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Abstract: Floods represent one of the most severe natural disasters threatening the development
of human society worldwide, including in Thailand. In recent decades, Chaiyaphum province has
experienced a problem with flooding almost every year. In particular, the flood in 2010 caused
property damage of 495 million Baht, more than 322,000 persons were affected, and approximately
1046.4 km2 of productive agricultural area was affected. Therefore, this study examined how
to optimize land use and land cover allocation for flood mitigation using land use change and
hydrological models with optimization methods. This research aimed to allocate land use and
land cover (LULC) to minimize the surface for flood mitigation in Mueang Chaiyaphum district,
Chaiyaphum province, Thailand. The research methodology consisted of six stages: data collection
and preparation, LULC classification, LULC prediction, surface runoff estimation, the optimization
of LULC allocation for flood mitigation and mapping, and economic and ecosystem service value
evaluation and change. According to the results of the optimization and mapping of suitable LULC
allocation to minimize surface runoff for flood mitigation in dry, normal, and wet years using goal
programming and the CLUE-S model, the suitable LULC allocation for flood mitigation in 2049
under a normal year could provide the highest future economic value and gain. In the meantime,
the suitable LULC allocation for flood mitigation in 2049 under a drought year could provide the
highest ecosystem service value and gain. Nevertheless, considering future economic and ecosystem
service values and changes with surface runoff reduction, the most suitable LULC allocation for flood
mitigation is a normal year. Consequently, it can be concluded that the derived results of this study
can be used as primary information for flood mitigation project implementation. Additionally, the
presented conceptual framework and research workflows can be used as a guideline for government
agencies to examine other flood-prone areas for flood mitigation in Thailand.

Keywords: optimizing land use and land cover allocation; surface runoff coefficient; goal program-
ming; random forests; SCS-CN model; CLUE-S model; Chaiyaphum province; Thailand

1. Introduction

Floods represent one of the most severe natural disasters threatening the development
of human society worldwide, including in Thailand. They cause enormous losses to
economies, societies, and ecological environments [1], and the flood-related damage to
agriculture and other related activities impacts a country’s economy and development [2].

In general, the primary cause of flooding is heavy rainfall [3]. However, many other
causes are also due to human activities, such as land degradation; deforestation of catch-
ment areas, urban growth, and increased population along riverbanks [4–6]; poor land use
planning, zoning, and control of flood plain development; poor drainage, particularly in
cities; and insufficient management of discharge from river reservoirs [7].

In the last two decades, Chaiyaphum province has experienced a problem with
flooding almost every year, causing a loss of lives, as well as economic losses, asset or
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housing losses, inundated farmlands, and decreased crop productivity for people who
live in this area. In particular, the flood in 2010 caused property damage of 495 million
Baht. More than 322,000 persons were affected, at least seven persons lost their lives, and
approximately 1046.4 km2 of productive agricultural area was affected [8].

Due to the risk of large-scale damage to public and private property in Chaiyaphum
province, the Royal Thai Government has allocated a significant budget to mitigate flood
effects using structural measures, such as channel modification, bank protection, dikes, and
reservoir development. However, the problems persist and are becoming exacerbated [9].
However, it is difficult to fundamentally mitigate flood damage using only flood prevention
facilities [10]. A comprehensive flood control measure should consider land use and land
cover change and optimum land use allocation.

In general, LULC strongly influences flood risk and affects the probability of floods
and their consequences in several ways [11]. LULC change can affect the hydrological
characteristics of a river basin through the influence of land use on runoff generation
processes [12,13]. This study chose the SCS-CN method, which represents a distributed
hydrologic model, to estimate the time series surface runoff according to LULC changes in
the study period (2001–2019). These changes may alter the quantity of surface/subsurface
runoff generation, river flooding regimes, and the extent [14]. Thus, defining optimal strate-
gies for appropriate flood management, especially LULC management, is very important
and necessary [15] for flood mitigation in Chaiyaphum province.

Land use optimization is one of the proper solutions for soil and water conservation
at the watershed level. It can help decision-makers determine the best scenario of various
land use alternatives without sacrificing the economic value obtained from the available
land use [16,17]. Land use arrangement can be optimized using a programming model to
increase land use earnings and reduce environmental impacts, especially surface runoff [16].
The essence of management science, manifested in modeling and programming techniques,
is considered an essential tool for optimally allocating rare resources to gain the most
benefits [18].

In recent decades, the new programming methods that have been developed can be
employed under conflicting conditions of the goals and limited resources for decision-
makers. In natural resource management, there are many optimization techniques. Some
approaches such as linear programming (LP), goal programming (GP), and weighted goal
programming (WGP) are widely employed in land use optimization at the watershed
level [11]. For instance, Yeo et al. applied LP to optimize land use to peak discharge
minimization at the Old Woman Cheek watershed, Ohio State, USA [19]. Owji et al.
applied LP for land use optimization in the Jajrood watershed, Iran, to reduce surface
runoff and sediment yield [20]. Likewise, Aldea et al. used GP for forest management in
the Pinar Grande Forest, Spain [21]. Further, Gonfa and Kumar applied LP and GP for
optimum land use to minimize soil erosion and maximize the net benefit in Ethiopia’s
Mojo watershed [22], and Al-Zahrani et al. developed GP for optimizing water resources
in Riyadh, Saudi Arabia [23]. Similarly, Sokouti and Nikkami applied LP to optimize land
use patterns to reduce soil erosion in West Azerbaijan province, Iran [24]. WGP has been
applied to optimize LULC allocation for surface runoff and sediment load minimization
at Bayg watershed [11]. Moreover, LP has been used to maximize cropland allocation
in Abaro Kebele, Ethiopia [25]. Recently, Han et al. applied LP to optimize the land use
structure for carbon emission reduction in Shenzhen, China [26].

Nevertheless, the integration of the optimization technique (GP), advanced land use
change modeling (CLUE-S model), and the distributed hydrological model (SCS-CN model)
to minimize surface runoff for flood mitigation does not exist in Thailand. Therefore, a
novel classification method, random forests, was first applied to classify LULC data in 2001,
2010, and 2019. Then, the classified data were further used to predict a time series LULC
between 2001 and 2019 using the CLUE-S model for time series surface runoff estimation
using the SCS-CN model. After this, goal programming was applied to minimize surface
runoff for flood mitigation based on the surface runoff coefficient value of each LULC type
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in 2029, 2039, and 2049 in dry, normal, and wet years. Finally, economic and ecosystem
service value change between the existing LULC data in 2019 and the suitable LULC
allocation in dry, normal, and wet years was examined in terms of gain and loss using the
present value (PV) model and the simple benefit transfer method.

The specific objectives of the study were (1) to classify LULC data in 2001, 2010,
and 2019 using the random forest classifier, (2) to predict LULC change in two periods
(2002–2009 and 2011–2018) using the CLLUE-S model, (3) to estimate surface runoff be-
tween 2001 and 2019, (4) to optimize and map LULC allocation for flood mitigation under
three rainfall conditions, and (5) to evaluate economic and ecosystem service values and
change for the most suitable LULC allocation for flood mitigation.

2. Study Area

The study area was the Second Part of the Lam Nam Chi watershed, Chaiyaphum
province, Thailand, under the Chi River basin, covering approximately 3794 km2. As men-
tioned earlier, the selected study area covers the flood-prone area in Mueang Chaiyaphum
district, Chaiyaphum province. The topography of the area is generally characterized by
rolling hilly terrain and flat areas. The elevation ranges from 162 m above the mean sea
level (MSL) in the lower part of the watershed to approximately 1034 m above MSL in the
upper part of the watershed (Figure 1). The study area consists of nine soil groups: clay,
clay loam, loam, loamy sand, sandy loam, sandy clay loam, silty clay, silty loam, and silty
clay loam [27]. Meanwhile, the top three dominant land use types in 2015 were paddy
fields (43.47%), cassava (12.69%), and forest land (12.48%) [28].

Figure 1. Terrain characteristics of the study area with runoff gauge stations.
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3. Materials and Methods

The research methodology consisted of data collection and preparation and five sig-
nificant components, which were (1) LULC classification, (2) LULC prediction, (3) surface
runoff estimation, (4) optimization of LULC allocation for flood mitigation and mapping,
and (5) economic and ecosystem service value evaluation and change (Figure 2). Details of
each stage are separately described in the following sections.

Figure 2. Workflow of the research methodology.

3.1. Data Collection and Preparation

The required input data for data analysis included GIS data, remote sensing data,
and primary and secondary data, which were collected and prepared, as summarized
in Table 1.
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Table 1. List of data collection and preparation for data analysis in this study.

Data Data Collection Data Preparation Source

Primary Ground reference - -

Secondary

Runoff - RID
Annual rainfall Interpolation TMD

Socioeconomic data
Population density DOPA
Income per capita NESDC

Remote Sensing

Landsat 5 TM: Path 128 Row 49, 6 January 2001
Landsat 5 TM: Path 129 Row 49, 14 February 2001
Landsat 5 TM: Path 128 Row 49, 16 February 2010
Landsat 5 TM: Path 129 Row 49, 23 February 2010
Landsat 8 OLI: Path 128 Row 49, 24 January 2019
Landsat 8 OLI: Path 129 Row 49, 31 January 2019

- USGS

Satellite image from Google Earth in 2010 - Google
Color orthophotograph - RTSD

GIS

Administrative boundary - DEQP
Soil (soil series) Recode LDD

Watershed boundary - RID
Elevation Extract from DEM SRTM

Slope Extract from DEM SRTM
Road network Buffering MOT, DEQP

Stream Buffering RTSD
Urban area Buffering LULC data

Note: USGS, United States Geological Survey; RTSD, Royal Thai Survey Department; DEQP, Department of Environmental Quality
Promotion; TMD, Thai Meteorological Department; RID, Royal Irrigation Department; LDD, Land Development Department; NESDC,
Office of the National Economic and Social Development Council; SRTM, Shuttle Radar Topography Mission; MOT, Ministry of Transport;
DOPA, Department of Provincial Administration.

3.2. LULC Classification

Landsat imageries in 2001, 2010, and 2019 were downloaded from the USGS website
(www.earthexplore.usgs.gov, accessed on 22 November 2021) for LULC classification us-
ing the RF classifier of the EnMap-Box software. In practice, the training areas of each
LULC type in a specific year were separately prepared to extract multiple decision trees for
LULC classification. Spectral reflectance data (visible, NIR, and SWIR bands), additional
spectral bands, and elevation were applied to classify the LULC types. The spectral bands
that enhance particular features for LULC classification include the Normalized Difference
Vegetation Index (NDVI) to represent vegetation features [29], the Modified Normalized
Difference Wetness Index (MNDWI) to signify the moisture regime [30], and the Normal-
ized Difference Built-up Index (NDBI) to indicate built-up areas [31]. Likewise, elevation is
directly related to the spatial distribution of LULC type, e.g., paddy fields are generally
situated in the floodplain, while forests are primarily located in mountainous areas.

In this study, the modified land use classification of the LDD consisted of (1) urban
and built-up areas, (2) paddy fields, (3) sugarcane, (4) cassava, (5) other field crops, (6) para
rubber, (7) perennial trees and orchards, (8) forest land, (9) waterbodies, (10) rangeland,
(11) marshes and swamps, and (12) unused land.

After classification, the LULC maps in 2001, 2010, and 2019 were assessed for thematic
accuracy (overall accuracy and Kappa hat coefficient) based on the reference data from
color orthophotograph in 2000–2001, very high spatial resolution imageries from Google
Earth in 2010, and field surveys in 2020, respectively. This study estimated the number of
sample sizes for thematic accuracy assessment based on multinomial distribution with a
stratified random sampling scheme, as suggested by [32].

3.3. LULC Prediction

The CLUE-S model was selected to predict LULC data in two periods, 2002–2009 and
2011–2018, for filling the gap of LULC data between three classified LULC data in 2001,

www.earthexplore.usgs.gov
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2010, and 2019. As a result, time-series LULC data between 2001 and 2019 will be available
for annual surface runoff estimation in this study.

3.3.1. Optimal Local Driving Factors on Land Use Change Identification for
LULC Prediction

The land use change model CLUE-S was selected to predict the LULC data in two
periods, 2002–2009 and 2011–2018, for data analysis. The local driving factors on land use
change for LULC prediction were identified by comparing the predicted LULC map in
2019 with the classified LULC map in 2019. The basic parameters of the CLUE-S model,
which include (1) elasticity value, (2) LULC conversion matrix, and (3) land requirement of
each LULC type in 2019, were firstly extracted based on the final LULC map in 2001 and
2010 using the Markov Chain model. At the same time, the selected three driving factor
categories on LULC change, including physical, socioeconomic, and proximity data, which
were reviewed from the previous studies of many researchers [33–45], were examined
multicollinearity, and significant driving factors for LULC identified by allocating using
binomial logistic regression analysis, as follows:

Log
(

Pi

1 − Pi

)
= β0 + β1X1,i + β2X2,i . . . . . . + βnXn,i (1)

where Pi is the probability of a grid cell for the considered land use type on location i,
and the Xs are the location factors. The coefficients (β) were estimated through logistic
regression using the actual land use pattern as the dependent variable [46].

