + (d × Green
Red

) + (e × Red
Green

) + (f × Red
NIR

) (12)

Based on the best and significant relationships found for between the measured
concentration of chl-a and TSS and the Landsat TM and OLI data, four regression models
developed for these two parameters for each dry and wet seasons. The regression analyses
for chl-a and TSS are shown in Table 3. Table 4 presents these multiple regression models
constructed through Equations (9)–(12).

Table 3. Regression analyses for chl-a and total suspended solid (TSS).

Season Parameter R2 Standard Error p Value Durbin-Watson Observations

Dry Chl-a 0.84 8.84 0 1.797 48
TSS 0.67 6.07 0 2.249 48

Wet
Chl-a 0.48 20.88 0.005 2.103 38
TSS 0.6 12.77 0.002 1.65 38

Table 4. Regression analysis between Landsat reflectance and limnological parameters.

Season Water Quality Parameters Regression Equations Derived

Dry Chl-a (mg/m3)
= 881.1 × (B/R) − 1784.7 × (G/R) +5331.5 × (R/B) − 3096.2 × (R/G)
× 1167 × (B) + 525.5

TSS (mg/L) = 517.91 × (R/NIR) − 8.86 × (G/NIR) − 799.23 × (NIR/B) + 127.76
× (NIR/G) + 1100.92 × (NIR/R) − 74.63 × (B/NIR) − 1037.79

Wet
Chl-a (mg/m3)

= −1067.77 × (G/R) − 2144.45 × (R/G) − 35.04 × (R/NIR) + 297.75
× (R) + 3095.6

TSS (mg/L) = 361.89 × (R) − 1018.25 × (G/R) − 1919.21 × (R/G) − 26.15 ×
(R/NIR) − 182.90 × (B) + 2855.76

The R square values proved the accuracy of reliability of first four bands of Landsat
images and their ratios for the measurement of chl-a and TSS concentrations at stud-
ied waterbody.

To visualize the models created in Table 4, maps shown in Figure 2 were created for
the entire area of lake Okeechobee. Each map was made from the indicated date and a
single image.

Based on the standardized residuals normal probability–probability (P-P) plots were
created. Part of the data from monitoring stations were used for validation of the satellite
based water quality estimates from the different images which were also used to develop
the P-P plots and also to check the normality assumptions (Figure 3). Figure 3 shows
that Chl-a in dry season show a good performance indicating the cumulative distribution
function (CDF) of both the observed and modeled values closely matches. For the wet
season, the CDF of the modeled value distribution is higher than that of the observed one
for some of the values.
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3.2. Nutrients

Based on the relationship between nutrients, chl-a or TSS, and also water quality
monitoring stations’ data and Landsat bands and ratios, Pearson correlations calculated
and are summarized in Table 5. Based on these results, four models were developed for
total phosphate and TKN in two different dry and wet seasons.
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Table 5. Pearson’s R correlation for the in-situ water quality parameters and Landsat bands and ratios.

Bands

Season Season

Dry Wet Dry Wet

TP (mg/L) TKN (mg/L)

B 0.34 ** 0.59 ** −0.36 ** 0.01
G 0.35 ** 0.55 ** −0.12 0.03
R 0.50 ** 0.59 ** −0.31 ** 0

NIR 0.31 ** 0.61 ** 0.03 0.08
B/G −0.21 −0.17 0.19 −0.05
B/R −0.52 ** −0.40 ** 0.19 0.05

B/NIR −0.28 −0.54 ** 0.07 −0.29 **
G/B 0.21 0.2 −0.19 0.07
G/R −0.53 ** −0.58 ** 0.03 0.29 **

G/NIR −0.21 −0.62 ** −0.1 −0.32 **
R/B 0.52 ** 0.47 ** −0.17 −0.08
R/G 0.52 ** 0.60 ** −0.04 −0.29 **

R/NIR 0.19 −0.52 ** −0.15 −0.49 **
NIR/B 0.27 0.62 ** −0.06 0.21
NIR/G 0.21 0.66 ** 0.07 0.25
NIR/R −0.2 0.59 ** 0.14 0.42 **

Chl-a (mg/m3) −0.02 0.47 ** 0.51 ** 0.91 **
TSS (mg/L) 0.90 ** 0.57 ** 0.79 ** 0.73 **

(**): significant correlation for p < 0.05.

