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Abstract: Agricultural production systems in New Mexico (NM) are under increased pressure due
to climate change, drought, increased temperature, and variable precipitation, which can affect
crop yields, feeds, and livestock grazing. Developing more sustainable production systems requires
long-term measurements and assessment of climate change impacts on yields, especially over such
a vulnerable region. Providing accurate yield predictions plays a key role in addressing a critical
sustainability gap. The goal of this study is the development of effective crop yield predictions to
allow for a better-informed cropland management and future production potential, and to develop
climate-smart adaptation strategies for increased food security. The objectives were to (1) identify the
most important climate variables that significantly influence and can be used to effectively predict
yield, (2) evaluate the advantage of using remotely sensed data alone and in combination with climate
variables for yield prediction, and (3) determine the significance of using short compared to long
historical data records for yield prediction. This study focused on yield prediction for corn, sorghum,
alfalfa, and wheat using climate and remotely sensed data for the 1920–2019 period. The results
indicated that the use of normalized difference vegetation index (NDVI) alone is less accurate in
predicting crop yields. The combination of climate and NDVI variables provided better predictions
compared to the use of NDVI only to predict wheat, sorghum, and corn yields. However, the
use of a climate only model performed better in predicting alfalfa yield. Yield predictions can be
more accurate with the use of shorter data periods that are based on region-specific trends. The
identification of the most important climate variables and accurate yield prediction pertaining to
New Mexico’s agricultural systems can aid the state in developing climate change mitigation and
adaptation strategies to enhance the sustainability of these systems.

Keywords: sustainable agriculture systems; corn; wheat; sorghum; alfalfa; NDVI; statistical analysis;
averaging periods

1. Introduction

The need for an increased food security has been the main global concern to meet the
demand for a growing population that is expected to reach about 10 billion by 2050 [1].
However, crop yield, and thus the sustainability of agricultural production systems, is
confronted by a range of factors that include agronomic practice (e.g., farming technologies,
fertilizer applications, and irrigation methods), extreme weather events, limited water
supply, variable environmental and economic conditions, among others [2–4]. Globally, it
is evident that the accelerated pace of climate change can stress these systems beyond their
ability to adapt [5–7]. Particularly, rising temperature, increased precipitation variability,
and persistent and prolonged droughts have become the major sustainability challenges in
regions prone to these conditions, such as the Southwestern United States (US), including
New Mexico (NM) state [7–10]. With an increased sense of urgency, prediction of crop yield
over New Mexico is critically needed, as recent projections indicated that the state would

Land 2021, 10, 1389. https://doi.org/10.3390/land10121389 https://www.mdpi.com/journal/land

https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-7560-8884
https://doi.org/10.3390/land10121389
https://doi.org/10.3390/land10121389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land10121389
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land10121389?type=check_update&version=1


Land 2021, 10, 1389 2 of 27

experience extreme water scarcity conditions by 2050 [11,12]. Such unfavorable climatic
conditions not only can impact crop yields, but also significantly affect human livelihoods
in this region. Providing accurate yield predictions can help in identifying expected food
security gaps and proactively developing relevant climate-smart management strategies
for sustainable agricultural production [13].

The effects of climate change on yield vary regionally by crop [14]. For example,
in some regions, increased temperature and variable precipitation are expected to have
negative impacts on corn and sorghum yields. Simultaneously, increased precipitation can
increase their yield in various tropical and temperate regions [15]. However, the observed
dominant trends globally and regionally were a decline in yields of most crops that were
attributed to different variables (mostly temperature and precipitation). For instance, a
global decline in wheat yields was attributed to increased temperature [16]. Regionally,
a similar declining trend in corn yield was observed in north China [17]. In the US, the
decline in some crop yields was attributed to drought, which can be due to a combination of
water shortage (due to variable precipitation) and increased temperatures. It was indicated
that drought was responsible for an average of about 13% of US corn and soybean yield
variability over a 50-year period [18]. Short-term droughts occurring during the critical
months of crops’ growing season were strongly correlated with yield anomalies. Moreover,
uncertainties in temperatures during the critical reproductive development of the growing
season showed more pronounced impacts on crop yields [10,19]. The variability of climate
change impacts on yield needs further analysis at local scales to better understand which
climate variables have more significant effects.

Most yield prediction studies have been conducted at global and country scales
(e.g., China, Ghana, United States), focusing on regions with significant economies (e.g.,
the US Corn Belt), abundant water supply, and relatively moderate climate change im-
pacts [5,20,21]. However, some regions are expected to experience climate change impacts
at their extreme, such as New Mexico in the Western US. Moreover, agricultural systems in
New Mexico are an important source of economic growth locally and regionally. Project
climate change impacts over New Mexico indicated increased temperature, extreme water
scarcity, and increased frequency and severity of drought events—a combination of factors
that can result in significant decline in yield. These issues highlight a critical need to evaluate
climate change impacts on yield in New Mexico, with evaluation results that can potentially
be generalized over the Western US and other regions with similar climate characteristics.

Generally, two main approaches have been used to evaluate and predict the impacts
of climate change on crop yield, which include process-based crop growth modeling and
statistical analysis [17,20–31]; and identify and adapt to changes in climate variables by
assessing their impacts on crop productivity to develop means that can help in increasing
crop yield [31,32]. Statistical methods have shown the ability to effectively model the
relationships between crop yield and environmental variables—thus, they have been
commonly utilized over climatically different regions. However, the ability of statistical
methods over regions with arid and semi-arid conditions, such as New Mexico, has been
evaluated to a limited extent—which highlights a critical gap related to identifying the
most influential climate variables on crop yield [22,33–36].

Crop yield has commonly been predicted by developing relationships between his-
torical yield and climate, physiological, and socioeconomic variables [37]. For example,
the variability of yield due to climate change has been examined using temperature, pre-
cipitation, growing degree days (GDD), vapor-pressure deficit (VPD) [6,38–42], farming
techniques [4], gross domestic production (GDP), El Niño southern oscillation (ENSO),
historical carbon dioxide (CO2), Palmer drought severity index (PDSI), geopotential height
anomalies (GPH), and soil water content (SWC) [43,44]. Commonly, temperature and
precipitation are used as the main climate variables for yield prediction, as they provide
valuable insights about growing conditions [43–46]. In recent years, remote sensing has
increasingly been utilized to provide quantitative and timely information on crop growth
over large areas—which can enhance prediction skill. It allows plant biophysical properties
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to be represented, such as leaf area index and greenness, that explain the different growth
stages as a function of vegetation indices, including the normalized difference vegetation
index (NDVI) [43,47]. Moreover, NDVI is closely related with plant photosynthesis rate,
and thus can be used as a reliable indicator of crop growth conditions and plant stresses.
NDVI can effectively capture growing conditions for annual crops. However, it is less ef-
fective with perennial crops, such as alfalfa, which is harvested over a 12-month period—a
practice that results in significant spatial and temporal variations in vegetation growth,
thus challenge yield prediction using NDVI. Combining NDVI with climate variables can
provide improved crop yield prediction accuracy. However, a main drawback that arises
from using remote sensing information is that it cannot be used for future prediction.

With high confidence, recent studies indicated that there is a shift and increased
variability in crops’ growing seasons (planting date, length, and maturity), mainly due to
climate change impacts [48]—eventually affecting yield. Thus, depending on the length
of growing seasons and growth stages, it is crucial to average climate variables over
the periods that can effectively reflect these two factors and, thus, the overall growing
conditions. Crop yield has been predicted using climate variables averaged mostly over the
growing season, which, in some cases, can limit the representation of impacts from extreme
weather events, such as heat waves and drought [18]. On the other hand, averaging
can be performed over the months of a water year (October–September), which can be
effective in cases where available water resources are extensively used to grow crops.
Moreover, the selection of a representative averaging period can vary regionally, as it has
been indicated that averaging over regions with increased climate variability, low yield,
and productivity may not effectively represent long-term interannual variability in growth
and yield. Therefore, the choice of an appropriate averaging period for the variables that
exert the most significant effects on yield is an important factor to provide highly accurate
yield predictions.