After this, the predicted LULC map in 2019 was compared to the classified map in
2019 using a wall-to-wall thematic accuracy assessment with overall accuracy and Kappa
hat coefficient. If the overall accuracy and Kappa hat coefficient were equal to or more than
80%, then the derived significant driving factors by binomial logistic regression analysis
were chosen as the optimal local driving factors on land use change for LULC prediction
using the CLUE-S model.

3.3.2. LULC Prediction of Two Periods: 2002–2009 and 2011–2018

The optimal local driving factors on land use change for LULC prediction, namely,
elasticity value, LULC conversion matrix, and land requirement of each LULC type in two
time periods (2002–2009 and 2011–2018), which were extracted using the Markov Chain
model based on the corresponding LULC data in 2001, 2010, and 2019, were applied to
predict the LULC data in the two periods using the CLUE-S model.

3.4. Surface Runoff Estimation

This study estimated the time series surface runoff between 2001 and 2019 based on
the classified and predicted LULC data, soil series, and rainfall data using the SCS-CN
method with suitable AMC via ESRI ArcGIS software.

In practice, the required input data included LULC, soil series, rainfall, and hydrologic
soil group data, prepared and operated for surface runoff estimation using the SCS-CN
method in raster format with a cell size of 30 m in a raster-based GIS environment. The
surface runoff depth in each cell was semi-automatically generated based on runoff curve
numbers (CNs) according to hydrologic soil group–land cover complex using the Model
Builder of ArcGIS, as shown in Figure 3.
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Figure 3. Schematic diagram of Model Builder for surface runoff estimation.

The soil series data, which were applied to classify soil texture classes based on
the percentage of sand, silt, and clay of each soil series unit, are displayed in Figure 4a.
Meanwhile, the hydrologic soil group (HSG), which presents potential runoff in the study
area according to soil texture classes, is shown in Figure 4b.

Figure 4. Spatial distribution of (a) soil series and (b) hydrologic soil group.

In this study, two significant steps implemented under this component include (1)
suitable AMC for surface runoff estimation using the SCS-CN method and (2) surface
runoff estimation between 2011 and 2019.

3.4.1. Suitable AMC for Surface Runoff Estimation Using the SCS-CN Method

The suitable AMC condition for surface runoff estimation using the SCS-CN method
was examined based on the classified and predicted LULC data between 2001 and 2010
with three different CN values of three different AMCs, as suggested by [47] using the
following equations:

CNI =
4.2CNII

10 − 0.058CNII
(2)

CNIII =
23CNII

10 + 0.13CNII
(3)

where CNI is the runoff curve number value of each LULC type of AMC-I, CNII is the
runoff curve number value of each LULC type of AMC-II, and CNIII is the runoff curve
number value of each LULC type of AMC-III (Table 2).
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Table 2. Runoff curve number under AMC-I, -II, and -III.

LULC Types
CN Value of AMC-I CN Value of AMC-II CN Value of AMC-III

A B C D A B C D A B C D

Urban and built-up area 77.26 82.85 86.81 88.86 89 92 94 95 94.9 96.36 97.3 97.76
Cassava and other field crops 51.92 64.16 75.49 80.94 72 81 88 91 85.54 90.75 94.4 95.88
Sugarcane 28.75 48.32 61.24 68.8 49 69 79 84 68.85 83.66 89.64 92.35
Paddy fields 43.82 57.08 68.8 75.49 65 76 84 88 81.03 87.93 92.35 94.4
Rangeland 28.75 48.32 61.24 68.8 49 69 79 84 68.85 83.66 89.64 92.35
Para rubber and perennial
trees and orchards 24.06 43.82 57.08 65.68 43 65 76 82 63.44 81.03 87.93 91.29

Forest land 15.25 33.92 49.49 58.44 30 55 70 77 49.64 73.76 84.29 88.51
Waterbodies and marshes
and swamps 95.37 95.37 95.37 95.37 98 98 98 98 99.12 99.12 99.12 99.12

Unused land 58.44 72.07 80.94 86.81 77 86 91 94 88.51 93.39 95.88 97.3

In practice, the three runoff curve numbers of the hydrologic soil group of each LULC
type were separately applied to estimate the potential maximum storage under three
different AMCs using Equation (4).

S = 25.4
1000
CN

− 10 (4)

where CN is the runoff curve number of the hydrologic soil group (HSG)–land cover
complex.

The calculated potential maximum storage was further applied to estimate the surface
runoff depth of the three different AMCs [48,49], as follows:

Q =
(P − 0.2S)2

(P + 0.8S)
(5)

where Q is the surface runoff depth (mm), P is the annual rainfall (mm), and S is the
potential maximum storage.

Then, the estimated surface runoff depth of the three different AMCs from 2001 to
2010 was converted into surface runoff volume using Equation (6).

Surface runoff volume =
Surface runoff depth

1000
× cell size (6)

Later, they were used to identify the suitable AMC using model performance scale, in-
cluding Nash and Sutcliffe’s coefficient of efficiency (NSE), the coefficient of determination
(R2), and the percent of bias (PBIAS) (Equations (7)–(9)), as suggested by [50] (Table 3).

NSE = 1 −

 ∑n
i (Qsimi − Qobsi)

2

∑n
i

(
Qobsi − Qavg

)2

 (7)

where n is the number of years, Qsimi is the simulated surface runoff, Qobsi is the observed
surface runoff, and Qavg is the average observed surface runoff over the simulation period.
The values for E can vary from –∞ to 1, with 1 indicating a perfect fit.

R2 =


∑n

i=1

(
Qobsi − Qobsavg

)(
Qsimi − Qsimavg

)
[

∑n
i=1
(
Qobsi − Qobsavg

)2
∑n

i=1

(
Qsimi − Qsimavg

)2
]0.5


2

(8)



Land 2021, 10, 1317 9 of 41

where Qobsi is the observed surface runoff in year i, Qsimi is the simulated surface runoff
in year i, Qobsavg is the average of the observed surface runoff over the calibration or
validation period, Qsimavg is the average of the simulated surface runoff over the validation
period, i is the year, and n is the total count of data pairs.

PBIAS =

∑n
i=1

(
Yobs

i − Ysim
i

)
×(100)

∑n
i=1 Yobs

i

 (9)

where Yobs
i is the observed surface runoff in time step i, and Ysim

i is the simulated surface
runoff in time step i.

Table 3. Model performance scale.

Statistics
Measurement

Performance Ratings

Unsatisfactory Satisfactory Good Very Good

NSE <0.5 0.5–0.65 0.65–0.75 0.75–1
R2 <0.5 0.5–0.6 0.6–0.7 0.7–1

PBIAS >25 15–25 10–15 <10

In this study, the observed runoff data between 2001 and 2010 from the hydrological
station at E.21, E.23, and E.6C of the RID were used to calculate an average NSE, R2, and
PBIAS for suitable AMC identification (see the location of the station in Figure 1).

3.4.2. Surface Runoff Estimation between 2011 and 2019

The runoff curve number of the suitable AMC was applied to estimate the surface
runoff between 2011 and 2019 based on the classified and predicted LULC data in the same
period. The estimated surface runoff data between 2011 and 2019 were further examined
for model validation based on the observed runoff data in the same period from the same
gauges of the RID using NSE, R2, and PBIAS.

The time series surface runoff estimation (between 2001 and 2019) from two steps will
be further applied to extract the average runoff coefficient of each LULC type of three rain-
fall conditions for optimizing LULC allocation for flood mitigation in the next component.

3.5. Optimization of LULC Allocation for Flood Mitigation and Mapping

Goal programming was first applied to optimize LULC allocation for flood mitigation
under dry, normal, and wet years. Then, the suitable LULC allocation data of dry, normal,
and wet years were mapped using the CLUE-S model.

3.5.1. SPI Calculation for the Rainfall Condition Identification

Annual rainfall data between 1987 and 2019 were first used to calculate the 12-month
SPI values. Then, they were reclassified into three rainfall conditions according to the SPI
drought classification of [51] as follows:

1. If any year had a 12-month SPI value less than or equal to –0.50, the annual rainfall
was categorized as a dry year;

2. If any year had a 12-month SPI value between –0.49 and 0.49, the annual rainfall was
categorized as a normal year;

3. If any year had a 12-month SPI value more than or equal to 0.50, the annual rainfall
was categorized as a wet year.

After that, the average surface runoff coefficient for each LULC type of three rainfall
conditions (dry, normal, and wet years) was extracted from the time series surface runoff
and LULC data using zonal statistical analysis for optimization of LULC allocation to
minimize surface runoff for flood mitigation.
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3.5.2. Optimization of LULC Allocation to Minimize Surface Runoff for Flood Mitigation

This study assigned the constraint sets for optimizing LULC allocation in 2029, 2039,
and 2049 using the Markov Chain model based on the historical LULC development
between 2010 and 2019. The changing area of each LULC type was considered according
to the derived transitional change area from the Markov Chain model. Then, the derived
average runoff coefficient and constraints of the objective function were applied to optimize
LULC allocation to minimize surface runoff for flood mitigation under dry, normal, and
wet years using goal programming with “What’s Best!” as an extension program in an MS
Excel environment.

The goal programming model, working as the surface runoff minimization function,
can be expressed as the following equations:

Minimize surface runoff:

Min(z) =
n

∑
i=1

CiXi (10)

Subject to constraints:
n

∑
i=1

Xi= A (11)

n

∑
i=1

Xi ≥ A (12)

n

∑
i=1

Xi ≤ A (13)

Xi ≥ 0 (14)

where Z is the total annual surface runoff of the study area (m3/year), Ci is the average
surface runoff coefficient in each land use type (m3/km2/year), Xi is the area of land
use class i (km2), n is the number of land use classes, and A is the total area of land use
classes (km2).

Finally, the suitable LULC allocation to minimize surface runoff for flood mitiga-
tion under dry, normal, and wet years was separately identified based on surface runoff
reduction compared to the actual data in 2019.

3.5.3. Mapping of Suitable LULC Allocation for Flood Mitigation

The suitable LULC allocation to minimize surface runoff for flood mitigation under
dry, normal, and wet years was separately mapped using the CLUE-S model. The required
input data for LULC mapping included LULC data in 2019, local driving factors on land
use change, elasticity value, LULC conversion matrix, and suitable LULC allocation data
of three rainfall conditions as the land requirement.

3.6. Economic and Ecosystem Service Value Evaluation and Change

Economic and ecosystem service value evaluation and change were separately evalu-
ated using the present value (PV) model and the simple benefit transfer method based on
LULC data in 2019 and suitable LULC allocation data to minimize surface runoff for flood
mitigation under dry, normal, and wet years in terms of gain and loss.

3.6.1. Economic Value Evaluation and Change

For economic value evaluation, the LULC data in 2019 and the suitable LULC alloca-
tion data to minimize surface runoff under dry, normal, and wet years were first calculated
in terms of economic values using Equation (15), as suggested by [52]. Then, the future
economic value changes between the LULC data in 2019 and the suitable LULC allocation
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data to minimize surface runoff under dry, normal, and wet years were compared using
the image algebra change detection algorithm for gain and loss.

PV = FV ·
[

100
100 + IR

]Y
(15)

where PV is the present value, FV is the future value, IR is the interest rate in percent, and
Y is the number of years from the present, counting from zero.

3.6.2. Ecosystem Service Value Evaluation and Change

In general, ecosystem services represent a dynamic field in current scientific research,
linking ecological, economic, and social aspects, demanding practical applications and
methodologies at different spatial scales, and maintaining environmental management and
decision-making processes [53–55].

This study applied a simple benefit transfer method [53] to evaluate the ecosystem
service values of LULC data in 2019 and suitable LULC allocation data to minimize surface
runoff under dry, normal, and wet years using Equation (16) with the coefficient value
for different LULC types (Table 4). Then, the ecosystem service value change between
the LULC data in 2019 and the suitable LULC allocation data to minimize surface runoff
under dry, normal, and wet years was compared using the image algebra change detection
algorithm for gain and loss.

ESV =∑(Ak × VCk) (16)

where ESV denotes the total value of the ecosystem service, while Ak and VCk represent
the area and value coefficient for proxy LULC type “k, ” respectively.

Table 4. LULC type and coefficient value for ESV evaluation.

No. LULC Classification for RF LULC Classification
for ESV 1

Coefficient Values
(USD/ha/year) 1

1 Urban and built-up areas Construction land 12.7
2 Paddy fields Cultivated land 1032.3
3 Field crops Cultivated land 1032.3
4 Para rubber Forest land 1949.0
5 Perennial trees and orchards Forest land 1949.0
6 Forest land Forest land 1949.0
7 Waterbodies Waterbodies 6873.7
8 Rangeland Rangeland 808.6
9 Wetland Wetland 9368.7

10 Miscellaneous land Unused land 96.3

1 Modified from [56].

Finally, the future economic and ecosystem service values and their changes in suitable
LULC allocation for flood mitigation by each rainfall condition (dry, normal, and wet years)
were compared to justify the most suitable LULC allocation for flood mitigation among
three rainfall conditions.

4. Results and Discussion
4.1. Land Use and Land Cover Classification and Change Detection

The results of the LULC classification in 2001, 2010, and 2019 using the random forests
(RF) classifier based on Landsat imageries and supplementary data, including NDVI,
MNDWI, NDBI, and DEM, are reported in Table 5 and displayed in Figure 5.
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Table 5. Area and percentage of LULC data in 2001, 2010, and 2019.