Total phosphate was found to be highly correlated with TSS, and acceptably tied to
NIR band, and Green/Red band ratio in dry season, and correlated with TSS, Blue/Red,
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NIR/Green, and NIR/Red in wet season. The developed models for total phosphate
concentration in dry and wet seasons are as follow:

TP in dry season = a + (b × TSS) + (c × Green
Red

) + (d × NIR) (13)

TP in wet season = a + (b × TSS) + (c × Blue
Red ) + (d × NIR

Green ) + (e × NIR
Red ) (14)

The variability of TKN concentration was also investigated using the same procedure,
incorporating visible bands and their ratios as independent variables in the regression
analysis. From the stepwise variable selection procedure, the following functional model
was selected in dry and wet season:

TKN in dry season = a + (b × Chl-a) + (c × TSS) + (d × B) + (e × R) (15)

TKN in wet season = a + (b × Chl − a) + (c × TSS) + (d × Blue
NIR ) + (e × Green

NIR ) + (f × Red
NIR ) + (g × NIR

Red ) (16)

The statistical values given in Table 6 were obtained from the regression analysis
computation. Based on the calculated R square values, it was found that the first four
bands of Landsat images and their ratios and the concentrations of chl-a and TSS in the
Lake Okeechobee can be reliably used for the measurement of total phosphate and TKN in
this lake.

Table 6. Regression analyses for TP and TKN.

Season Parameter R2 Standard
Error

Durbin-
Watson Observations

Dry TP 0.92 0.015 1.974 50
TKN 0.94 0.097 2.027 50

Wet
TP 0.89 0.025 2.488 38

TKN 0.93 0.166 1.627 48

It was found that TP was correlated with TSS (R = 0.90) and also with G/R band ratio
(R = −0.53) in dry season, and in wet season found to be highly correlated with G/NIR
band ratio (R = −0.62) and NIR/G band ratio (R = 0.66) (at a significance level of p < 0.05
(Table 5). Multiple linear regression models developed for total phosphate estimation
showed high coefficient of determination equal to 0.92 and 0.89 in dry and wet seasons,
respectively (Table 6). The developed MLR models for the estimation TP and TKN using
both the Landsat data and in situ measurement data. The Durbin–Watson values of 1.947
and 2.488 in dry and wet seasons, respectively, determines that there was no first order
linear auto-correlation in the resulted multiple linear regression models.

The top two significant correlation found between the Blue band (R = −0.36) and
TSS (R = 0.79) and TKN were in the dry season. In wet season, TKN was correlated with
R/NIR band ratio (R = −0.49) and chl-a (R = 0.91) at a significance level of p < 0.05 (Table 5).
Chl-a and TSS, and highest correlated bands and band ratios were selected to develop
multiple regression models for TKN, which are summarized in Table 7. The obtained values
Durbin–Watson equal to 2.027 and 1.627 for dry and wet seasons, respectively, shows that
there is no first order linear auto-correlation in the developed multiple linear regression
models. Figure 4 shows different spatial and temporal distribution of total phosphate and
TKN over the entire body of Lake Okeechobee, resulted from the developed equations
represented in Table 7.
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Table 7. Regression equations for TP and TKN, as a function of Landsat bands and other water quality parameters.

Season Water Quality (mg/L) Regression Equations Derived

Dry TP = 0.001(TSS) − 0.202(G/R) − 2.56(NIR) + 0.468
TKN = 0.008(TSS) + 0.009 (Chl-a) + 3.91(B) − 4.35(R) + 0.641

Wet
TP = 0.002(TSS) + 0.154(B/R) + 1.66(NIR/G) − 1.23(NIR/R) − 0.232

TKN = 0.017(Chl-a) + 0.001(TSS) − 0.057(B/NIR) + 0.345(G/NIR) −
1.09(R/NIR) − 0.249(NIR/R) + 2.21Land 2021, 10, x FOR PEER REVIEW 14 of 19 
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Figure 4. Seasonal and spatial dynamics of TP and TKN in Lake Okeechobee.

The normal probability–probability (P-P) plots for the studied variables in both dry
and wet seasons indicated the normal distribution for the total phosphate and TKN in both
dry and wet seasons (Figure 5). The 25% of data from monitoring stations were used for
validation and tested these against the extracted values from arbitrarily selected points in
the area of stations and different used images to develop the P-P plots and also to check
the normality assumptions. Figure 5 shows that, except for TKN in the wet season, the
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CDF values for both observed and modeled TKN and TP are similar indicating a good
correspondence in the distribution of the modeled and monitored values.
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Figure 5. The normal probability–probability (P-P) plots of regression standardized residuals for TP and TKN in dry and
wet seasons.

Using the spatial maps of water quality parameters shown in Figures 2 and 4, different
classes showing ranges of values for each parameter were developed and the corresponding
area of the lake falling in each class is shown in km2. This is shown in Table 8 for eth two
seasons and the three years (2000, 2007, and 2015).