Most yield prediction studies have used relatively short (e.g., 30–40 years) historic
records rather than using longer periods (≥100 years). Using long timeseries can be
beneficial in evaluating crop responses to different climatic conditions, including extreme
events and abrupt changes, such as drought; gradual shifts (i.e., increase or decrease)
in temperature and precipitation; and socioeconomic fluctuations (i.e., regional prices,
policies). On the other hand, using long timeseries can implicitly indicate the assumption
of stationarity of crop response to climate change. Such an assumption may not hold, as
plants, for example, may adapt (naturally or with technological advances) over time to
increased temperature. Therefore, it is important to assess yield prediction models using
both different averaging period and lengths of data records to properly account for these
effects. Doing so can help develop effective management practices and policies to reduce
risks to yields and enhance the sustainability of agricultural production systems under
climate change impacts.

The main goal of this study is to support resilience and sustainability of agriculture
systems in arid and semi-arid regions through the development of effective crop yield
predictions to allow for a better-informed cropland management and future production
potential, and develop climate-smart adaptation strategies for increased food security.
The objectives were to (1) identify the most important climate variables that significantly
influence and can effectively predict yield, (2) evaluate the advantage of using remotely
sensed data individually and in combination with climate variables for crop yield predic-
tion, and (3) determine the significance of short compared to long historical data records
in yield prediction models. To achieve these objectives, different climate variables and
remote-sensing-based NDVI were used to develop regression models for crop yield prediction
in New Mexico. A piecewise approach was also used to evaluate observed shifts in crop
yields over the past 100 years of available record. Evaluating climate and remote sensing
variables and averaging periods can aid in accurate yield prediction and further improve our
understanding of climate change impacts on the sustainability of agriculture systems [4].
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2. Materials and Methods
2.1. Study Area

The study area covers the entire state of New Mexico in southwestern US (Figure 1).
NM’s main forage crops include alfalfa, wheat, corn, and sorghum, which are mostly used
as feeds and pastures for livestock and wildlife. NM’s agriculture systems are characterized
by less diverse crop production due to its normally dry climatic conditions and it is expected
to get even warmer and significantly drier [49]. New Mexico is the sixth-fastest-warming
state in the US [11], with an average annual temperature that showed an increasing trend,
with a 0.6◦F increase per decade since 1970 or about 2.7◦F over 45 years [50]. NM has
relatively low precipitation amounts, as it is among the five driest states in the US [51–53].
To predict crop yield, this study used three different datasets that include climate variables,
remote-sensing-based NDVI, and crop yield.
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Figure 1. The map of New Mexico counties in the United States, including the share of harvested areas in
acres for sorghum, wheat, alfalfa, and corn within the total harvested cropland areas in 2017 [54].

2.2. Climate Variables

The climate data used in this analysis include annual minimum, maximum, and mean
temperature (◦C) (referred to as Tmean, Tmin, and Tmax, respectively), precipitation (P) (mm),
and minimum and maximum vapor-pressure deficit (hPa) (referred to as VPDmin and
VPDmax, respectively) from 1920 to 2019. The data were obtained from NOAA-NCEI
climate database [50]. These variables were averaged over the water year and growing
season. The total precipitation for the annual water year and growing season were referred
to as Pwy and Pgs, the growing season mean, minimum, and maximum average temperature
were referred to as Tmeangs, Tmings, and Tmaxgs, and growing season average minimum and
maximum VPD referred to as VPDmings and VPDmaxgs, respectively. Figure 2 shows the
trend of the selected climate variables from 1920 to 2019.
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Figure 2. Historical climate variables (annual precipitation (P), annual water year precipitation (Pwy), average min (Tmin),
max (Tmax), and mean (Tmean) temperature) from 1920 to 2019 [55].

2.3. Remote Sensing Data

Remotely sensed NDVI can be used to describe crop growth conditions (i.e., green-
ness and leaf area index) as it uses the near-IR and red bands of multispectral images,
such as those from Landsat sensors as (NIR − Red)/(NIR + Red). The NDVI ranges
from −1.0 to 1.0. Landsat 32-day NDVI were obtained from all Landsat sensors that were
acquired in each 32-day period between the 1st and 352nd day of each year [56].

Landsat 32-day NDVI composites of 30-m spatial resolution from 1984 to 2016 were
used to derive monthly crop-specific NDVI values for each crop type based on a mask
crop map generated from the Cropland Data Layers (CDL) (https://nassgeodata.gmu.
edu/CropScape/, accessed 1 December 2021). For NM, the CDL data are available from
2008 to present (https://www.nass.usda.gov/Research_and_Science/Cropland/Release/,
accessed 1 December 2021). Because the crop type information prior to 2008 was not
available, two nominal crop-type masks for the periods of 1984–2008 and 2009–2016 were
used to assess crop-specific NDVI. Google Earth Engine (GEE) platform was used in this
process. The different crop development stages during a growing season exhibit specific
NDVI values and can effectively be used to distinguish between crops [57,58]. A range of
NDVI values from 0.25 to 0.85 was selected within the crop-type masks to exclude bare
lands from other vegetation. In addition to Landsat 32-day, Landsat 8-day NDVI product
was also used to derive the relationship of alfalfa yield and NDVI. The growing season of
annual crops can be easily described based on the planting and harvesting dates. However,
the growing season of perennial crops, such as alfalfa, is complex, with variable harvesting
schedules, varieties, and water availability, which might make it challenging to establish a
relationship between NDVI and yield.

2.4. Crop Yield Data

Based on crop area statistics of 2017, alfalfa, corn, sorghum, and winter wheat (referred
to herein as wheat) represented ~47% of the total harvested area in NM. These crops are
used as feeds for livestock, except wheat, which is also consumed as food grain. Yield data
were obtained from the USDA NASS for the 1920–2019 period (Figure 3). The water year
for NM spans from October to September [59]. The planting and harvesting dates of selected
crops were collected from the USDA NASS to identify the growing seasons [60] (Table 1).

https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
https://www.nass.usda.gov/Research_and_Science/Cropland/Release/
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Figure 3. Historical crop yields of corn, wheat, sorghum, and alfalfa from 1920 to 2019 (USDA-NASS).

Table 1. Growing season of selected crops (source: USDA-NASS, 2018 and OSE, 2012).

Crops Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Corn

Alfalfa
Sorghum
Wheat

Blue shade: planting dates; yellow shade: harvesting.

2.5. Crop Yield Prediction Approach

This study followed two main analysis steps. First, a correlation analysis was per-
formed to evaluate the colinear relationships between the predictors (i.e., climate and
NDVI) and yield. Second, a stepwise modeling approach along with different forms of
regression models (e.g., linear, polynomial, and spline cubic) were used to evaluate their
ability to accurately predict crop yield.