No. LULC Types
LULC 2001 LULC 2010 LULC 2019

Area (km2) Percentage Area (km2) Percentage Area (km2) Percentage

1 Urban and built-up areas 46.17 1.22 53.21 1.4 65.84 1.74
2 Paddy fields 2344.39 61.79 2070.71 54.58 2012.16 53.03
3 Sugarcane 61.25 1.61 153.52 4.05 306.85 8.09
4 Cassava 532.95 14.05 629.33 16.59 489.91 12.91
5 Other field crops 2.09 0.06 5.19 0.14 6.19 0.16
6 Para rubber 16.56 0.44 30.05 0.79 97.03 2.56

7 Perennial trees and
orchards 55.76 1.47 50.21 1.32 88.95 2.34

8 Forest land 632 16.66 604.7 15.94 481.3 12.68
9 Waterbodies 36.81 0.97 57.46 1.51 53.3 1.4
10 Rangeland 26.03 0.69 72.11 1.9 71.65 1.89
11 Marshes and swamps 11.64 0.31 33.4 0.88 27.73 0.73
12 Unused land 28.57 0.75 34.33 0.9 93.32 2.46

Total 3794.22 100.00 3794.22 100.00 3794.22 100.00

Figure 5. Spatial distribution of the LULC classification in: (a) 2001, (b) 2010, and (c) 2019.

The results reveal that in 2001, the top three most dominant LULC types were paddy
fields (61.79%), forest land (16.66%), and cassava (14.05%). On the contrary, the top three
least dominant LULC types were other field crops (0.06%), marshes and swamps (0.30%),
and para rubber (0.44%), which are randomly distributed in the study area. Meanwhile, the
top three most dominant in 2019 were paddy fields (54.58%), cassava (16.59%), and forest
land (15.94%). Conversely, the top three least dominant LULC types in 2001 were other
field crops (0.14%), marshes and swamps (0.79%), and para rubber (0.88%). Recently, the
top three most dominant LULC types in 2019 were paddy fields (53.03%), cassava (12.91%),
and forest land (12.68%). In contrast, the top three least dominant LULC types were other
field crops (0.16%), marshes and swamps (0.73%), and waterbodies (1.40%). The temporal
change in LULC type coverage in 2001, 2010, and 2019 is presented in Figure 6.

Furthermore, a simple comparison of the LULC type coverage with the changing area,
annual change rate, and percentage of in two short periods (2001–2010 and 2010–2019) and
in the long period (2001–2019) are reported in Tables 6–8. The annual change rate of the
short- and long-term periods plays a significant role in land requirement estimation for
LULC prediction using the CLUE-S model.
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Figure 6. Multitemporal change of LULC type coverage in 2001, 2010, and 2019.

Table 6. Simple LULC change detection between 2001 and 2010.

LULC
LULC Type (Area, km2)

UR PA SU CA PC PR PO FO WA RA MA UL

In 2001 46.17 2344.39 61.25 532.95 2.09 16.56 55.76 632.00 36.81 26.03 11.64 28.57
In 2010 53.21 2070.71 153.52 629.33 5.19 30.05 50.21 604.70 57.46 72.11 33.40 34.33

Change area 7.04 –273.68 92.27 96.38 3.11 13.49 –5.54 –27.30 20.65 46.08 21.76 5.76

Annual change rate 0.78 –30.41 10.25 10.71 0.35 1.50 –0.62 –3.03 2.29 5.12 2.42 0.64

Percentage of change 0.19 –7.21 2.43 2.54 0.08 0.36 –0.15 –0.72 0.54 1.21 0.57 0.15

Table 7. Simple LULC change detection between 2010 and 2019.

LULC
LULC Type (Area, km2)

UR PA SU CA PC PR PO FO WA RA MA UL

In 2010 53.21 2070.71 153.52 629.33 5.19 30.05 50.21 604.70 57.46 72.11 33.40 34.33
In 2019 65.84 2012.16 306.85 489.91 6.19 97.03 88.95 481.30 53.30 71.65 27.73 93.32

Change area 12.63 –58.55 153.33 –139.41 1.00 66.99 38.73 –123.41 –4.16 –0.47 –5.67 58.99

Annual change rate 1.40 –6.51 17.04 –15.49 0.11 7.44 4.30 –13.71 –0.46 –0.05 –0.63 6.55

Percentage of change 0.33 –1.54 4.04 –3.67 0.03 1.77 1.02 –3.25 –0.11 –0.01 –0.15 1.55

Table 8. Simple LULC change detection between 2001 and 2019.

LULC
LULC Type (Area, km2)

UR PA SU CA PC PR PO FO WA RA MA UL

In 2001 46.17 2344.39 61.25 532.95 2.09 16.56 55.76 632 36.81 26.03 11.64 28.57
In 2019 65.84 2012.16 306.85 489.91 6.19 97.03 88.95 481.3 53.3 71.65 27.73 93.32

Change area 19.67 –332.23 245.6 –43.04 4.1 80.47 33.19 –150.7 16.49 45.62 16.09 64.75

Annual change rate 1.09 –18.46 13.64 –2.39 0.23 4.47 1.84 –8.37 0.92 2.53 0.89 3.60

Percentage of change 0.52 –8.76 6.47 –1.13 0.11 2.12 0.87 –3.97 0.43 1.20 0.42 1.71
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Moreover, by considering the performance of the RF classifier for LULC classification,
the overall accuracy and Kappa hat coefficient of the classified LULC maps in 2001 were
89.88% and 84.88%, in 2010 were 90.71% and 87.03%, and in 2019 were 91.37% and 88.26%.
The overall accuracy of more than 85% of the three maps provides acceptable results, as
suggested by [57]. Likewise, the Kappa hat coefficient of the three maps was more than
80%, representing strong agreement or accuracy between the classified map and the ground
reference information [58]. The derived overall accuracy and Kappa hat coefficient values
of the classified LULC maps are comparable to those of other researchers who classified
LULC maps based on Landsat data with the RF classifier [44,59–65]

4.2. Driving Factor Identification for LULC Change

The results of the binary logistics regression analysis for identifying LULC type loca-
tion preference after the multicollinearity test are reported in Table 9. The most common
vital driving factor for all LULC type changes was elevation. Meanwhile, the most im-
portant driving factors for field crops (sugarcane, cassava, and other field crops) included
elevation, slope, and annual rainfall. The specific driving factors for each LULC type
preference from binary logistics regression are further applied to allocate LULC type for
predicting LULC change under the CLUE-S model.

Table 9. Multiple linear equations of each LULC type location preference and area under the curve value from logistic
regression analysis.

Driving
Factors

LULC Type

UR PD SU CA FC PR OP FO WA RA MA UL

Constant 0.0930 10.8831 94.6560 –38.4766 207.9784 24.1870 –38.4831 87.3484 –4.6862 –80.0118 5.0436 –8.6344
X1 n. s. –0.0947 –0.0001 0.0042 0.0101 0.0083 n. s. 0.0032 0.0068 –0.0043 –0.0467 0.0093
X2 n. s. n. s. –0.1943 –0.1030 –0.2144 –0.0730 –0.1314 0.1886 –0.6715 n. s. n. s. –0.0290
X3 n. s. 0.0130 –0.1264 0.0477 –0.2850 –0.0398 0.0454 –0.1167 n. s. 0.0991 n. s. n. s.
X4 n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s.
X5 0.0008 –0.0018 –0.0117 –0.0148 n. s. –0.0186 –0.0043 –0.0113 n. s. –0.0060 –0.0059 n. s.
X6 –0.0064 n. s. n. s. n. s. n. s. n. s. n. s. n. s. 0.0014 n. s. n. s. n. s.
X7 n. s. n. s. n. s. 0.0010 n. s. –0.0014 n. s. n. s. –0.0037 n. s. –0.0053 n. s.
X8 –0.0182 n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s.

AUC 0.9824 0.9763 0.7677 0.7942 0.9355 0.9440 0.6186 0.9289 0.8318 0.7445 0.8628 0.8693

Note: Elevation (X1), slope (X2), annual rainfall (X3), average income per capita at the sub-district level (X4), population density at the
sub-district level (X5), distance to road network (X6), distance to stream (X7), and distance to the existing urban area (X8).

Moreover, the derived area under the curve (AUC) values for each LULC type alloca-
tion varied from 0.6185 to 0.9824. This finding suggests a fair-to-excellent fit between the
predicted and real LULC transition [66–68].

4.3. Local Parameter for LULC Prediction Using the CLUE-S Model

After a wall-to-wall accuracy assessment, by comparison, for the predicted LULC in
2019 with the classified LULC in 2019, the overall accuracy was 86.95%, and the Kappa hat
coefficient was 80.72%. Thus, the significant driving factors by binomial logistic regression
analysis were chosen as the optimal local driving factors on land use change for LULC
prediction using the CLUE-S model in this study (see Table 9).

In the meantime, the optimal conversion matrix for each LULC type possibly changed
between 2010 and 2019 (Table 10) and the land use type resistance (elasticity) values based
on the transition probability matrix of LULC changed between 2010 and 2019 from the
Markov Chain model (Table 11), identified as a local parameter for LULC prediction. Thus,
the elasticity value of the urban and built-up areas, paddy fields, sugarcane, cassava, other
field crops, para rubber, perennial trees and orchards, forest land, waterbodies, rangeland,
marshes and swamps, and unused land were 1.00, 0.93, 0.93, 0.65, 0.99, 0.80, 0.99, 0.80, 0.91,
0.89, 0.39, and 0.96, respectively.
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Table 10. Conversion matrix of possible changes between 2010 and 2019.

LULC Types
LULC Type Possible Change in 2019

UR PA SU CA FC PR PO FO WA RA MA UL

LU
LC

in
20

10

Urban and built-up areas (UR) 1 0 0 0 0 0 0 0 0 0 0 0
Paddy fields (PA) 0 1 1 1 0 0 1 0 0 1 1 0
Sugarcane (SU) 1 1 1 1 0 0 1 0 0 0 0 0
Cassava (CA) 1 1 1 1 0 1 1 0 0 1 0 1
Other field crops (FC) 0 0 1 1 1 0 0 0 0 0 0 0
Para rubber (PR) 0 0 0 1 1 1 0 0 0 0 0 1
Perennial trees and orchards (PO) 0 0 1 0 0 0 1 0 0 0 0 0
Forest land (FO) 1 0 0 0 0 1 1 1 0 1 0 1
Waterbodies (WA) 1 0 1 0 0 0 0 0 1 0 1 0
Rangeland (RA) 0 1 0 0 0 0 1 0 0 1 0 0
Marshes and swamps (MA) 1 1 1 1 0 0 1 0 0 0 1 0
Unused land (UL) 1 1 0 0 0 0 0 0 0 0 0 1

Table 11. Elasticity of LULC change for LULC prediction between 2010 and 2019.

LULC Types
LULC Type Possible Change in 2019

UR PA SU CA FC PR PO FO WA RA MA UL

LU
LC

in
20

10

Urban and built-up areas (UR) 1.00 - - - - - - - - - - -
Paddy fields (PA) - 0.93 0.03 0.02 - - 0.01 - - - 0.01 -
Sugarcane (SU) 0.01 0.01 0.93 0.05 - - 0.01 - - - - -
Cassava (CA) 0.01 0.06 0.16 0.65 - 0.07 0.01 - - - - 0.04
Other field crops (FC) - - - - 0.99 - 0.01 - - - - -
Para rubber (PR) - - - 0.11 0.01 0.80 0.03 - - - - 0.05
Perennial trees and orchards (PO) - - 0.01 0.01 - - 0.99 - - - - -
Forest land (FO) - 0.02 - 0.05 - 0.05 0.01 0.80 - - - 0.06
Waterbodies (WA) - 0.04 0.02 0.01 - - - - 0.91 - 0.01 -
Rangeland (RA) - 0.08 - 0.02 - - 0.01 - - 0.89 - -
Marshes and swamps (MA) 0.01 0.55 0.03 - - - 0.02 - - - 0.39 -
Unused land (UL) 0.01 0.03 - - - - - - - - - 0.96

4.4. LULC Prediction between 2002 and 2009

LULC prediction data between 2002 and 2009, which were simultaneously allocated
based on the conversion matrix of LULC change (Table 10), elasticity value (Table 11),
annual land demand (Table 12), and driving factors on LULC change for specific LULC
type location preference (Table 9), are reported in Table 13 and displayed in Figure 7.

Table 12. Annual land requirement of each LULC type between 2001 and 2010.

Year
LULC Type (Area, km2)

Total
UR PA SU CA FC PR PO FO WA RA MA UL

2001 46.17 2344.39 61.25 532.95 2.09 16.56 55.76 632.00 36.81 26.03 11.64 28.57 3794.22
2002 46.95 2314.01 71.53 543.60 2.45 18.03 55.15 628.98 39.12 31.16 14.03 29.19 3794.22
2003 47.71 2283.59 81.77 554.34 2.79 19.54 54.54 625.95 41.40 36.28 16.46 29.84 3794.22
2004 48.50 2253.18 91.96 565.05 3.13 21.09 53.90 622.90 43.70 41.38 18.94 30.47 3794.22
2005 49.30 2222.70 102.27 575.78 3.50 22.54 53.27 619.88 46.00 46.51 21.30 31.16 3794.22
2006 50.05 2192.30 112.51 586.50 3.83 24.10 52.66 616.83 48.28 51.63 23.78 31.74 3794.22
2007 50.82 2161.94 122.76 597.16 4.17 25.57 52.07 613.81 50.57 56.77 26.17 32.40 3794.22
2008 51.61 2131.48 133.03 607.87 4.51 27.08 51.47 610.77 52.86 61.90 28.60 33.03 3794.22
2009 52.41 2101.12 143.27 618.63 4.87 28.53 50.84 607.74 55.16 66.99 30.97 33.69 3794.22
2010 53.21 2070.70 153.51 629.33 5.19 30.05 50.21 604.70 57.46 72.11 33.40 34.33 3794.22

Annual
rate 0.79 –

30.42 10.24 10.71 0.33 1.52 –0.63 –3.03 2.29 5.12 2.44 0.64
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Table 13. Area of predicted LULC type between 2002 and 2009.