Table 8. The area-based condition of water quality parameters in Lake Okeechobee in dry and wet seasons, and in three
years of 2000, 2007, and 2015 (km2) in the ranges of selected values.

Dry Season Wet Season

Chl-a
(mg/m3)

Year 0–50 50–100 100–150 150–200 >200 0–20 20–40 40–60 60–80 80–100 >100
2000 51.6 287.3 722.9 175.2 93.1 514.7 842.9 50.5 7 0.1 0
2007 96.2 334.1 451 317.9 170.2 616.7 687.8 63.8 37.9 3.6 5.4
2015 117.4 226.6 767.3 247.9 8 913.5 346.2 80.6 66.1 8.8 0

TSS
(mg/L)

Year 0–40 40–80 80–120 120–160 >160 0–15 15–30 30–45 45–60 60–75 >75
2000 31.9 17.9 543.9 735.8 85.4 605.4 772.2 31.5 6 0.1 0
2007 46.9 74.2 389.9 845.2 58.5 555.8 739.8 67.1 42.4 3.5 6.3
2015 149.8 154.2 222.2 253.3 637 932.7 359.2 75.8 45.4 2.4 0

Total
Phos-
phate

(mg/L)

Year 0–
0.07

0.07–
0.15

0.15–
0.20

0.20–
0.25

0.25–
0.30 >0.30 0–0.07 0.07–

0.15
0.15–
0.20

0.20–
0.25

0.25–
0.30 >0.30

2000 5.9 431.3 968 6.8 0.6 2 211.5 1166 22.3 5.9 3.5 6
2007 57.4 530.5 627.4 178.1 18.5 3 209.8 997 45.9 23.3 20.7 117.8
2015 71.7 15.8 885.3 442.5 0.01 0 104.5 1244 9.6 6.1 5.9 45.2

TKN
(mg/L)

Year 0–1.0 1–1.5 1.5–2.0 2.0–2.7 2.7–3.5 >3.5 0–1.0 1–1.5 1.5–2.0 2.0–2.7 2.7–3.5 >3.5
2000 6.7 1336 58.4 10.2 2.2 2 280.1 794 313 23.8 3.6 0
2007 264.7 963.4 138.1 11.2 0.3 0 300.8 683 339 86.6 1.2 4.7
2015 0.1 0.2 110.7 697.7 510.6 5 709.4 432 152 103 18.6 0
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It is shown that large area of the lake has Landsat based Chla-a values in the range of
150–200 mg/m3 in the dry season and in the range of 0–40 mg/m3 in wet season (Table 8).

TSS values are in the range of 120–160 and 0–15 mg/L in the dry and wet seasons,
respectively. Large areas of the lake in the three years showed TP values in the ranges of
0.15–0.2 and 0.07–0.15 mg/L for the dry and wet seasons, respectively. Similarly, TKN
values fall in the range of 1–1.5 mg/L in 2000 and 2007 for the dry as well as wet seasons.

4. Conclusions

Watershed processes have a direct impact on the water quality of receiving water
bodies including lakes. Understanding the dynamics of water quality in lakes will require
a monitoring program that is feasible, reliable, and that can provide accurate results with
acceptable spatial and temporal scales. This will be a challenge, especially in large lakes
unless field observations are coupled with remote sensing approaches.

The spatiotemporal variability of water quality parameters along with the seasonal
changes were studied for Lake Okeechobee, South Florida using remote sensing and
in-situ water quality data. The dynamics of selected four parameters: total phosphate
(TP), total Kjeldahl nitrogen (TKN), total suspended solid (TSS) and chlorophyll-a (chl-a)
were analyzed using data from satellites and water quality monitoring stations. Statistical
approaches were used to establish correlation between reflectance data and observed
water quality records. Stepwise MLR approach was used to establish correlations between
reflectance data and the selected water quality parameters. The predictive stepwise MLR
models to estimate chl-a and TSS depicted R square values of 0.84 for chl-a and 0.67 for TSS
in dry season and moderate R square values of 0.48 for chl-a and 0.60 for TSS in wet season.

The MLR analysis indicated that for the dry season, TP and TKN were correlated
with Landsat reflectance data with R square values of 0.92 and 0.94, respectively. The wet
season analysis also showed a strong correlation for TP and TKN with 0.89 ad 0.93 R square
values, respectively.

Results of this study showed that the application of remote sensors like TM and LOI
from Landsat are useful to monitor large lakes by providing reflectance data that can be
used to develop predictive models for estimating the dynamics of water quality parameters.
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