2.5.1. Correlation Analysis

A parametric correlation analysis was performed to evaluate the collinearity between
all predictors (i.e., variables) and crop yield to identify the most effective ones in developing
robust prediction models. Pearson’s correlation coefficient (R) was used to evaluate the
linear dependencies between two pairs of variables. A correlation close to 0 indicates that
the two variables are independent of each other—a change in a variable does not reflect
a relative change in the other variable. The Pearson’s correlation coefficient was used
to evaluate correlation between all potential variables (about 13) and yield individually.
The correlation between all potential variables was evaluated using a combination of
Pearson’s correlation coefficient and principal component analysis (PCA) [61–63]. The
PCA was used to select the most significant variable based on the variance explained
by the principal components, and the corresponding R between them was used to select
those that are less correlated with each other and simultaneously correlated with yield.
The statistical software R was used to conduct the PCA and Pearson’s correlation. The
identified variables were then evaluated individually and in combination to develop the
most effective regression models for yield prediction. This approach of selecting important
climate variables followed what is generally referred to as the stepwise method.

2.5.2. Regression Models

The linear regression models used to predict yield based on single or multiple predic-
tors [64,65] followed a typical formula (Equation (1)).

yi =
n

∑
i=1

βixi (1)

where yi represents crop yield, βi is the regression coefficient of variable (predictor) xi, and
n is the total number of variables used.
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Multiple linear regression models were developed following two different approaches
based on the available period of record by using (1) the entire historic record (100 years)
and (2) piecewise segmented periods of records.

Long Time Period Regression

The simplest model included a single predictor (i.e., variable). Additional variables
were included in a model based on the order of their correlation with each other and with
crop yield. These models were also evaluated using different averaging periods for climate
variables (i.e., the growing season and water year periods) and months for NDVI. All
models’ combinations were also evaluated using only climate, NDVI, or combinations of
climate and NDVI variables.

Piecewise Regression

The crop yield trend, growth rates, and variability can be categorized into four groups
based on crop yield patterns that indicate conditions when yield never improved, stagnated,
collapsed, or was still increasing [66]. Widespread decadal-scale changes (denoted herein
as breaks) have been observed in yield variability and growth rates since the 1930s that
also substantially varied regionally [67]. Some examples of decadal-scale yield trends and
variability of selected crops shown in Table 2 can be used to identify the breaks in crop
yield patterns. These breaks in yield patterns can be used to guide the development of an
effective regression model. Thus, previous studies have focused on shorter periods [66,68].
However, the choice of time period for statistical analysis of crop yield variability can
impact any conclusions that can be drawn about the trends in yield variability during the
20th century, as indicated by [67]. Due to the appearance of significant yield variability
over specific periods of time, yield data were segmented using these observed break points
(patterns) in the yield of each crop (Table 2). These break points can be caused by a number
of factors, such as farming technology, irrigation, and management policies, that are beyond
the scope of this analysis to identify. For the segmented periods of time, an alternative
and more appropriate regression analysis (e.g., piecewise linear regression) was used to fit
shorter data periods to different linear trends in crop yield. A typical regression equation
can be seen in the form of Equation (2) as:

y(x) = β0 + ∑nb
i=1 βi(x − ki), ki < x ≤ ki+1 (2)

where k1 is the x location of the first break point, k2 is the x location of the second break
point, and so forth, until the last break point knb for nb number of break points; y(x) is
the crop yield, in tons per hectare; βi is the regression coefficient of variable xi; and the
independent error terms εi follow a normal distribution with mean 0 and equal variance.

Table 2. Decadal-scale crop yield trends and variability of four crop types.

Crops Segmented Periods of Time Literature on Decadal-Scale Crop Yield Trend and Variability

Sorghum
1920–1956

United Sorghum Checkoff Program [69]1957–1964
1965–2018

Corn

1920–1956

[67,70–72]
1957–1970
1971–1985
1986–2019

Wheat
1920–1956

[73]1957–2019

Alfalfa
1920–1957

[74]1958–1981
1982–2019
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2.5.3. Models Evaluation

The goodness of fit of the developed models was evaluated using the coefficient of
determination (R2) as an indication of the explained variance, the root mean square error
(RMSE) as a measure of prediction error, and the modified index of agreement (d) [75].
The index of agreement is a standardized measure of the degree of model prediction error,
which varies between 0 and 1 and represents the ratio of the mean square error and the
potential error. The agreement value of 1 indicates a perfect match, and 0 indicates no
agreement at all [76]. The correlation relationships were arranged in decreasing order of
correlation coefficients and helped in selecting the variables that can be used to develop
the multiple regression models. Ranking from high to low was used to select the first
important variable for yield prediction, followed by a stepwise inclusion of the second,
third, and fourth important climate variables in developing multiple regression models.
The first selected variable was treated as the most influential one for yield (Figure 4a) for
each crop type and was first used individually. The models with the best yield prediction
were subsequently used in piecewise analysis.
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Figure 4. Correlation analysis of (a) climate variables and (b) NDVI with crop yields for corn, alfalfa, sorghum, and wheat.
The highlighted large size markers represent the high correlation coefficient of climate variables with crop yield (a) and
monthly NDVI with crop yield (b).

Similarly, the most influential monthly NDVI was selected for constructing climate-
and NDVI-based regression models. The most important monthly NDVI was used in
combination with climate variables and compared with climate only regression models.

3. Results
3.1. Significant Variables
3.1.1. Climate Variables, NDVI, and Crop Yield

A summary of the results of the correlation analysis between crop yield and climate
variables averaged over the growing season and water year is shown in Figure 4a. The
climate variables showed varying effects on yield depending on the averaging period.
The maximum temperature averaged over the growing season (Tmaxgs) was negatively
correlated (R = −0.09, p < 0.05) with sorghum yield. As expected, the precipitation amounts
during the growing season, water year, and calendar year showed pronounced positive
correlation with all the crops. The minimum vapor pressure deficit of the growing season
(VPDmings) was highly correlated with all crop yields. Figure 4b indicated that monthly
NDVI, with varying months depending on crop type, was strongly correlated with corn
yield (R = 0.5, p = 0.0001) during the growing season. The May NDVI showed the highest
correlation with sorghum (R = 0.16, p < 0.05), while that of July and August showed the
highest correlation with corn (R = 0.52, p < 0.05) and wheat (R = 0.31, p < 0.05).
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The climate variables and monthly NDVI were ranked from high to low based on the
significance of correlation with yield using R. The climate variables that were significantly
correlated with wheat included Pwy, Tmings, Pgs, VPDmings, VPDmin, and P (with R of 0.36,
0.3, 0.29, 0.28, 0.27, and 0.25); corn included VPDmings, Tmin, Tmean, and VPDmin (with R of
0.63, 0.54, 0.51, and 0.44); sorghum included VPDmings, VPDmin, Pwy, P, and Pgs (with R of
0.28, 0.23, 0.22, 0.21, and 0.21); and alfalfa included VPDmings, Tmean, Tmin, Tmax, Tmeangs,
and VPDmin (with R of 0.43, 0.39, 0.38, 0.33, 0.31, and 0.31), respectively. These climate
variables were used individually to develop the regression models (see Section 3.2). The
value of May, July, and August NDVI, which are referred to herein as NDVI5, NDVI7, and
NDVI8, were significantly correlated with the yield of sorghum, corn, and wheat, respectively.

The correlation analysis of alfalfa yield with 8-day NDVI values was also performed
within the growing season. A significant correlation could not be established due to the
complexity of harvesting and planting dates, alfalfa varieties, climate, water availability,
and topography.