LULC Types
Area of Predicted LULC Type (km2)

2002 2003 2004 2005 2006 2007 2008 2009

Urban and built-up areas (UR) 46.95 47.71 48.5 49.3 50.05 50.82 51.61 52.41
Paddy fields (PD) 2314.01 2283.59 2253.18 2222.70 2192.30 2161.94 2131.48 2101.12
Sugarcane (SU) 71.53 81.77 91.96 102.27 112.51 122.76 133.03 143.27
Cassava (CA) 543.6 554.34 565.05 575.78 586.5 597.16 607.87 618.63
Other field crops (FC) 2.45 2.79 3.13 3.5 3.83 4.17 4.51 4.87
Para rubber (PR) 18.03 19.54 21.09 22.54 24.1 25.57 27.08 28.53
Perennial trees and orchards (PO) 55.15 54.54 53.9 53.27 52.66 52.07 51.47 50.84
Forest land (FO) 628.98 625.95 622.9 619.88 616.83 613.81 610.77 607.74
Waterbodies (WA) 39.12 41.4 43.7 46 48.28 50.57 52.86 55.16
Rangeland (RA) 31.16 36.28 41.38 46.51 51.63 56.77 61.9 66.99
Marshes and swamps (MA) 14.03 16.46 18.94 21.3 23.78 26.17 28.6 30.97
Unused land (UL) 29.19 29.84 30.47 31.16 31.74 32.4 33.03 33.69

Total 3794.22 3794.22 3794.22 3794.22 3794.22 3794.22 3794.22 3794.22

Figure 7. Spatial distribution of predicted LULC data between 2002 and 2009.

As a result, the LULC prediction between 2002 and 2009 was dictated by the historical
LULC development between 2001 and 2010. The results indicate that the most increasing
LULC types were cassava and sugarcane, with an increasing annual change rate of 10.71
and 10.24 km2 per year, while the paddy field was the most decreasing LULC type with a
decreasing annual change rate of 30.42 km2 per year.

4.5. LULC Prediction between 2011 and 2018

The derived optimum local parameter of the CLUE-S model with annual land demand
between 2010 and 2019 based on the annual change rate of the Markov Chain model
(Table 14) was simultaneously combined with driving factors for LULC change for a
specific LULC type location preference (Table 9) to predict LULC data, as shown by the
results in Table 15 and Figure 8.
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Table 14. Annual land requirement of each LULC type between 2010 and 2019.

Year
LULC Type (Area, km2)

Total
UR PA SU CA FC PR PO FO WA RA MA UL

2010 53.21 2070.71 153.52 629.33 5.19 30.05 50.21 604.70 57.46 72.11 33.40 34.33 3794.22
2011 54.58 2064.15 170.56 613.86 5.32 37.51 54.49 591.02 57.00 72.09 32.75 40.88 3794.22
2012 55.99 2057.68 187.61 598.35 5.43 44.93 58.80 577.30 56.54 72.03 32.13 47.42 3794.22
2013 57.46 2051.17 204.62 582.86 5.53 52.39 63.17 563.53 56.06 71.98 31.48 53.98 3794.22
2014 58.81 2044.70 221.65 567.39 5.65 59.83 67.42 549.87 55.61 71.85 30.90 60.55 3794.22
2015 60.27 2038.20 238.68 551.89 5.74 67.26 71.78 536.14 55.15 71.81 30.21 67.07 3794.22
2016 61.65 2031.64 255.75 536.39 5.87 74.71 76.06 522.43 54.70 71.81 29.59 73.61 3794.22
2017 63.06 2025.15 272.80 520.90 5.97 82.14 80.37 508.74 54.25 71.71 28.95 80.18 3794.22
2018 64.41 2018.69 289.83 505.42 6.08 89.59 84.63 495.02 53.76 71.71 28.33 86.75 3794.22
2019 65.84 2012.16 306.85 489.91 6.19 97.03 88.95 481.30 53.30 71.65 27.73 93.32 3794.22

Annual
rate 1.40 –6.51 17.04 –

15.49 0.11 7.44 4.30 –
13.71 –0.46 –0.05 –0.63 6.55

Table 15. Area of predicted LULC type between 2011 and 2018.

LULC Types
Area of Predicted LULC Type (km2)

2011 2012 2013 2014 2015 2016 2017 2018

Urban and built-up areas (UR) 54.58 55.99 57.46 58.81 60.27 61.65 63.06 64.41
Paddy fields (PD) 2064.15 2057.68 2051.17 2044.70 2038.20 2031.64 2025.15 2018.69
Sugarcane (SU) 170.56 187.61 204.62 221.65 238.68 255.75 272.8 289.83
Cassava (CA) 613.86 598.35 582.86 567.39 551.89 536.39 520.9 505.42
Other field crops (FC) 5.32 5.43 5.53 5.65 5.74 5.87 5.97 6.08
Para rubber (PR) 37.51 44.93 52.39 59.83 67.26 74.71 82.14 89.59
Perennial trees and orchards (PO) 54.49 58.8 63.17 67.42 71.78 76.06 80.37 84.63
Forest land (FO) 591.02 577.3 563.53 549.87 536.14 522.43 508.74 495.02
Waterbodies (WA) 57 56.54 56.06 55.61 55.15 54.7 54.25 53.76
Rangeland (RA) 72.09 72.03 71.98 71.85 71.81 71.81 71.71 71.71
Marshes and swamps (MA) 32.75 32.13 31.48 30.9 30.21 29.59 28.95 28.33
Unused land (UL) 40.88 47.42 53.98 60.55 67.07 73.61 80.18 86.75

Total 3794.22 3794.22 3794.22 3794.22 3794.22 3794.22 3794.22 3794.22

Figure 8. Spatial distribution of the predicted LULC data between 2011 and 2018.
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As with the previous results, the LULC prediction between 2011 and 2018 was enforced
by the historical LULC development between 2010 and 2019. Again, the results revealed
that sugarcane was the most increasing LULC type, with an increasing annual rate of
17.04 km2 per year, while cassava and forest land were the most decreasing LULC types,
with decreasing annual change rates of 15.49 and 13.71 km2 per year.

In summary, the proportional area of the time series LULC data between 2001 and
2019 based on RF classification and CLUE-S prediction is displayed in Figure 9.

Figure 9. Proportion area of LULC type of LULC data between 2001 and 2019.

4.6. Surface Runoff Estimation between 2001 and 2010

The surface runoff estimation between 2001 and 2010 was estimated with three runoff
curve number (CN) values assigned based on three different AMC conditions (see Table 3)
for suitable AMC identification in the study area. In principle, the AMC is an indicator of
watershed wetness and availability of soil storage. The annual surface runoff volume of the
three AMC conditions with rainfall data between 2001 and 2010 is presented in Table 16
and Figure 10.

Table 16. Annual surface runoff volume of the three AMC conditions and rainfall data between 2001 and 2010.

Year
Surface Runoff Volume (million m3) Annual Rainfall *

(mm)AMC-I AMC-II AMC-III

2001 1178.41 939.70 1537.88 939.70
2002 4057.74 1191.60 4652.40 1191.60
2003 1444.46 900.80 1836.21 900.80
2004 1335.34 915.40 1716.51 915.40
2005 1754.45 1039.00 2185.22 1039.00
2006 4229.13 1196.00 4847.85 1196.00
2007 3234.72 1342.90 3795.55 1342.90
2008 5869.54 1695.20 6558.70 1695.20
2009 4189.38 1502.10 4804.03 1502.10
2010 5761.81 1506.30 6437.31 1506.30

* Annual rainfall data at Chaiyaphum meteorological station, located at the center of the study area.

According to the results, the accumulated surface runoff volume under three AMC
conditions was relatively different, because the CN values of these conditions were different
(Table 3), while annual rainfall data were the same. The patterns of surface runoff volume
under the three AMC conditions and annual rainfall between 2001 and 2010 were similar.
The higher the annual rainfall, the higher the surface runoff. This finding was confirmed by
simple linear regression analysis, as shown in Figure 11. The surface runoff volume under
the three AMC conditions positively correlated with annual rainfall, with R2 values of
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0.8503, 0.8511, and 0.8513, respectively. These coefficient values show a strong relationship
between annual rainfall and surface runoff, according to [50].

Figure 10. Patterns of surface runoff volume of the three AMC conditions and annual rainfall data
between 2001 and 2010.

Figure 11. Relationship between surface runoff volume and annual rainfall: (a) AMC-I, (b) AMC-II, and (c) AMC-III.

In addition, the results of model performance using NSE, R2, and PBIAS for identifying
the suitable AMC for surface runoff estimation based on observed and simulated data
between 2001 and 2010 (Table 17) are reported in Table 18.

Table 17. Annual surface runoff volume of the three AMC conditions and rainfall data between 2001 and 2010.

Year

E.21 Hydrological Station E.23 Hydrological Station E.6C Hydrological Station

Qobs
AMC-I AMC-II AMC-III

Qobs
AMC-I AMC-II AMC-III

Qobs
AMC-I AMC-II AMC-III

Qsim Qsim Qsim Qsim Qsim Qsim Qsim Qsim Qsim

2001 633.4 601.82 695.9 725.99 373.1 292.79 354.69 382.87 36.64 25.82 45.19 61.25
2002 1954.20 1820.05 1959.27 2001.76 1500.70 929.33 1032.16 1074.94 166.38 113.11 169.23 204.97
2003 656.7 650.03 746.73 777.44 575.6 316.3 379.93 408.74 50.63 21.6 37.64 51.78
2004 549.9 838.14 945 978.53 542.4 409.53 482.1 514.13 41.21 31.16 53.41 71.19
2005 854.7 1077.71 1195.42 1232.06 653.8 530 612.45 648.2 84.33 54.38 90.48 116.27
2006 2230.50 2439.22 2590.81 2636.54 1630.70 1246.65 1364.56 1412.19 73.37 35.22 61.22 81.35
2007 1914.30 1450.86 1581.28 1621.40 845.5 724.36 819.84 859.75 85.42 47.58 82.78 107.02
2008 3494.50 3173.60 3334.97 3383.21 1932.20 1625.72 1754.19 1804.98 180.45 146.87 214.7 256.12
2009 2180.20 2181.08 2328.33 2372.98 1560.00 1121.68 1234.52 1280.50 151.03 122.82 184.17 222.61
2010 3188.90 3033.46 3189.97 3237.17 2174.40 1570.83 1698.55 1749.15 206.15 181.51 255.45 299.02

Average 1765.73 1726.60 1856.77 1896.71 1178.84 876.72 973.3 1013.54 107.56 78.01 119.43 147.16
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Table 18. Statistical data of model performance for suitable AMC identification and model validation.

AMC Year
E.21 Station E.23 Station E.6C Station

NSE R2 PBIAS NSE R2 PBIAS NSE R2 PBIAS

AMC-II

2001

0.95 0.96

0.18

0.67 0.96

0.68

0.71 0.96

1.01
2002 0.76 4.85 4.95
2003 0.04 2.20 2.70
2004 –1.63 1.13 0.93
2005 –1.26 1.05 2.78
2006 –1.18 3.26 3.55
2007 2.62 1.03 3.52
2008 1.82 2.60 3.12
2009 –0.01 3.72 2.62
2010 0.88 5.12 2.29

AMC-II

2001

0.94 0.96

–0.35

0.82 0.96

0.16

0.85 0.97

–0.79
2002 –0.03 3.97 –0.27
2003 –0.51 1.66 1.21
2004 –2.24 0.51 –1.13
2005 –1.93 0.35 –0.57
2006 –2.04 2.26 1.13
2007 1.89 0.22 0.25
2008 0.90 1.51 –3.18
2009 –0.84 2.76 –3.08
2010 –0.01 4.04 –4.58

AMC-III

2001

0.94 0.96

–0.52

0.86 0.96

–0.08

0.32 0.97

–2.29
2002 –0.27 3.61 –3.59
2003 –0.68 1.42 –0.11
2004 –2.43 0.24 –2.79
2005 –2.14 0.05 –2.97
2006 –2.30 1.85 –0.74
2007 1.66 –0.12 –2.01
2008 0.63 1.08 –7.03
2009 –1.09 2.37 –6.66
2010 –0.27 3.61 –8.63

As a result, in Table 18, under the AMC-I condition, the NSE value varied from 0.67 to
0.95, while the R2 value varied from 0.71 to 0.96 (Figure 12). The PBIAS values ranged from
–1.63% for overestimation to 2.62% for underestimation. Meanwhile, under the AMC-II
condition, the NSE value varied from 0.86 to 0.94, while the R2 value varied from 0.96 to
0.97 (Figure 13). The PBIAS values ranged from –4.58% for overestimation to 1.21% for
underestimation. In the meantime, under the AMC-III condition, the NSE value varied
from 0.32 to 0.96, while the R2 value varies from 0.96 to 0.97 (Figure 14). The PBIAS values
ranged from –8.63% to –0.11% for overestimation.