3.1.2. Selection of Significant Climate Variables

It appeared that four to six variables can be used to predict crop yield. Using a
smaller number of variables can be more effective, especially in regions with limited data.
Moreover, collinearity issues can arise when using these variables in developing multilinear
regression models. The Pearson correlation coefficients between all climate variables are
shown in Figure 5, with dark blue and dark red colors indicating strong positive and
negative correlation, respectively. The white background and light color shades indicate
no and relatively weak correlation, respectively, between the variables and, therefore,
they were used in combination with each other to develop prediction. The identified
variables for corn include VPDmings, Tmings, and Pwy, with Pearson correlation of 0.63,
−0.05, and 0.18 (Figure 4); those for wheat include Pwy, Tmings, and VPDmings, with Pearson
correlation of 0.36, 0.06, and 0.19 (Figure 4); those for sorghum include VPDmings and Pwy,
with Pearson correlation of 0.28 and 0.17 (Figure 4); and those for alfalfa include VPDmings,
Pwy, and Tmings, with Pearson correlation of 0.43, 0.17, and 0.29, respectively (Figure 4).

3.2. Crop Yield Prediction Models
3.2.1. Models Based on Climate Variables

The relationships between yield and climate variables were evaluated using three
different regression models (i.e., linear, polynomial, and spline cubic). However, the regres-
sion coefficients of linear regression models were the only ones that showed significant
correlations. Consequently, only the results of linear regression models are presented and
discussed further. The developed linear regression models are referred to herein as C1, S1,
W1, and A1 for corn, sorghum, wheat, and alfalfa, respectively, with the letters referring to
the crops and number 1 referring to the order of the model in the list of evaluated models.
The list of all evaluated regression models is shown in Table A1 (Appendix A). The total
number of models that were evaluated for each crop was 10, 11, 16, and 9 for sorghum,
corn, alfalfa, and wheat, respectively. The models with the highest R2 and d, and lowest
RMSE were S8, C14, A15, and W8, as summarized in Table 3. For example, the 10 models
that were evaluated for sorghum (i.e., S1–S10) indicated that model S8 was the best one,
with the highest R2 of 0.81 (p-value < 0.05), d of 0.35, and the lowest RMSE of 1.18 tons/ha
using two climate variables that include the VPDmings and either Pgs, P, or Pwy. In other
words, model S8 suggested that using VPDmin (averaged over the growing season) along
with precipitation (averaged either over growing season, water year, or entire year) can
be more effective in predicting sorghum yield. The results indicated that VPDmin and
mean temperature Tmean, both averaged over the growing season, were more effective in
predicting corn yield. For both alfalfa and wheat, it appeared that VPDmin and Tmin (both
averaged over the growing season), and precipitation (averaged over the water year) were
more effective in predicting their yields.
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Figure 5. A summary of the correlation matrix for all 13 variables initially evaluated to predict (a) corn, (b) sorghum,
(c) wheat, and (d) alfalfa yields. The matrices show the values of the Pearson’s correlation coefficient (R) with the direction
and strength of correlation between all climate variables, with the positive values in blue, negative in red, −0.25 to 0.25
in light shades of color. The correlation coefficients range from −1 to 1, whereby −1 means a perfect negative linear
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variables on the top of each matrix were ordered using the first principal component (PC1) from high to low scores, indicated
from left to right. For example, in panel c for wheat, Tmin had the highest score, while Pwy had the lowest score in PC1.

Table 3. Best regression models constructed with climate variables only (1920–2019).

Crops Model Climate Variables R2 p-Value RMSE (Tons/ha) d

Corn C14 VPDmings + Tmeangs 0.76 0.00 3.7 0.53
Sorghum S8 VPDmings + Pgs/Pwy/P * 0.81 0.00 1.18 0.35

Wheat W8 Tmings + Pwy + VPDmings 0.84 0.00 0.65 0.29
Alfalfa A15 VPDmings + Pwy + Tmings 0.94 0.00 2.47 0.40

* Represents a model with three potential climate variables that can be used as a second-best climate variable resulting in same regression
coefficients (i.e., R2, p-value, and RMSE).
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3.2.2. Piecewise Models

The results of all crop yield prediction models that were evaluated using segmented
data periods between 1920 and 2019 are shown in Tables 4 and A2 (Appendix B). The total
number of models evaluated for each crop was 6, 11, 5, and 2 for sorghum, corn, alfalfa,
and wheat, respectively. Based on the R2, d, and RMSE, the best regression models for
each segment of the data period for each crop were identified (Table 4). The best model
for the selected data segments for sorghum was ST4 (i.e., sorghum time segment model
number 4) for the 1920–1956 period, with the highest R2 of 0.92, d of 0.39, and RMSE of
0.31 tons/ha (Table A3). Likewise, the best models with the highest R2 and lowest RMSE
for all segmented data periods for the four crops are listed in Table 4.

Table 4. The best models based on climate variables only and segmented data periods.

Crops Time Periods Climate Variables R2 p-Value RMSE (Tons/ha) (d)

Sorghum
ST4 (1920–1956) Tmaxgs + VPDmings + Pwy 0.92 0.01, 0.09, 0.00 0.31 0.39
ST5 (1957–1964) Tmings + P 0.98 0.00, 0.01 0.41 0.69
ST6 (1965–2018) Tmings + Pwy 0.95 0.00, 0.00 0.76 0.31

Corn

CT2 (1920–1956) VPDmax + Tmax + Pgs 0.97 0.08, 0.00, 0.3 0.19 0.33
CT4 (1957–1970) Tmeangs + VPDmings 0.96 0.00, 0.2 0.65 0.26
CT6 (1971–1985) VPDmax + P 0.96 0.15, 0.00 1.7 0.57
CT11 (1986–2019) Tmax + Pgs + VPDmax 0.99 0.00, 0.12, 0.99 1.09 0.31

Wheat
WT1 (1920–1956) VPDmings + Pgs 0.92 0.21, 0.00 0.23 0.55
WT2 (1957–2019) VPDmin/VPDmings + Pwy 0.94 0.1, 0.00 0.48 0.43

Alfalfa
AT1 (1920–1957) VPDmings + Tmaxgs 0.99 0.03, 0.00 0.59 0.50
AT2 (1958–1981) VPDmin + Tmax 0.99 0.72, 0.00 0.81 0.25
AT5 (1982–2019) VPDmaxgs + Tmaxgs + P 0.99 0.12, 0.00, 0.00 0.46 0.36

3.2.3. Models Based on NDVI and Climate Variables

The combined climate and NDVI regression models were developed for the 1984–2016
period because of data availability of remote sensing based NDVI. A number of models
that combined climate and NDVI variables were evaluated and summarized in Table A3
(Appendix C). Based on the obtained R2 and RMSE, the best model for corn was CT11N8
(i.e., CT11 refers to the model for the segmented data period number 11 and N8 refers
to the monthly NDVI for August). The CT11N8 model resulted in the lowest RMSE of
0.76 tons/ha and highest R2 of 0.99 and index of agreement of 0.54 (Table 5). Likewise, for
sorghum, the ST6N5 model achieved the highest R2 of 0.95, index of agreement of 0.42,
and lowest RMSE of 0.73 tons/ha. For wheat, the W8N8 model had the highest R2 of 0.95,
index of agreement of 0.41, and lowest RMSE of 0.51 tons/ha.

Table 5. Best selected models constructed with climate variables and NDVI (1984–2016).

Crops Model Climate Variables + NDVI R2 p-Value RMSE (Tons/ha) (d)

Corn CT11N8 Tmax + Pgs + VPDmax + NDVI8 0.99 0.00 0.76 0.54
Sorghum ST6N5 NDVI5 + Tmings + Pwy 0.95 0.00 0.73 0.42

Wheat W8N8 Tmings + Pwy + VPDmings + NDVI8 0.95 0.05 0.51 0.41

3.2.4. Summary of Selected Models

The best regression models based either on climate only, climate and NDVI, or seg-
mented data periods are shown in Tables 3–5, respectively. It was clear that the combined
climate and NDVI models (Table 5) provided higher R2 and d and lower RMSE compared
to those based on climate only (Table 3). These results suggested that including NDVI as
a predictor had the potential to improve the performance of yield prediction models. A
comparison between the models that used the entire timeseries (Table 3) and those that
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used segmented data periods (Table 4) indicated that an improved performance of yield
prediction can be achieved with the latter. A summary of all three model types is provided
in Table 6. Climate and NDVI models were not reported for alfalfa crop because of the
obtained insignificant NDVI models. The best yield prediction models were those based
on a segmented data period of climate only for all evaluated crops.

3.3. Predicted and Observed Crop Yields
3.3.1. Prediction with Climate Only

Using climate only models, two sets of yield predictions were developed (i.e., based
on the entire and segmented data periods). In Figure 6, the left panel shows predicted
yield using the entire period of record (i.e., 1920–2019) and the right panel shows those
based on segmented data periods. Yield estimates based on the entire period of record
significantly overestimated and underestimated observed yields before and after the 1960s,
respectively. Yield estimates based on segmented data periods provided a much better
match with observed yield during the different segments.
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Figure 6. The comparison of observed corn, sorghum, wheat, and alfalfa yields with their respective
predicted yields resulting from the best models using 100 years and segmented data period scales.

Figure 7 shows scatter plots of predicted and observed yield derived from the models
that used segmented data periods. The points are closely distributed around the 1:1 line,
except for a few outliers. The scatter plot of predicted and observed yield derived from the
entire data period (i.e., 1920–2019) is presented in Figure 8, which shows a wide distribution
of points around the 1:1 line.
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Table 6. Comparison of crop yield prediction models based on climate only, climate and NDVI, and segmented data periods.

Crop Variables Model Type Model Name with
Time Period Regression Equation RMSE (Tons/ha) R2 d

C
or

n

VPDmings + Tmeangs C long C14 (1920–2019) Y = 9.102 * VPDmings − 0.092 * Tmeangs 3.75 0.76 0.53
VPDmax + Tmax + Pgs C seg CT2 (1920–1956) Y = −0.053 * VPDmax + 0.077 * Tmax + 0.0005 * Pgs 0.19 0.97 0.33
Tmeangs + VPDmings C seg CT4 (1957–1970) Y = 0.126 * Tmeangs − 1.11 * VPDmings 0.65 0.96 0.26

VPDmax + P C seg CT6 (1971–1985) Y = −0.417 * VPDmax + 0.032 * P 1.7 0.96 0.57
Tmax + Pgs + VPDmax C seg CT11 (1986–2019) Y = 0.001 * Tmax + 0.004 * Pgs + 0.509 * VPDmax 1.09 0.99 0.31

NDVI8 + Tmax + Pgs + VPDmax Cseg + NDVI CT11N8 (1984–2016) Y= 8.07 * NDVI8 + 0.33 * Tmax + 0.001 * Pgs − 0.03 * VPDmax 0.76 0.99 0.54

A
lf

al
fa

VPDmings + Pwy + Tmings C long A15 (1920–2019) Y = 4.24 * VPDmings + 0.002 * Pwy + 0.77 * Tmings 2.47 0.94 0.4
VPDmings + Tmaxgs C seg AT1 (1920–1957) Y = −3.076 * VPDmings + 0.337 * Tmaxgs 0.59 0.99 0.5

VPDmin+ Tmax C seg AT2 (1958–1981) Y = 0.238 * VPDmin + 0.524 * Tmax 0.75 0.99 0.25
VPDmaxgs + Tmaxgs + P C seg AT5 (1982–2019) Y = −0.146 * VPDmaxgs + 0.533*Tmaxgs + 0.004 * P 0.46 0.99 0.36

So
rg

hu
m

VPDmings + Pwy C S8 (1920–2019) Y = 1.305 * VPDmings + 0.0039 * Pwy 1.18 0.81 0.35
Tmaxgs + VPDmings + Pwy C seg ST4 (1920–1956) Y = 0.034 * Tmaxgs − 1.033 * VPDmings + 0.002 * Pwy 0.31 0.92 0.39

Tmings+ P C seg ST5 (1957–1964) Y = 0.605 * Tmings − 0.006 * P 0.41 0.98 0.69
Tmings +Pwy C seg ST6 (1965–2018) Y = 0.157 * Tmings + 0.005 * Pwy 0.76 0.95 0.31

NDVI5+ Tmings + Pwy Cseg + NDVI ST6N5 (1984–2016) Y = 0.005 * Pwy + 0.13 * Tmings − 0.25 * NDVI5 0.73 0.95 0.42

W
he

at

Tmings + Pwy + VPDmings C long W8 (1920–2019) Y = 0.13 * Tmings + 0.002 * Pwy + 0.48 * VPDmings 0.65 0.84 0.29
VPDmings + Pgs C seg WT1 (1920–1956) Y = −0.398 * VPDmings + 0.0027 * Pgs 0.23 0.92 0.55
VPDmings + Pwy C seg WT2 (1957–2019) Y = 0.382 * VPDmings + 0.004 * Pwy 0.48 0.94 0.43

NDVI8 + Tmings + Pwy + VPDmings Clong + NDVI W8N8 (1984–2016) Y = 0.95 * NDVI8 + 0.002 * Pwy − 0.43 * VPDmings + 0.26 * Tmings 0.51 0.95 0.41

C long: climate only with long data period, C seg + NDVI: climate and NDVI with segmented data period, C long + NDVI: climate and NDVI with long data period, C seg: climate only with segmented data period.
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3.3.2. Prediction with Climate and NDVI Variables

A comparison between observed and predicted yield of corn, sorghum, and wheat
derived based on the three models’ combinations (i.e., climate only, climate and NDVI,
and NDVI only) is shown in Figure 9. The period used to develop these predictions was
from 1984 to 2016. This comparison indicated that the models listed in Table 4 (i.e., based
on segmented data periods) provided better predictions compared to the others. The
scatter plots of predicted and observed yield derived from climate only, climate and NDVI,
and NDVI only for the 1984–2016 period are presented in Figure 10, which shows a wide
distribution of points around the 1:1 line.
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4. Discussion
4.1. Crop Yield and Climate

Understanding the changes in growing season characteristics, including length, plant-
ing, and harvesting dates, is critical in evaluating crop yields. Crop growth, and thus
yield, can be enhanced or suppressed by the environmental conditions that prevail prior
to and during the growing, such as excessive heat, freeze, or limited water availability,
that can cause delay in planting dates and stress plant growth. Thus, careful selection of
averaging period of climate variables plays a key role in capturing the variability of these
conditions and developing effective yield prediction models [41]. While many studies used
growing season [24,77–83] and monthly averages of climate variables [84,85] as appropriate
averaging periods, this study evaluated three averaging periods that include annual (i.e.,
January–December), growing season, and water year. The results indicated that the total
amount of precipitation received during the three averaging periods provided similar
prediction quality for sorghum yield. The total precipitation in a water year, and growing
season and annual averaged vapor-pressure deficit were similarly significant predictors of
wheat yield. Vapor-pressure deficit (VPD) averaged over the growing season followed by
temperature were significant predictors of corn and alfalfa yield. Minimum VPD averaged
over the entire year and growing season and total precipitation of all the three averag-
ing periods were significant predictors of sorghum yield. Moreover, VPDmax for all the
crops; temperature for sorghum; and precipitation and VPDmax for alfalfa were significant
predictors of yield. As expected, different averaging periods and climate variables were
significant predictors of yield depending on the agronomic and environmental factors.