Figure 12. Relationship between the observed and estimated runoff between 2001 and 2010 under the AMC-I condition at
the three stations: (a) E.21 station, (b) E.23 station, and (c) E.6C station.
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Figure 13. Relationship between the observed and estimated runoff between 2001 and 2010 under the AMC-II condition at
the three stations: (a) E.21 station, (b) E.23 station, and (c) E.6C station.

Figure 14. Relationship between the observed and estimated runoff between 2001 and 2010 under the AMC-III condition at
the three stations: (a) E.21 station, (b) E.23 station, and (c) E.6C station.

These findings indicate that the NSE values under the three AMCs conditions can
provide a perfect fit for surface runoff estimation. Likewise, the R2 values indicate a very
high correlation between the observed and estimated surface runoff for all AMC conditions.
Similarly, the PBIAS values show a relatively different overestimation and underestimation
among three AMC conditions less than ±10%. These results show a very good fit between
the observed and estimated surface runoff for the surface runoff estimation using the
SCS-CN method, as suggested by [50] (see Table 3).

Furthermore, the NSE, R2, and PBIAS of all of the AMCs were compared to identify the
suitable AMC for surface runoff estimation between 2011 and 2019, as shown in Table 19.
As a result, AMC-II provided better overall average statistics measurements than the other
AMCs. Thus, the AMC-II condition was chosen as the suitable AMC for surface runoff
estimation in the second period (2011–2019).

Table 19. Comparison of the average statistics measurement for suitable AMC examination.

AMC
Average Statistics Measurement

NSE R2 PBIAS

AMC-I 0.7767 0.9600 1.8443
AMC-II 0.8700 0.9633 0.0423
AMC-III 0.7067 0.9633 –1.0067

4.7. Surface Runoff Estimation between 2011 and 2019

The LULC and annual rainfall data between 2011 and 2019 as dynamic input with the
hydrologic soil group were applied to estimate the surface runoff with the suitable AMC-II
using the Model Builder of ArcGIS (See Figure 3). The annual surface runoff volume with
rainfall data between 2011 and 2019 is reported in Table 20 and Figure 15.
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Table 20. Annual surface runoff volume and rainfall data between 2011 and 2019.

Year Surface Runoff Volume (million m3) Annual Rainfall (mm)

2011 6142.43 1428.30
2012 3583.03 1087.20
2013 4200.48 1333.30
2014 1003.60 793.50
2015 1233.80 919.30
2016 3475.16 1044.20
2017 5433.33 1281.80
2018 2588.57 809.00
2019 1445.54 752.60

Figure 15. Pattern of surface runoff volume and annual rainfall of AMC-II between 2011 and 2019.

As a result, the surface runoff volume ranged from approximately 1004 million m3 in
2014 to approximately 6142 million m3 in 2011. The pattern of surface runoff volume and
annual rainfall between 2011 and 2019 was similar. As mentioned in the previous section,
the surface runoff volume positively correlated with annual rainfall, with an R2 of 0.8511.
This finding is consistent with previous studies [69,70].

Furthermore, the results of model performance using NSE, R2, and PBIAS for validat-
ing surface runoff estimation based on observed and simulated data between 2011 and
2019 (Table 21) are reported in Table 22.

Table 21. Comparison of the observed (Qobs) and simulated (Qsim) surface runoff between 2011 and
2019 of the three stations.

E.21 Station E.23 Station E.63 Station

Year Qobs Qsim Qobs Qsim Qobs Qsim

2011 2943.40 2919.23 2283.30 1954.57 175.78 158.26
2012 1989.10 1694.14 677.20 882.97 112.15 151.54
2013 1884.80 2058.57 1646.70 1492.01 70.59 79.15
2014 339.30 600.38 330.40 299.17 19.87 23.05
2015 440.80 547.04 418.70 272.62 27.32 53.76
2016 1563.30 1490.67 1058.30 771.66 87.26 75.27
2017 2732.70 2668.97 1823.20 1563.06 182.55 166.29
2018 923.60 1089.07 665.80 573.76 64.48 78.83
2019 60.10 795.50 84.20 412.55 38.25 59.31

Average 1430.79 1540.40 998.64 913.60 86.47 93.94

Note: Observed (Qobs) and simulated (Qsim) surface runoff in a million m3.
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Table 22. Statistical model performance data for the surface runoff estimation between 2011 and 2019
at the three stations.

Year
E.21 Station E.23 Station E.6C Station

NSE R2 PBIAS NSE R2 PBIAS NSE R2 PBIAS

2011 0.91 0.94 0.19 0.90 0.94 3.66 0.87 0.90 2.25
2012 2.29 –2.29 –5.06
2013 –1.35 1.72 –1.10
2014 –2.03 0.35 –0.41
2015 –0.83 1.63 –3.40
2016 0.56 3.19 1.54
2017 0.49 2.89 2.09
2018 –1.28 1.02 –1.84
2019 –5.71 –3.65 –2.71

As a result, in Table 22, the NSE value from three stations varied from 0.87 to 0.91,
with an average of 0.8933. The R2 value varied from 0.87 to 0.94, with an average of
0.9033 (Figure 16). The PBIAS values ranged from –5.71% for overestimating to 3.66% for
underestimating.

Figure 16. Relationship between the observed and estimated runoff between 2011 and 2019 at the three stations: (a) E.21
station, (b) E.23 station, and (c) E.6C station.

According to a statistical report of model performance for surface runoff estimation
between 2011 and 2019, the derived NSE and R2 values were more than 0.87 and the
PBIAS value was less than ±10. These results show a very good fit for the surface runoff
estimation with a very high correlation between the observed and estimated surface
runoff, as suggested by [50] (see Table 3). Thus, it can be concluded that the surface
runoff estimation using the SCS-CN method in the current study can be validated with
acceptable results.

4.8. SPI Calculation for Rainfall Condition Identification

The available historical rainfall data records from 33 years (1987–2019) of the Chaiya-
phum meteorological station (Figure 17) were applied to calculate the 12-month SPI index,
as shown in Figure 18. The derived SPI values were classified into seven drought types
and grouped into three rainfall conditions: dry, normal, and wet years, as summarized in
Table 23.

Figure 17. Annual rainfall of Chaiyaphum meteorological station (1987–2019).
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Figure 18. The 12-month SPI values of Chaiyaphum meteorological station (1987 and 2019).

Table 23. The 12-month SPI values, drought classification, and rainfall conditions of Chaiyaphum meteorological station
(1987–2019).

Year SPI Drought
Classification 1

Rainfall
Conditions Year SPI Drought

Classification 1
Rainfall

Conditions

1987 0.77 Mild wet Wet year 2004 –0.88 Mild drought Dry year
1988 –0.21 Near normal Normal year 2005 –0.32 Near normal Normal year
1989 –0.58 Mild drought Dry year 2006 0.32 Near normal Normal year
1990 –0.02 Near normal Normal year 2007 0.87 Mild wet Wet year
1991 –0.35 Near normal Normal year 2008 2.06 Extreme wet Wet year
1992 –0.57 Mild drought Dry year 2009 1.43 Moderate wet Wet year
1993 –0.88 Mild drought Dry year 2010 1.45 Moderate wet Wet year
1994 –0.12 Near normal Normal year 2011 1.18 Moderate wet Wet year
1995 1.09 Moderate wet Wet year 2012 –0.12 Near normal Normal year
1996 0.36 Mild wet Wet year 2013 0.84 Mild wet Wet year
1997 –1.65 Severe drought Dry year 2014 –1.48 Moderate drought Dry year
1998 –0.19 Near normal Normal year 2015 –0.86 Mild drought Dry year
1999 –0.14 Near normal Normal year 2016 –0.30 Near normal Normal year
2000 2.14 Extreme wet Wet year 2017 0.65 Mild wet Wet year
2001 –0.76 Mild drought Dry year 2018 –1.40 Moderate drought Dry year
2002 0.31 Near normal Normal year 2019 –1.70 Severe drought Dry year
2003 –0.95 Mild drought Dry year

Note: 1 SPI drought classification by [51].

As a result, the dry years were found to be 2001, 2003, 2004, 2014, 2015, 2018, and 2019.
Meanwhile, normal years occurred in 2002, 2005, 2006, 2012, and 2016, and wet years in
2007, 2008, 2009, 2010, 2011, 2013, and 2017.

4.9. Optimization of LULC Allocation for Flood Mitigation

Goal programming of multi-objective decision analysis (MODA) was applied to
allocate the optimum LULC to minimize surface runoff for flood mitigation based on the
average surface runoff coefficient from LULC under three rainfall conditions. In this study,
an average of each LULC type was separately extracted from the time series surface runoff
between 2001 and 2019 for dry, normal, and wet years, as presented in Table 24.
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Table 24. Runoff coefficient and its average in dry years.

No. LULC Type
Average Surface Runoff Coefficient (million m3/km2)

Dry Year Normal Year Wet Year

1 Urban and
built-up areas 0.45 1.03 1.46

2 Paddy fields 0.44 1.01 1.44
3 Sugarcane 0.38 0.90 1.30
4 Cassava 0.45 1.00 1.41
5 Other field crops 0.39 0.88 1.31
6 Para rubber 0.37 0.83 1.30

7 Perennial trees
and orchards 0.38 0.84 1.31

8 Forest land 0.28 0.76 1.17
9 Waterbodies 0.49 1.04 1.51

10 Rangeland 0.42 0.92 1.36

11 Marshes and
swamps 0.54 1.14 1.59

12 Unused land 0.46 1.02 1.41

At the same time, the constraints of goal programming subjected to the change of
LULC area in the study area were assigned for optimizing the LULC allocation for flood
mitigation based on the historical LULC development between 2010 and 2019. In this
study, a 10-year period was chosen to predict LULC data in 2029, 2039, and 2049 based on
a period of input data (2010–2019) for transitional area prediction by the Markov Chain
model. Accordingly, the changing area of each LULC type was categorized into two groups:
Decreased area (paddy fields, cassava, forest land, waterbodies, rangeland, and marshes
and swamps) and increased area (urban and built-up areas, sugarcane, other field crops,
para rubber, perennial trees and orchards, and unused land) according to the derived
transitional change area from the Markov Chain model. Details of the LULC change to
minimize surface runoff in 2029, 2039, and 2049 as constraints of goal programming are
summarized in Table 25.

Table 25. Existing and predicted areas of LULC in 2029, 2039, and 2049 for constraint setting.

LULC Types
Existing

Area
(km2)

LULC in 2029 (km2) LULC in 2039 (km2) LULC in 2049 (km2)

Predicted
Area Remark Predicted

Area Remark Predicted
Area Remark

Urban and built-up areas (X1) 65.84 77.38 0.17% increase 88.31 0.34% increase 99.03 0.50% increase
Paddy fields (X2) 2012.16 1947.12 0.03% decrease 1879.30 0.06% decrease 1812.16 0.09% decrease
Sugarcane (X3) 306.85 424.95 0.38% increase 520.31 0.69% increase 599.36 0.95% increase
Cassava (X4) 489.91 408.26 0.16% decrease 358.65 0.26% decrease 330.32 0.32% decrease
Other field crops (X5) 6.19 7.72 0.27% increase 9.4525 0.52% increase 11.26 0.81% increase
Para rubber (X6) 97.03 134.43 0.38% increase 152.02 0.56% increase 164.41 0.69% increase
Perennial trees and orchards (X7) 88.95 125.36 0.40% increase 160.12 0.80% increase 193.13 1.17% increase
Forest land (X8) 481.30 382.63 0.20% decrease 304.44 0.36% decrease 242.23 0.49% decrease
Waterbodies (X9) 53.30 49.52 0.07% decrease 47.01 0.13% decrease 42.78 0.19% decrease
Rangeland (X10) 71.65 70.54 0.01% decrease 69.91 0.02% decrease 66.05 0.07% decrease
Marshes and swamps (X11) 27.73 25.13 0.09% decrease 24.66 0.11% decrease 21.61 0.07% decrease
Unused land (X12) 93.31 141.20 0.51% increase 180.07 0.93% increase 212.00 1.27% increase

Total 3794.22 3794.22 3794.22 3794.22

Based on the linearity of the objective function and constraints, the objective functions
of the surface runoff minimization problem for optimizing LULC allocation in dry, normal,
and wet years were formulated as shown in Equations (17)–(19).

Min(Z)= 0.45X1+0.44X2+0.38X3+0.45X4+0.39X5+0.37X6+0.38X7+0.28X8+0.49X9+
0.42X10+0.54X11+0.46X12

(17)

Min(Z)= 1.03X1+1.01X2+0.90X3+1.00X4+0.88X5+0.83X6+0.84X7+0.76X8+1.04X9+
0.92X10 + 1.14X11 + 1.02X12

(18)
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Min(Z)= 1.46X1 + 1.44X2 + 1.30X3 + 1.41X4 + 1.31X5 + 1.30X6 + 1.31X7 + 1.17X8 + 1.51X9+
1.36X10 + 1.59X11 + 1.41X12

(19)

The constraints for optimizing LULC allocation in 2029, 2039, and 2049 to mini-
mize runoff under three rainfall conditions using objective functions (Equations (17)–(19))
are summarized in Table 26. Additionally, two mandatory constraints, as described by
Equations (11) and (14) in Section 3.5.2, were set under the three rainfall conditions as
follows:

Table 26. Summary of the constraint setting for each LULC type in 2029, 2039, and 2049.

LULC Types
Constraints Setting for Each LULC Type

Constrain in 2029 Constrain in 2039 Constrain in 2049

Urban and built-up areas (X1) 65.84 ≤ X1 ≤ 77.38 65.84 ≤ X1 ≤ 88.31 65.84 ≤ X1 ≤ 99.03
Paddy fields (X2) 2012.16 ≥ X2 ≥ 1947.12 2012.16 ≥ X2 ≥ 1879.30 2012.16 ≥ X2 ≥ 1812.16
Sugarcane (X3) 306.85 ≤ X3 ≤ 424.95 306.85 ≤ X3 ≤ 520.31 306.85 ≤ X3 ≤ 599.36
Cassava (X4) 489.91 ≥ X4 ≥ 408.26 489.91 ≥ X4 ≥ 358.65 489.91 ≥ X4 ≥ 330.32
Other field crops (X5) 6.19 ≤ X5 ≤ 7.72 6.19 ≤ X5 ≤ 9.45 6.19 ≤ X5 ≤ 11.26
Para rubber (X6) 97.03 ≤ X6 ≤ 134.43 97.03 ≤ X6 ≤ 152.02 97.03 ≤ X6 ≤ 164.41
Perennial trees and orchards (X7) 88.95 ≤ X7 ≤ 125.36 88.95 ≤ X7 ≤ 160.12 88.95 ≤ X7 ≤ 193.13
Forest land (X8) 481.30 ≥ X8 ≥ 382.63 481.30 ≥ X8 ≥ 304.44 481.30 ≥ X8 ≥ 242.23
Waterbodies (X9) 53.30 ≥ X9 ≥ 49.52 53.30 ≥ X9 ≥ 47.01 53.30 ≥ X9 ≥ 42.78
Rangeland (X10) 71.65 ≥ X10 ≥ 70.54 71.65 ≥ X10 ≥ 69.91 71.65 ≥ X10 ≥ 66.05
Marshes and swamps (X11) 27.73 ≥ X11 ≥ 25.13 27.73 ≥ X11 ≥ 24.66 27.73 ≥ X11 ≥ 21.61
Unused land (X12) 93.31 ≤ X12 ≤ 141.20 93.31 ≤ X12 ≤ 180.07 93.31 ≤ X12 ≤ 211.89

The first mandatory constraint, related to the area of all land use classes, must be
equal to the allowable area of 3794.22 km2, as shown in Equation (20).

X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12= 3794.22 (20)

The second mandatory constraint is related to the non-negative variable. The area of
each land use class should be more than or equal to 0 km2, as shown in Equation (21).

X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12 ≥ 0 (21)

The objective functions for dry, normal, and wet years (Equations (17)–(19)) were then
transformed into a goal programming form as follows:

fk(x) + d−
k − d+

k = ak (22)

The results of the optimized LULC allocation to minimize surface runoff for flood
mitigation in 2029, 2039, and 2049 under the three rainfall conditions (dry, normal, and wet
years) are presented in Tables 27–29.

In dry years, the significant increasing LULC type after optimizing LULC allocation
in 2029, 2039, and 2049 were sugarcane, with approximately 80, 148, and 210 km2. In
contrast, the significantly decreasing LULC type was cassava, with approximately 82, 133,
and 200 km2. Additionally, the annual surface runoff decreased in 2029, 2039, and 2049
by 12.95, 20.78, and 27.89 million m3, or approximately 0.82%, 1.32%, and 1.77% of total
estimated surface runoff in 2019 (See Table 27).

Meanwhile, the most increased LULC area under the normal year was also sugarcane,
with an area of approximately 79, 145, and 205 km2. In contrast, the significant decreasing
LULC types were paddy fields, with approximately 65, 133, and 200 km2, and sugarcane,
with an area of approximately 82, 130, and 160 km2. Additionally, the annual surface runoff
decreased in 2029, 2039, and 2049 by 21.34, 37.59, and 52.31 million m3, or 0.59%, 1.03%,
and 1.43% of the total estimated surface runoff in 2019 (see Table 28).
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Table 27. Optimization of LULC allocation to minimize surface runoff in dry years.

LULC Types
2019 2029 2039 2049

Area of
LULC

Surface
Runoff

Allocated
LULC

Surface
Runoff

Allocated
LULC

Surface
Runoff

Allocated
LULC

Surface
Runoff

Urban and built-up areas 65.84 29.84 65.84 29.84 65.84 29.84 65.84 29.84
Paddy fields 2012.16 942.32 1947.12 856.54 1879.30 826.71 1812.16 797.17
Sugarcane 306.85 70.96 387.24 148.87 454.94 174.90 517.13 198.81
Cassava 489.91 242.89 408.26 184.27 359.65 162.33 330.32 149.09
Other field crops 6.19 1.75 6.19 2.39 6.19 2.39 6.19 2.39
Para rubber 97.03 19.65 134.43 49.86 152.02 56.39 164.41 60.99
Perennial trees and orchards 88.95 25.76 125.36 47.40 160.12 60.54 193.13 73.02
Forest land 481.30 159.21 481.30 136.03 481.30 136.03 481.30 136.03
Waterbodies 53.30 23.81 49.52 24.29 47.01 23.06 42.78 20.99
Rangeland 71.65 23.23 70.54 29.36 69.91 29.10 66.05 27.49
Marshes and swamps 27.73 12.69 25.13 13.59 24.66 13.34 21.61 11.69
Unused land 93.31 25.85 93.31 42.57 93.31 42.57 93.31 42.57

Total 3794.22 1577.96 3794.22 1565.01 3794.22 1557.18 3794.22 1550.07

Note: Area of LULC in kilometers squared, surface runoff in million meters cubed, and allocated LULC in kilometers squared.

Table 28. Optimization of LULC allocation to minimize surface runoff in normal years.

LULC Types

2019 2029 2039 2049

Area of
LULC

Surface
Runoff

Allocated
LULC

Surface
Runoff

Allocated
LULC

Surface
Runoff

Allocated
LULC

Surface
Runoff

Urban and built-up areas 65.84 67.58 65.84 67.58 65.84 67.58 65.84 67.58
Paddy fields 2012.16 2038.95 1947.12 1973.05 1879.30 1904.33 1812.16 1836.29
Sugarcane 306.85 277.30 385.71 348.56 451.67 408.18 512.06 462.76
Cassava 489.91 489.07 408.26 407.56 359.65 359.03 330.32 329.75
Other field crops 6.19 5.43 7.72 6.78 9.45 8.30 11.26 9.88
Para rubber 97.03 80.36 134.43 111.33 152.02 125.89 164.41 136.16
Perennial trees and orchards 88.95 74.28 125.36 104.68 160.12 133.70 193.13 161.27
Forest land 481.30 366.03 481.30 366.03 481.30 366.03 481.30 366.03
Waterbodies 53.30 55.23 49.52 51.30 47.01 48.70 42.78 44.33
Rangeland 71.65 65.95 70.54 64.93 69.91 64.35 66.05 60.80
Marshes and swamps 27.73 31.56 25.13 28.60 24.66 28.06 21.61 24.59
Unused land 93.31 95.33 93.31 95.33 93.31 95.33 93.31 95.33

Total 3794.22 3647.07 3794.22 3625.72 3794.22 3609.48 3794.22 3594.76

Note: Area of LULC in kilometers squared, surface runoff in million meters cubed, and allocated LULC in kilometers squared.

Table 29. Optimization of LULC allocation to minimize surface runoff in wet years.

LULC Types

2019 2029 2039 2049

Area of
LULC

Surface
Runoff

Allocated
LULC

Surface
Runoff

Allocated
LULC

Surface
Runoff

Allocated
LULC

Surface
Runoff

Urban and built-up areas 65.84 95.82 65.84 95.82 65.84 95.82 65.84 95.82
Paddy fields 2012.16 2889.20 1947.12 2795.81 1879.30 2698.43 1812.16 2602.02
Sugarcane 306.85 400.38 422.14 552.77 520.31 678.91 599.36 782.05
Cassava 489.91 688.86 408.26 574.05 358.65 505.70 330.32 464.46
Other field crops 6.19 8.09 6.19 8.09 9.45 12.36 11.26 14.71
Para rubber 97.03 126.18 134.43 174.82 152.02 197.69 164.41 213.81
Perennial trees and orchards 88.95 116.42 88.95 116.42 90.48 119.73 103.83 138.51
Forest land 481.30 563.35 481.30 563.35 481.30 563.35 481.30 563.35
Waterbodies 53.30 80.24 50.02 74.55 48.01 70.77 43.78 64.41
Rangeland 71.65 97.12 70.54 95.60 69.91 94.76 66.05 89.52
Marshes and swamps 27.73 44.10 26.13 39.97 25.66 39.21 22.61 34.37
Unused land 93.31 131.74 93.31 131.74 93.31 131.74 93.31 131.74

Total 3794.22 5241.52 3794.22 5223.01 3794.22 5208.46 3794.22 5194.79

Note: Area of LULC in kilometers squared, surface runoff in million meters cubed, and allocated LULC in kilometers squared.
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In the meantime, the most increasing LULC type in wet years was sugarcane, with an
area of approximately 115, 213, and 293 km2, respectively. Conversely, the significant de-
creasing LULC types were paddy fields, with approximately 65, 133, and 200 km2, and sug-
arcane, with approximately 82, 131, and 160 km2. Additionally, the annual surface runoff
decreased in 2029, 2039, and 2049 by 18.52, 33.06, and 46.73 million m3, or approximately
0.35%, 0.63%, and 0.89% from the total estimated surface runoff in 2019 (see Table 29).

According to these results, the optimized LULC allocation data in 2049 of the dry, nor-
mal and wet years were suitable for flood mitigation according to surface runoff reduction.
The surface runoff under dry, normal and wet years in 2049 reduced by approximately
27.89, 52.31, and 46.73 million m3 (Figure 19).

Figure 19. Surface runoff reduction in 2029, 2039, and 2049 in dry, normal, and wet years.

Moreover, notable reductions in annual surface runoff under the three rainfall condi-
tions occurred in paddy fields and cassava to sugarcane, para rubber, and perennial trees
and orchards after optimization, which changed the hydrological properties. Paddy and cas-
sava fields provided higher runoff coefficients than sugarcane, rubber, and perennial trees
and orchards (see Tables 27–29). This finding is consistent with previous studies [19,20,71].

The deviation in annual surface runoff after minimization by goal programming is
presented in Table 30. As a result, the percentage deviation from the goal varied from
–1.77% to –0.35%, which is acceptable.

Table 30. Deviation of annual surface runoff after minimization by goal programming.

Items

Surface Runoff Minimization (million m3)

Dry Years Normal Years Wet Years

2029 2039 2049 2029 2039 2049 2029 2039 2049

Goal of annual surface runoff
(million m3) 1577.96 1577.96 1577.96 3647.07 3647.07 3647.07 5241.52 5241.52 5241.52

Annual surface runoff after
optimization (million m3) 1565.01 1557.18 1550.07 3625.72 3609.48 3594.76 5223.01 5208.46 5194.79

Deviation from goal (million m3) –12.95 –20.78 –27.89 –21.34 –37.59 –52.31 –18.52 –33.06 –46.73
Deviation from goal (%) –0.82 –1.32 –1.77 –0.59 –1.03 –1.43 –0.35 –0.63 –0.89

4.10. Mapping of LULC Allocation for Flood Mitigation

LULC data in 2019 and the derived optimum local parameter of the CLUE-S model
were applied to map the suitable LULC allocation to minimize surface runoff for flood
mitigation in 2049 of the three rainfall conditions. The conversion matrix for each possible
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LULC type change in 2049 was based on transitional LULC change between 2010 and
2019, as shown in Table 31. Meanwhile, the elasticity values were assigned based on the
transition probability matrix of LULC change between 2019 and 2049 from the Markov
Chain model, as shown in Table 32. Thus, the elasticity values of the urban and built-up
areas, paddy fields, sugarcane, cassava, other field crops, para rubber, perennial trees and
orchards, forest land, waterbodies, rangeland, marshes and swamps, and unused land for
LULC prediction in 2049 were 1.00, 0.83, 0.83, 0.31, 0.97, 0.52, 0.96, 0.70, 0.76, 0.71, 0.76, and
0.87, respectively.

Table 31. Conversion matrix of the possible change in 2029, 2039, and 2049.