One of the identified climate change impacts on crops is related to the observed and
projected impacts on agronomic conditions and yield [10]. For instance, increased tem-
perature has a significant impact on grain yield than on vegetative growth because of the
increased minimum temperatures. These effects are evident with the observed increased
rate of senescence, which reduces the ability of crops to efficiently fill the grain [38]. More-
over, increased temperature can result in heat stress for some crops (e.g., corn and wheat)
and modest boost in yields depending on the region (wheat yield in northern China).
However, globally, increased temperature has shown an overall decline in crop yields [86].
Increased nighttime temperatures during the grain production period can result in lower
productivity and reduced quality. During pollination growing stage, increased temperature
plays a critical role in grain crop development. The exposure to such temperatures at
the onset of the reproductive stage can reduce grain production [7]. High VPD affects
evapotranspiration, photosynthesis, nutrient uptake, and almost all plant processes, such
as allocation, use of carbohydrate reserves, and growth. Compared to temperature and
VPD, precipitation did not have a significant role in alfalfa yield prediction. Precipitation
(during a water year) had a significant effect on wheat and sorghum. Increased wheat yield
can be attributed to current trends of winter precipitation and temperature, while increased
summer precipitation and maximum temperature adversely affected corn yield [87]. Predic-
tion of wheat yield was highly influenced by water year precipitation. Winter wheat yield
was not much correlated with the maximum temperature, as it is grown during the winter
season, while minimum temperature has more effects. Thus, if minimum temperature
changes in the future over NM, negative impacts on wheat yield would be realized.

4.2. Segmeneted Data and Yield Prediction

Yield prediction models that were developed in this study using a long period of
records from 1920 to 2019 resulted in insignificant predictions (Figure 6)—indicating
their inability to depict long-term variability. The models intrinsically assumed that the
observed trend in yields is solely due to environmental and related climate change impacts.
However, the long timeseries of yields exhibited breakpoints (about 30–40 years) that were
possibly due not only to climate change, but also some socioeconomic factors—which pose
additional modeling challenges. These breakpoints in yield trend appeared historically
in concurrence with the introduction of advanced technology, policy and management
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decisions, increased demand use of hybrid varieties, or changes in import–export chains
based on market demands [67,69–74].

Due to rapid adoption of hybrid corn in the late 1930s, a significant improvement
(referred to as a miracle in some cases) was observed in grain yield from 1937 through
1955 [88]. Again, a second miracle of corn grain yield improvement was observed in the
mid-1950s due to continued improvements in genetic yield potential and stress tolerance,
increased adoption of nitrogen fertilizer, chemical pesticides, agricultural mechanization,
and overall improved soil and crop management practices [88]. Lastly, a third corn grain
yield improvement was observed in the mid-1990s with the advent and rapid adoption
of transgenic hybrid traits (insect resistance, herbicide resistance). Leath et al. [89] men-
tioned an increased world demand that was responsible for nearly tripled corn production
between 1950 and 1979. These significant improvements in the corn yield trend indicated
three breaks in the corn yield trend from 1920 to 2019.

Jackson et al. [90] indicated that the development of the feedlot industry in the south-
west U.S. has led to the need to increase the production of a major feed crop—sorghum as,
prior to the 1950s, sorghum yields were relatively low. However, the adoption of hybrid
varieties and new technologies coincided with a sharp rise in average yields during the
late 60s and 70s. The increased trend in sorghum yield leveled off after 1970 due to a
shift in production from irrigated sorghum to corn, low grain prices, and rising costs [90].
Another socioeconomic factor that had an impact on sorghum yield was related to the
establishment of the United Sorghum Checkoff Program (USCP) in 2008, with its mission to
increase yields through investment in research and increase the demand using marketing
and promotion programs [69]. The observed historical increasing trends and leveling off in
sorghum yield were concurrent with the two identified breaks in yield.

Wheat production has shown a relatively smaller increasing trend over the past
quarter century compared to corn and sorghum, mainly because its rising yields have
offset the decline in harvested areas that was observed since the 1990s. Harvested areas
of wheat have dropped from their early 1980s highs, due mostly to declining economic
returns relative to other crops and cropping choice flexibility provided under a number
of government programs, such as the authorization of the Conservation Reserve Program
(CRP) in the 1985 Farm Act and the planting flexibility provisions in the 1990 Farm Act [73].
These programs allowed wheat farmers to pursue the cultivation of other crops. Because
of these two policies, the historical wheat yield data were segmented by one breakpoint in
this analysis.

The observed historical increasing trend in alfalfa can be explained by an increase in
regional market demand for forage crops due to an expanding dairy industry and its ability
to compete with other profitable crops [91,92]. The dramatic increase in the dairy industry
in NM that triggered the need for increased forage crop production, such as alfalfa, has
been met with a number of forage production challenges, including limited water supplies
and associated water costs, and the potential replacement of alfalfa with higher value crops
that have been supported by government subsidy programs [91]. The expansion of the
dairy industry has seen a significant increase since the 1970s, as the herd size of dairy cows
more than doubled by 2008 and continues to increase [74]. Consistent with the expansion
of the dairy industry, alfalfa yield nearly doubled since 1920, with an observed increasing
trend that started in the 1950–1960s but has stabilized in recent years of the 21st century.
Therefore, alfalfa historical yield trend was segmented into three separate data periods.

In contrast to other studies that used recent 30+ years of data [44], this analysis used
100 years of record, during which there was considerable interannual variability in yield
that was not entirely due to environmental variables. Using the data segments for the
recent past 35 years, as shown in this analysis, allowed for this interannual variability
to be accounted for and integrated already matured agricultural production practices in
the region (i.e., irrigation, technology adoption, varieties)—resulting in more accurate
predictions using climate only variables. Therefore, models based on recent data segments
should be used for future predictions.
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4.3. Remote Sensing and Yield Prediction

The findings of this study agreed with those that indicated the advantages of using re-
mote sensing data in combination with climate variables [93] for improved yield prediction
because it allows growth variability during critical agronomic stages, and consequently
yield, to be efficiently captured (Table 5 and Figure 8). These stages are those that are most
sensitive to climate variability [38,94–97]. Thus, it is important to select NDVI (or other
similar remotely sensed data) timing that effectively corresponds with the development,
reproduction, and grain filling stages. For example, after physiological maturity, corn
leaves start to senescence, at which point NDVI declines, thus affecting its effectiveness
in yield estimation. This study identified the appropriate timing of monthly NDVI that is
effective in yield prediction for the three major crops in New Mexico. Based on evaluating
the different months during a growing season (between April and September) for annual
crops (corn, sorghum, and wheat), the study showed that monthly NDVI (32-day average)
was able to capture the variations in short development stages (e.g., flowering), along
with the effects of climate variability on crop yield with low RMSE and high R2. It was
challenging to develop an effective prediction model for alfalfa yield. This is because alfalfa
is a perennial crop with multiple harvesting and planting dates; there are different varieties
grown in different parts (counties) of NM with asynchronous planting and harvesting
dates; NDVI values over specific alfalfa fields can have mixed signals from different cuts;
and the timing of the 8-day NDVI can mismatch the planting and harvesting cycles (with
values that are not always consistent with the same growth stage due to satellite overpass).
The results can be improved by using specific harvesting information at the county level
(instead of average NDVI values over crop mask) to capture the spatial and temporal
variability. However, it should also be noted that crop-specific NDVI derived for nominal
crop mask (Section 2.3) might not provide a pure response of individual crop and may
include some spectral mixing from other crops and bare lands. Therefore, there is a need
for more analysis to develop improved alfalfa yield prediction models.