LULC Types
LULC Type Possible Change in 2029, 2039, and 2049

UR PA SU CA FC PR PO FO WA RA MA UL

LU
LC

in
20

19

Urban and built-up areas (UR) 1 0 0 0 0 0 0 0 0 0 0 0
Paddy fields (PA) 0 1 1 1 0 0 0 0 0 1 1 0
Sugarcane (SU) 1 0 1 1 0 1 1 0 0 0 0 0
Cassava (CA) 1 1 1 1 0 1 1 0 0 1 0 1
Other field crops (FC) 0 0 0 0 1 0 0 0 0 0 0 0
Para rubber (PR) 0 0 1 1 1 1 0 0 0 0 0 1
Perennial trees and orchards (PO) 0 0 1 1 0 0 1 0 0 0 0 0
Forest land (FO) 0 0 0 0 0 1 1 1 0 1 0 1
Waterbodies (WA) 0 0 0 0 0 0 0 0 1 0 1 0
Rangeland (RA) 0 1 0 1 0 0 1 0 0 1 0 0
Marshes and swamps (MA) 0 1 1 0 0 0 1 0 0 0 1 0
Unused land (UL) 1 0 0 0 0 0 0 0 0 0 0 1

Table 32. Elasticity of LULC change for LULC prediction between 2019 and 2049.

LULC Types
LULC Type Possible Change in 2049

UR PA SU CA FC PR PO FO WA RA MA UL

LU
LC

in
20

19

Urban and built-up areas (UR) 1.00 - - - - - - - - - - -
Paddy fields (PA) - 0.83 0.08 0.04 - - 0.03 - - - 0.01 -
Sugarcane (SU) 0.02 0.03 0.83 0.09 - 0.01 0.02 - - - - 0.01
Cassava (CA) 0.03 0.12 0.31 0.31 - 0.11 0.03 - - 0.01 - 0.08
Other field crops (FC) - - - - 0.97 - 0.02 - - - - -
Para rubber (PR) 0.01 0.02 0.05 0.18 0.02 0.52 0.07 - - - - 0.13
Perennial trees and orchards (PO) - 0.01 0.02 0.01 - - 0.96 - - - - -
Forest land (FO) 0.01 0.01 0.03 0.04 - 0.10 0.04 0.70 - 0.01 - 0.04
Waterbodies (WA) 0.01 0.10 0.07 0.03 - - 0.01 - 0.76 - 0.01 -
Rangeland (RA) - 0.21 0.02 0.03 - - 0.02 - - 0.71 - -
Marshes and swamps (MA) 0.01 0.06 0.08 0.03 - - 0.05 - - - 0.77 -
Unused land (UL) 0.02 0.08 0.01 0.01 - - 0.01 - - - - 0.87

In addition, the optimized LULC allocation in 2049 in dry, normal, and wet years (see
Tables 27–29) was applied to calculate the annual land requirement between 2019 and 2049
for LULC prediction.

The spatial distribution of the LULC allocation maps in 2049 for dry, normal, and wet
years is displayed in Figure 20. Meanwhile, the area and percentage of LULC type in 2049
for dry, normal, and wet years are summarized in Table 33. The derived map of suitable
LULC allocation to minimize surface runoff for flood mitigation of dry, normal, and wet
years was further applied to evaluate economic and ecosystem service values and change.
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Figure 20. Spatial distribution of predicted LULC data in 2049: (a) Dry years, (b) normal years, and (c) wet years.

Table 33. Area and percentage of optimized LULC allocation to mitigate flood in 2049 in dry, normal, and wet years.

LULC Types
Dry Year Normal Year Wet Year

Area (km2) Percentage Area (km2) Percentage Area (km2) Percentage

Urban and built-up areas 65.84 1.74 65.84 1.74 65.84 1.74
Paddy fields 1812.14 47.76 1812.14 47.76 1812.18 47.76
Sugarcane 517.12 13.63 517.12 13.63 599.34 15.80
Cassava 330.33 8.71 330.33 8.71 330.34 8.71
Other field crops 6.19 0.16 6.19 0.16 11.25 0.30
Para rubber 164.42 4.33 164.42 4.33 164.41 4.33
Perennial trees and orchards 193.17 5.09 193.17 5.09 103.88 2.74
Forest land 481.26 12.68 481.26 12.68 481.3 12.69
Waterbodies 42.77 1.13 42.77 1.13 43.78 1.15
Rangeland 66.07 1.74 66.07 1.74 66.01 1.74
Marshes and swamps 21.57 0.57 21.57 0.57 22.56 0.59
Unused land 93.3 2.46 93.3 2.46 93.28 2.46

Total 3794.22 100.00 3794.22 100.00 3794.22 100.00

4.11. Economic Value Evaluation and Change

The actual LULC data in 2019 and suitable LULC data in 2049 for flood mitigation
in dry, normal, and wet years (Table 34) were applied to evaluate future economic values
using the PV model (Table 35), and the results are shown in Table 36 and Figure 21.

Figure 21. Spatial distribution of economic value in 2049: (a) Actual LULC 2019, (b) dry years, (c) normal years,
and (d) wet years.
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Table 34. Areas of actual LULC in 2019 and suitable LULC allocation for flood mitigation in 2049 in dry, normal, and
wet years.

No. LULC Type Actual LULC 2019
Suitable LULC Allocation in 2049 (km2)

Dry Years Normal Years Wet Years

1 Urban and built-up areas 65.84 65.84 65.84 65.84
2 Paddy fields 2012.16 1812.14 1812.13 1812.18
3 Sugarcane 306.85 517.12 512.07 599.34
4 Cassava 489.91 330.33 330.33 330.34
5 Other field crops 6.19 6.19 11.27 11.25
6 Para rubber 97.03 164.42 164.41 164.41

7 Perennial trees and
orchards 88.95 193.17 193.15 103.88

8 Forest land 481.30 481.26 481.30 481.30
9 Waterbodies 53.30 42.77 42.80 43.78

10 Rangeland 71.65 66.07 66.04 66.01
11 Marshes and swamps 27.73 21.57 21.58 22.56
12 Unused land 93.32 93.30 93.28 93.28

Total 3794.22 3794.22 3794.22 3794.22

Table 35. Present and future economic value of agricultural and forest land.

LULC Types
Price

(Baht/ton)
Yield

(ton/km2)
Present Value
(Baht/ km2)

Discount Rate 5

(%)

Future Value in
2049 Using PV

Model
(Baht/km2)

Paddy field 1 13,287.75 218.75 2,906,695.31 6.50 19,225,947.12
Sugarcane 2 900.00 4468.75 4,021,875.00 6.50 26,602,153.91
Cassava 1 1430.00 2240.63 3,204,093.75 6.50 21,193,049.28
Other field crops 1 8092.50 415.63 3,363,445.31 6.50 22,247,058.87
Para rubber 3 43,685.83 131.25 5,733,765.63 6.50 37,925,225.34
Perennial trees and orchard 1 25,600.00 247.24 6,329,440.00 6.50 41,865,233.77
Forest land 4 - - 25,000,000.00 6.50 165,359,154.08

Source: 1 [72], 2 [73], 3 [74], 4 [75], and 5 discount rate was based on the minimum retail rate of Bank for [76].

Table 36. Economic value by LULC types of actual LULC 2019 and suitable LULC allocation for flood mitigation in 2049.

LULC Types

Economic Value in 2049 (Baht)

Actual LULC in 2019
Suitable LULC Allocation for Flood Mitigation in 2049

Dry Year Normal Year Wet Year

Paddy fields 38,654.20 34,629.20 34,822.30 34,826.09
Sugarcane 8147.42 13,678.87 13,614.03 15,920.81
Cassava 10,347.30 6783.21 6979.08 6968.65
Other field crops 137.81 136.47 200.36 200.68
Para rubber 3675.10 6145.56 6235.43 6222.15
Perennial trees and orchards 3717.46 9041.53 8055.82 4404.83
Forest land 79,388.71 78,164.79 79,303.89 79,315.05

Total in million Baht 144,068.00 148,579.64 149,210.92 147,858.27

According to results, the top three dominant LULC types of actual LULC data in 2019
were paddy fields, cassava, and forest land, while the top three dominant LULC types of
suitable LULC allocation data in 2049 for flood mitigation in dry, normal, and wet years
were paddy field, sugarcane, and forest land. Moreover, the top three highest future values
were forest land, perennial trees and orchards, and para rubber (Table 35).

As a result, in Table 36, the suitable LULC allocation data for flood mitigation in normal
years provided the highest economic value, approximately 149,211 million Baht. In contrast,
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the actual LULC allocation in 2019 provided the lowest economic value, approximately
144,068 million Baht. The contribution of the economic value by LULC type from the actual
LULC and suitable LULC allocation data for flood mitigation from three rainfall conditions
are displayed in Figure 22.

Figure 22. Contribution of the future economic value of LULC type of actual LULC and suitable LULC allocation for flood
mitigation (dry, normal, and wet years).

According to the data in Figure 22, the top three dominant LULC types of actual LULC
in 2019, including paddy fields, cassava, and forest land, will provide future economic
value in 2049, about 89% of the total value. Meanwhile, the top three dominant LULC
types of suitable LULC allocation for flood mitigation under dry, normal, and wet years,
including paddy fields, sugarcane, and forest land, deliver future economic value in 2049
of approximately 85%, 86%, and 88% of the total value, respectively.

Moreover, the future economic value of forest land from actual LULC and suitable
LULC allocation data for flood mitigation (dry, normal, and wet years) contributed the
highest values compared to the other LULC types because the present economic value,
approximately 25,000,000 Baht per km2, or the future economic value, approximately
165,359,154 Baht per km2, was exceptionally high when compared to other LULC types
(see Table 35).

Furthermore, the results of the future economic value change by comparing the values
of actual LULC data and each suitable LULC allocation for flood mitigation (dry, normal,
and wet years) in terms of gain (+sign) and loss (-sign) are reported in Tables 37–39 and
spatially displayed in Figure 23.

According to change detection, suitable LULC allocation for flood mitigation in 2049
in normal years gained the highest future economic value of approximately 4322 million
Baht (Table 38). On the contrary, suitable LULC allocation for flood mitigation in 2049 in
wet years gained the highest future economic value of approximately 3124 million Baht
(Table 39). These results show the consequence of LULC allocation for flood mitigation
in 2049 using goal programming on future economic value, because the future economic
value depends on the areas of LULC type and their values.
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Table 37. Future economic value change in 2049 between actual LULC in 2019 and suitable LULC allocation in dry years.

LULC Types
Suitable LULC Allocation in 2049 of Dry Years

Total
PA SU CA FC PR PO FO

A
ct

ua
lL

U
LC

in
20

19

Paddy fields (PA) 0 1507.30 28.21 0.02 18.11 602.05 1656.23 3811.92
Sugarcane (SU) –188.27 0 –105.11 –0.99 14.05 173.00 790.00 682.69
Cassava (CA) –28.21 207.96 0 0.28 813.50 1983.53 1249.23 4226.29
Other field crops (FC) –0.01 0.91 –0.11 0 12.19 0.42 104.33 117.73
Para rubber (PR) 0 –2.68 –25.43 –8.99 0 2.45 1167.21 1132.55
Perennial trees and
orchards (PO) –193.53 –123.84 –86.03 –0.35 –5.10 0 237.52 –171.32

Forest land (FO) –131.26 –
2240.87 –630.19 –95.31 –2467.68 –305.09 0 –5870.41

Total –541.27 –651.22 –818.66 –105.34 –1614.92 2456.36 5204.51 3929.45

Table 38. Future economic value change in 2049 between actual LULC in 2019 and suitable LULC allocation in normal
years.

LULC Types
Suitable LULC Allocation in 2049 of Normal Years

Total
PA SU CA FC PR PO FO

A
ct

ua
lL

U
LC

in
20

19 Paddy fields (PA) 0 1453.48 28.90 0.02 38.03 563.56 1656.23 3740.22
Sugarcane (SU) –190.75 0 –108.03 –1.06 21.53 151.87 790.00 663.57
Cassava (CA) –29.13 224.39 0 0.59 975.32 1546.54 1252.86 3970.57
Other field crops (FC) –0.01 0.94 –0.11 0 12.05 0.41 104.46 117.74
Para rubber (PR) 0 –2.69 –26.55 –41.85 0 2.45 1206.43 1137.79
Perennial trees and
orchards (PO) –196.66 –123.25 –88.76 –0.64 –6.05 0 237.74 –177.62

Forest land (FO) –152.56 –2237.12 –645.50 –142.20 –1666.34 –286.86 0 –5130.59

Total –569.12 –684.25 –840.06 –185.14 –625.45 1977.96 5247.72 4321.67

Table 39. Future economic value change in 2049 between actual LULC in 2019 and suitable LULC allocation in wet years.

LULC Types
Suitable LULC Allocation in 2049 of the Wet Year

Total
PA SU CA FC PR PO FO

A
ct

ua
lL

U
LC

in
20

19 Paddy fields (PA) 0 1525.95 27.55 0.02 58.57 323.42 1656.23 3591.74
Sugarcane (SU) –190.82 0 –105.43 –1.06 19.27 97.94 790.00 609.90
Cassava (CA) –29.16 565.99 0 0.59 971.75 245.81 1252.86 3007.84
Other field crops (FC) -0.01 0.95 –0.12 0 11.92 0.35 104.46 117.55
Para rubber (PR) 0 –2.69 –31.35 –41.89 0 2.45 1206.89 1133.40
Perennial trees and
orchards (PO) –196.68 –141.72 –90.29 –0.64 –6.21 0 237.74 –197.81

Forest land (FO) –152.83 –2360.51 –653.55 –143.61 –1569.08 –259.19 0 –5138.76

Total –569.50 –412.03 –853.19 –186.59 –513.78 410.78 5248.17 3123.86
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Figure 23. Gain and loss of future economic value of suitable LULC allocation for flood mitigation in 2049: (a) Dry
years, (b) normal years, and (c) wet years.

4.12. Ecosystem Service Value Evaluation and Change

The actual LULC data in 2019 and the suitable LULC data in 2049 for flood mitigation
under dry, normal, and wet years (Table 40) were applied to evaluate the ecosystem service
values using a simple benefit transfer method according to a coefficient value of LULC
type (see Table 4), and the results are shown in Table 41 and Figure 24.

Table 40. Area of each LULC type for ESV evaluation of actual LULC and suitable LULC allocation for flood mitigation
under dry, normal, and wet years.

No. ESV-LULC Type Actual LULC
2019

Suitable LULC Allocation in 2049

Dry Years Normal Years Wet Years

1 Urban and built-up areas 65.84 65.84 65.84 65.84
2 Paddy fields 2012.16 1812.16 1812.16 1812.16
3 Field crop 802.95 853.64 853.64 940.94
4 Forest land 667.28 838.84 838.84 749.54
5 Waterbodies 53.3 42.78 42.78 43.78
6 Rangeland 71.65 66.05 66.05 66.05
7 Marshes and swamps 27.73 21.61 21.61 22.61
8 Unused land 93.32 93.31 93.31 93.31

Total 3794.22 3794.22 3794.22 3794.22

Table 41. Ecosystem service value by ESV-LULC types of actual LULC 2019 and suitable LULC allocation for flood
mitigation in 2049.

ESV-LULC Types

Ecosystem Service Value (Baht)

Actual LULC in 2019
Suitable LULC Allocation for Flood Mitigation in 2049

Dry Years Normal Years Wet Years

Urban and built-up areas (UR) 2.60 2.62 2.62 2.62
Paddy fields (PA) 6478.73 5804.11 5836.47 5837.11
Field crops (FC) 2580.20 2708.13 2739.31 3017.20
Forest land (FO) 4050.69 5175.68 5088.76 4556.47
Waterbodies (WA) 1143.07 1019.07 923.23 951.98
Rangeland (RA) 180.65 176.46 167.47 163.55
Marshes and swamps (MA) 810.57 567.00 642.80 679.99
Unused land (UL) 27.92 27.94 27.94 27.94

Total in million Baht 15,274.42 15,481.00 15,428.61 15,236.86
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Figure 24. Spatial distribution of the ecosystem service value: (a) Actual LULC 2019, (b) dry years, (c) normal years, and (d)
wet years.

As a result, the ESV of actual LULC in 2019 and the suitable LULC allocation for
flood mitigation in 2049 in dry, normal, and wet years are slightly different. The suitable
LULC allocation for flood mitigation in 2049 under the dry year provided the highest ESV,
approximately 15,481 million Baht, while the suitable LULC allocation for flood mitigation
in 2049 in wet years delivered the lowest ESV, approximately 15,237 million Baht. The
contributions of ESV of each LULC type from actual LULC in 2019 and the suitable LULC
allocation for flood mitigation in 2049 under the three rainfall conditions are compared in
Figure 25.

Figure 25. Contribution of the ecosystem service value of each LULC type of actual LULC and suitable LULC allocation for
flood mitigation (dry, normal, and wet years).

As shown in Figure 25, paddy fields provided the highest ESV value from the actual
LULC and the suitable LULC allocation data for flood mitigation in 2049 under the three
rainfall conditions, because paddy fields were the most dominant type in the area. Addi-
tionally, the top three dominant LULC types, namely, paddy fields, field crops, and forest
land, delivered ESVs of approximately 86%, 88%, 89%, and 88% of the total value.

Furthermore, the results of the ESV change upon comparison between values of actual
LULC data and each suitable LULC allocation for flood mitigation (dry, normal, and wet
years) in terms of gain (+sign) and loss (-sign) are reported in Tables 42–44 and spatially
displayed in Figure 26.
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Table 42. Ecosystem service value change between actual LULC in 2019 and suitable LULC allocation in 2049 in dry years.

LULC Types
Suitable LULC Allocation in 2049 of Dry Years

Total
UR PA FC FO WA RA MA UL

A
ct

ua
lL

U
LC

in
20

19

Urban and built-up areas
(UR) 0 33.07 14.03 14.06 4.88 0.17 2.05 0.08 68.34

Paddy fields (PA) –36.36 0 0 111.30 40.04 –10.79 119.19 –1.86 221.52
Field crops (FC) –14.69 0 0 495.14 16.80 –3.06 5.11 –18.86 480.44
Forest land (FO) –9.60 –27.03 –102.47 0 13.13 –3.09 0.65 –91.86 –220.28
Waterbodies (WA) –4.93 –46.67 –15.46 –20.49 0 –0.14 39.86 –0.82 –48.65
Rangeland (RA) –0.16 8.88 4.30 12.49 0.19 0 0.75 –0.02 26.42
Marshes and swamps
(MA) –1.97 –184.81 –6.07 –249.41 –0.91 –1.64 0 0 –444.81

Unused land (UL) –0.07 1.28 8.82 112.93 0.63 0.01 0 0 123.60

Total –67.79 –215.28 –96.84 476.01 74.76 –18.53 167.60 –113.35 206.58

Table 43. Ecosystem service value change between the actual LULC in 2019 and the suitable LULC allocation in 2049 in
normal years.

LULC Types
Suitable LULC Allocation in 2049 of Normal Years

Total
UR PA FC FO WA RA MA UL

A
ct

ua
lL

U
LC

in
20

19

Urban and built-up areas
(UR) 0 33.21 14.25 13.47 4.68 0.15 2.18 0.08 68.02

Paddy fields (PA) –36.36 0 0 109.49 31.33 –10.30 119.54 –1.86 211.83
Field crops (FC) –14.69 0 0 460.30 16.74 –2.72 4.87 –18.86 445.63
Forest land (FO) –9.60 –27.85 –110.14 0 13.13 –2.75 0.65 –91.86 –228.41
Waterbodies (WA) –4.93 –46.67 –16.38 –19.96 0 –0.14 70.47 –0.82 –18.44
Rangeland (RA) –0.16 8.98 4.27 20.19 0.15 0 0.77 –0.02 34.19
Marshes and swamps
(MA) –1.97 –184.81 –54.01 –238.61 –0.69 –1.64 0 0 –481.73

Unused land (UL) –0.07 1.32 9.31 111.90 0.63 0.01 0 0 123.09

Total –67.79 –215.81 –152.70 456.77 65.98 –17.39 198.47 –113.35 154.18

Table 44. Ecosystem service value change between the actual LULC in 2019 and the suitable LULC allocation in 2049 in wet
years.

LULC Types
Suitable LULC Allocation in 2049 of Wet Years

Total
UR PA FC FO WA RA MA UL

A
ct

ua
lL

U
LC

in
20

19

Urban and built-up areas
(UR) 0 33.22 15.59 10.91 4.76 0.14 2.10 0.08 66.81

Paddy fields (PA) –36.36 0 0 82.27 34.28 –10.04 130.26 –1.86 198.55
Field crops (FC) –14.69 0 0 268.93 16.79 –2.64 3.65 –18.86 253.17
Forest land (FO) –9.60 –27.85 –117.37 0 13.13 –2.62 0.85 –91.86 –235.33
Waterbodies (WA) –4.93 –46.67 –19.20 –17.57 0 –0.14 61.42 –0.82 –27.92
Rangeland (RA) –0.16 8.99 4.68 21.78 0.15 0 0.72 –0.02 36.14
Marshes and swamps
(MA) –1.97 –184.81 –214.16 –48.07 –0.76 –1.64 0 0 –451.40

Unused land (UL) –0.07 1.32 10.00 110.52 0.63 0.01 0 0 122.41

Total –67.79 –215.81 –320.47 428.78 68.99 –16.92 199.01 –113.35 –37.56
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Figure 26. Gain and loss of ESV of suitable LULC allocation for flood mitigation in 2049: (a) Dry years, (b) normal years,
and (c) wet years.

According to the results in Tables 42–44, the suitable LULC allocation for flood mitiga-
tion in 2049 under dry years gained the highest ESV of approximately 207 million Baht.
On the contrary, the suitable LULC allocation for flood mitigation in 2049 in wet years
resulted in losses in ESV of approximately 38 million Baht. These findings indicate that
the ESV of suitable LULC allocation for flood mitigation in 2049 in wet years is lower than
the actual LULC in 2019 (see Table 45). Similar to the change in future economic value,
these results show the consequence of LULC allocation for flood mitigation in 2049 using
goal programming on ESV, because the ESV depends on areas of LULC type and their
coefficient values. Moreover, it can be observed that forest land, waterbodies, and marshes
and swamps provide a gain in ESV (+sign), while urban and built-up areas, paddy fields,
field crops, rangeland, and unused land results in a loss of ESV (-sign) for all three rainfall
conditions. These findings indicate that the ecosystem service value was dictated by the
coefficient value of each LULC type.

Table 45. Future economic and ESV value evaluation and change and reduction in surface runoff of each suitable LULC
allocation for flood mitigation by comparison to the baseline information of LULC data in 2019.

Item
Suitable LULC Allocation for Flood Mitigation in 2049

Dry Years Normal Years Wet Years

Future economic value (million Baht) 148,579.64 149,210.92 147,858.27
Gain or loss by economic value (million Baht) 3929.45 4321.67 3123.86
Ecosystem service value (million Baht) 15,481.00 15,428.61 15,236.86
Gain or loss by ESV (million Baht) 206.58 154.18 –37.56
Runoff reduction (million m3) 27.89 52.31 46.73

In summary, the suitable LULC allocation for flood mitigation in 2049 in normal years
provides the highest value for future economic value evaluation and the highest gain value
compared to actual LULC in 2019. In the meantime, the suitable LULC allocation for flood
mitigation in 2049 in dry years provided the highest value for ecosystem service evaluation
and the highest gain the ESV by comparing it with actual LULC in 2019. Meanwhile,
the suitable LULC allocation for flood mitigation in 2049 in normal years can reduce the
highest surface runoff by approximately 52 million m3 compared to the actual LULC in
2019 (see Table 45).

Consequently, it can be concluded that the most suitable LULC allocation for flood
mitigation in 2049 in Chaiyaphum district, Chaiyaphum province under the Second Part
of the Lam Nam Chi watershed, based on the future economic value and ecosystem
service value evaluation, is a suitable LULC allocation for flood mitigation in 2049 in the
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normal year scenario. This information can be used as primary data for supporting project
implementation.

5. Conclusions

This study applied the supervised method to classify LULC data in 2001, 2010, and
2019 based on Landsat 5-TM and Landsat 8-OLI with supplementary data, including NDVI,
MNDWI, NDBI, and DEM, using an RF classifier under EnMap BOX software. The derived
thematic accuracy of the LULC maps showed an overall accuracy and Kappa hat coefficient
between classified LULC maps and ground reference data in 2001, 2010, and 2019 of 89.88%
and 84.88%, 90.71% and 87.03%, and 91.37% and 88.26%, respectively. Later, the classified
LULC data in 2001, 2010, and 2019 were further applied to predict the LULC change in two
periods, 2002–2009 and 2011–2018, using the CLUE-S model. The significant driving factors
of LULC change for specific LULC type location preferences included elevation, slope,
annual rainfall, average income per capita at the sub-district level, population density at
the sub-district level, distance to the road network, distance to a stream, and distance to
the existing urban area. As a result, the LULC prediction of both periods was dictated by
the historical LULC development between 2001 and 2010 and 2010 and 2019, respectively.
Then, time series surface runoff data between 2001 and 2019 were estimated using the
SCS-CN method under a GIS raster-based environment. The process worked on spatial
variation of land use, hydrologic soil group, and rainfall data. In this study, a suitable
AMC condition was first examined and validated for time series surface runoff estimation
between 2001 and 2010. Then, a suitable AMC condition was further chosen to estimate
the time series surface runoff between 2011 and 2019.

After this, goal programming was applied to minimize the surface runoff for flood
mitigation based on the surface runoff coefficient value of LULC types in dry, normal,
and wet years for 2029, 2039, and 2049. Accordingly, the surface runoff could be reduced
under all three rainfall conditions, and suitable LULC allocation for flood mitigation in dry,
normal, and wet years was in 2049. The suitable LULC allocation for flood mitigation in
2049 of the normal year provided the highest value and gain for future economic value
compared to the actual LULC in 2019. Meanwhile, the suitable LULC allocation for flood
mitigation in 2049 of dry years provided the highest value and gain for ecosystem services
compared to the actual LULC in 2019. Nonetheless, considering the future economic and
ecosystem service values and changes in surface runoff reduction, the most suitable LULC
allocation for flood mitigation in 2049 was normal years.

In conclusion, the derived results of this study can be used as primary information for
flood mitigation project implementation in Chaiyaphum province. Likewise, the presented
conceptual framework and research workflows can be used as a guideline for government
agencies to examine flood-prone areas for flood mitigation in Thailand.

However, to apply the proposed method in other areas, we recommend that the CN
value of the AMC-II condition, as the identified suitable value in this study, can directly
apply to estimate time series surface runoff. In addition, rainfall conditions identification
using SPI can be ignored to increase the number of years for calculating the average runoff
coefficient value of each LULC type. This value plays a vital role in minimizing surface
runoff for flood mitigation using goal programming.
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