5. Limitations and Future Directions

Statistical analysis allowed the development of empirical relationships between cli-
mate variables and crop yield and helped to identify the most effective climate variables
that vary regionally. Future studies should investigate yield prediction using advanced
techniques, such as machine learning algorithms. The deviation of crop yield trends from
the linear response might be an indicator of nonlinear effects of climate variability on
yield, as well as human factors. An improved understanding of the functional relation-
ships between yield and climate variables is required for accurate predictions. Revealing
such relationships requires comprehensive datasets that include those related to farming
technology and management practices. The use of emerging new technologies, such as
machine learning and deep neural networks, can allow big datasets to be synthesized and
analyzed with high-performance computing [98–101], and would increase our capacity to
predict crop yield more accurately [102].

The availability of high-resolution advanced remote sensing products (e.g., unmanned
aerial system) can allow improvement of the selection of appropriate averaging periods of
prediction variables [103]; help in capturing yield variability more effectively; and help in
identifying important variables. In addition to the benefits of supplementing regression
analysis with remote sensing variables, the remote sensing data have a limitation due to
the nonexistence of datasets for future predictions.

The averaging periods and breakpoints identified in this study are applicable to NM.
They might differ from other areas according to the region-specific yield trends [104].
Future use of averaging periods and piecewise regression analysis is only possible with
the focus on the refinement of averaging periods based on crops and location. This can
be challenging given the temporal diversity of the planting dates [105] and a proper
knowledge about the breaks in linear trends relative to historical socioeconomic factors.
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6. Conclusions

This study focused on developing statistical regression models to determine important
climate and remotely sensed variables for crop yield prediction in New Mexico. Crop
yields were best correlated by climate variable using linear regression models. The study
evaluated three model combinations that included the use of climate only, climate and
NDVI, and NDVI only to predict the yields for corn, sorghum, and wheat. The most
effective prediction models are summarized in Table 7. The results indicated that the use
of NDVI only is less effective in predicting crop yields. The combination of climate and
NDVI variables provided better predictions compared to the use of NDVI only to predict
wheat and corn yields. The models highlighted in bold in Table 7 are those considered
appropriate for yield prediction for these crops in New Mexico. The findings of the analysis
add to a vast literature that concluded that remote sensing data can provide improved
results when combined with climate compared to using climate only for yield prediction.
Moreover, yield predictions can be more accurate with the use of shorter data periods
that are based on region-specific trends. The identification of the most important climate
variables and accurate yield prediction pertaining to New Mexico’s agricultural systems
can aid the state in developing climate change mitigation and adaptation strategies to
enhance the sustainability of these systems.

Table 7. Recommendations on appropriate/best crop yield prediction models based on the comparison of climate only,
climate and NDVI, and NDVI only analysis (1984–2016).

Crop Climate Only Climate and NDVI NDVI Only

Corn
Tmax + Pgs + VPDmax

(RMSE: 0.86, R2: 0.99, d: 0.18)
Tmax + Pgs + VPDmax + NDVI8
(RMSE: 0.76, R2: 0.99, d: 0.54)

NDVI8
(RMSE: 0.92, R2: 0.99, d: 0.50)

Sorghum
Tmings + Pwy

(RMSE: 0.73, R2: 0.95, d: 0.13)
Tmings + Pwy + NDVI5

(RMSE: 0.75, R2: 0.95, d: 0.42)
NDVI5

(RMSE: 1.11, R2: 0.89, d: 0.35)

Wheat
Tmings + Pwy + VPDmings

(RMSE: 0.51, R2: 0.95, d: 0.29)
Tmings + Pwy + VPDmings + NDVI8

(RMSE: 0.51, R2: 0.95, d: 0.41)
NDVI8

(RMSE: 0.54, R2: 0.94, d: 0.37)

Alfalfa
VPDmaxgs + Tmaxgs + P

(RMSE: 0.46, R2: 0.99, d: 0.14)
No significant relationship of NDVI with Yield

Author Contributions: Conceptualization, K.Y. and H.M.E.G.; methodology, K.Y.; formal analysis, K.Y.;
writing—original draft preparation, K.Y.; writing—review and editing, K.Y. and H.M.E.G.; funding
acquisition, H.M.E.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the National Science Foundation (NSF), awards
#1739835 and #IIA-1301346, and New Mexico State University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank two anonymous reviewers for their time and
effort in providing valuable comments and suggestions that helped in improving this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.” The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

Appendix A

The Appendix A provides a summary of evaluated regression models in an alphanu-
merical format, in which the letter represents crop, and the number represents the order of
the model for different climate variable combinations. This table included 11 models for
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sorghum (i.e., S1–S11), 15 models for corn (i.e., C1–C15), 16 models for alfalfa (i.e., A1–A16),
and 10 models for wheat (i.e., W-1–W10).

Table A1. The list of multiple linear regression models constructed with climate variables and crop yields of corn, sorghum,
alfalfa, and wheat using a time scale of 100 Years (1920–2019).

Crops Model Climate Variables R2 p-Value RMSE (Tons/ha) d

So
rg

hu
m

S1 VPDmings 0.78 0.00 1.26 0.34
S2 Tmings 0.79 0.00 1.24 0.11
S3 P 0.79 0.00 1.24 0.28
S4 Pgs 0.79 0.00 1.24 0.28
S5 Pwy 0.79 0.00 1.23 0.29
S6 VPDmin 0.78 0.00 1.27 0.34
S7 Pgs + Tmings 0.80 0.01, 0.03 1.22 0.20

S8 * VPDmings + Pgs/P/Pwy 0.81 0.00, 0.00 1.18 0.35
S9 VPDmin + Pgs/P/Pwy 0.81 0.00, 0.00 1.20 0.31
S10 VPDmin + Tmeangs/Tmaxgs 0.80 0.01, 0.00 1.22 0.22
S11 Tmaxgs/Tmax + VPDmings 0.81 0.00, 0.00 1.20 0.27

C
or

n

C1 VPDmings 0.74 0.00 3.8 0.44
C2 Tmin 0.67 0.00 4.3 0.25
C3 Tmean 0.63 0.00 4.6 0.08
C4 Tmaxgs 0.60 0.00 4.8 0.04
C5 Tmax 0.61 0.00 4.7 0.05
C6 Tmeangs 0.60 0.00 4.8 0.03
C7 VPDmin 0.68 0.00 4.3 0.33
C8 VPDmax 0.60 0.00 4.8 0.08
C9 VPDmaxgs + Pgs 0.61 0.18, 0.08 4.7 0.15
C10 VPDmin + Tmax 0.68 0.00, 0.67 4.3 0.35
C11 Tmin + Pwy 0.68 0.00, 0.25 4.3 0.29

C12 Tmings + VPDmin/P 0.68/0.61 0.45/0.35,
0.00/0.05 4.3/4.7 0.37/0.15

C13 VPDmings + Pwy 0.75 0.00, 0.08 3.8 0.49
C14 * VPDmings + Tmeangs 0.76 0.00, 0.02 3.7 0.53
C15 VPDmings + Tmings + Pwy 0.75 0.00, 0.22, 0.83 3.8 0.51

A
lf

al
fa

A1 VPDmings 0.90 0.00 3.15 0.08
A2 VPDmin 0.90 0.00 3.23 0.06
A3 Tmin 0.93 0.00 2.65 0.14
A4 Tmean 0.93 0.00 2.64 0.18
A5 Tmaxgs 0.93 0.00 2.73 0.10
A6 Tmeangs 0.93 0.00 2.70 0.13
A7 Tmax 0.93 0.00 2.69 0.14
A8 Tmings 0.93 0.00 2.65 0.24
A9 Tmings + P 0.93 0.00, 0.41 2.66 0.24
A10 Tmin + Pwy 0.94 0.00, 0.03 2.60 0.38
A11 VPDmings + Tmaxgs 0.94 0.00, 0.00 2.49 0.38
A12 VPDmin + Tmax 0.94 0.00, 0.00 2.59 0.28
A13 VPDmings + Pwy + Tmaxgs 0.94 0.00, 0.5, 0.00 2.49 0.38
A14 VPDmin + Tmings + Pwy 0.94 0.01, 0.00, 0.47 2.58 0.31
A15* VPDmings + Pwy + Tmings 0.94 0.00, 0.00, 0.51 2.47 0.40
A16 VPDmings + Tmings +Tmaxgs 0.94 0.00, 0.19, 0.8 2.48 0.38

W
he

at

W1 Pwy 0.83 0.00 0.67 0.29
W2 Tmings 0.83 0.00 0.68 0.29
W3 Tmin 0.82 0.00 0.69 0.29
W4 VPDmings 0.81 0.00 0.71 0.15
W5 VPDmin 0.80 0.00 0.72 0.16
W6 VPDmaxgs 0.81 0.00 0.72 0.15
W7 Tmings + Pgs/Pwy 0.84 0.00/0.01, 0.00 0.66/0.65 0.26/0.28
W8* Tmings + Pwy + VPDmings 0.84 0.14, 0.00, 0.24 0.65 0.29
W9 VPDmings + Tmaxgs 0.82 0.00, 0.00 0.69 0.25
W10 VPDmings + Tmaxgs + Pgs 0.83 0.06, 0.5, 0.01 0.67 0.29

* Selected Model.
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Appendix B

Appendix B provides a list of all models evaluated using segmented data periods for
each crop. The model names are presented in an alphanumerical format. The first two
letters represent crop type and segmented period, and the number presents the order of
the model using step by step addition of climate variables.

Table A2. The list of multiple linear regression models constructed with climate variables and crop yields of corn, sorghum,
alfalfa, and wheat using segmented time scale from 1920 to 2019.

Crops Model Climate Variables R2 p-Value RMSE (Tons/ha) d

So
rg

hu
m

ST1 (1920–1956) Tmings + Pgs 0.91 0.01, 0.03 0.32 0.29
ST2 (1920–1956) Tmings + Pwy 0.92 0.03, 0.01 0.31 0.30
ST3 (1920–1956) Tmings + VPDmings + Pgs 0.92 0.00, 0.04, 0.00 0.31 0.39

ST4 (1920–1956) * Tmaxgs + VPDmings + Pwy 0.92 0.01, 0.09,0.00 0.31 0.39
ST5 (1957–1964) * Tmings + P/Pgs 0.98 0.00, 0.01/0.02 0.41/0.44 0.69/0.68
ST6 (1965–2018) * Tmings +Pwy 0.95 0.00, 0.00 0.76 0.31

C
or

n

CT1 (1920–1956) VPDmax + Tmax
VPDmax + Tmax + Pgs

0.97
0.97

0.10, 0.00
0.08, 0.00, 0.3

0.19
0.19

0.31
CT2 (1920–1956) * 0.33
CT3 (1957–1970) Tmeangs + Pwy

Tmeangs + VPDmings

0.96
0.96

0.01, 0.56
0.00, 0.2

0.68
0.65

0.14
CT4 (1957–1970) * 0.26
CT5 (1971–1985)

CT6 (1971–1985) *
Tmin + Pwy

VPDmax + P
0.95
0.96

0.1, 0.04
0.15, 0.00

1.7
1.7

0.40
0.57

CT7 (1986–2019) Tmings + Pgs + VPDmings
Tmaxgs/Tmeangs + Pgs

Tmeangs + Pgs + VPDmings
Tmax +PgsTmax + Pgs + VPDmax

0.99
0.99
0.99
0.99
0.99

0.00, 0.00, 0.04
0.00, 0.00

0.00, 0.00, 0.22
0.00, 0.1

0.00, 0.12, 0.99

1.42
1.25/1.16

1.15
1.07
1.09

0.31
CT8 (1986–2019) 0.31/0.28
CT9 (1986–2019) 0.29
CT10(1986–2019) 0.31

CT11 (1986–2019) * 0.31

W
he

at WT1 (1920–1956) VPDmings + Pgs 0.92 0.21, 0.00 0.23 0.55
WT2 (1957–2019) VPDmin/VPDmings + Pwy 0.94 0.1, 0.00 0.48 0.43

A
lf

al
fa

AT1 (1920–1957) * VPDmings + Tmaxgs 0.99 0.03, 0.00 0.59 0.50
AT2 (1958–1981) * VPDmin + Tmax 0.99 0.72, 0.00 0.81 0.25
AT3 (1982–2019) VPDmings + Tmaxgs

VPDmings + Tmaxgs + Pwy/P
VPDmaxgs + Tmaxgs + P

0.99
0.99
0.99

0.18, 0.00
0.07/0.06, 0.00
0.12, 0.00, 0.00

0.55
0.50/0.49

0.46

0.36
AT4 (1982–2019) 0.31/0.34

AT5 (1982–2019) * 0.36

* Selected Model.

Appendix C

Appendix C provides a list of climate and NDVI regression models in alphanumerical
format, in which the letter represents the crop type, and the number represents the order of
the model, and the letter ‘N’ represents NDVI. The regression models include both long
and segmented data period models. The models constructed for segmented data period
are named as crop type, time segment, model order, and NDVI (e.g., CT11N8 is the model
number 11 developed for corn segmented data period using climate and NDVI of the
month August).

Table A3. The list of multiple linear regression models constructed with climate variables, NDVI, and corn yields of corn,
sorghum, alfalfa, and wheat for a time scale of 32 years (1984–2016).

Crops Model Climate Variables + NDVI R2 p-Value RMSE (Tons/ha) d

C
or

n

C4N8 NDVI8 + Tmaxgs 0.99 0.00, 0.07 0.88 0.54
C6N8 NDVI8 + Tmeangs 0.99 0.00, 0.02 0.85 0.54
C5N8 NDVI8+ Tmax 0.99 0.00, 0.00 0.84 0.51
C8N8 NDVI8+ VPDmax 0.99 0.00, 0.03 0.87 0.53

CT11N8 * NDVI8 + Tmax + Pgs + VPDmax 0.99 0.00, 0.00, 0.52, 0.78 0.76 0.54
C14N8 NDVI8 + VPDmings +Tmeangs 0.99 0.00, 0.04, 0.02 0.82 0.57



Land 2021, 10, 1389 23 of 27

Table A3. Cont.

Crops Model Climate Variables + NDVI R2 p-Value RMSE (Tons/ha) d

So
rg

hu
m

S1N5 NDVI5 + VPDmings 0.92 0.02, 0.00 0.96 0.29
S4N5 NDVI5 + Pgs 0.93 0.00, 0.03 0.90 0.29
S2N5 NDVI5 + Tmings 0.94 0.06, 0.00 0.84 0.17
S5N5 NDVI5 + Pwy 0.92 0.03, 0.00 0.95 0.46

ST6N5 * NDVI5 + Tmings + Pwy 0.95 0.87, 0.04, 0.00 0.75 0.42
S8N5 NDVI5 + VPDmings + Pwy 0.95 0.76, 0.17, 0.00 0.77 0.46

W
he

at W6N8 NDVI8 + VPDmaxgs 0.94 0.02, 0.05 0.52 0.29
WT2N8 NDVI8 + VPDmings + Pwy 0.94 0.06, 0.68, 0.11 0.53 0.38
W8N8 * NDVI8 + Tmings + Pwy + VPDmings 0.95 0.44, 0.08, 0.08, 0.51 0.51 0.41

* Selected Model.
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